Comparison of Baseline and Post-Nitrate Exercise Testing in Patients with Angina but Non-Obstructed Coronary Arteries with Different Acetylcholine Test Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Acetylcholine Test
2.3. Exercise Stress Test
2.4. Statistics
3. Results
3.1. Patients
3.2. Basal Exercise Stress Test
3.3. B-EST vs. N-EST
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, M.R.; Peterson, E.D.; Dai, D.; Brennan, J.M.; Redberg, R.F.; Anderson, H.V.; Brindis, R.G.; Douglas, P.S. Low diagnostic yield of elective coronary angiography. N. Engl. J. Med. 2010, 362, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Gehrie, E.R.; Reynolds, H.R.; Chen, A.Y.; Neelon, B.H.; Roe, M.T.; Gibler, W.B.; Ohman, E.M.; Newby, L.K.; Peterson, E.D.; Hochman, J.S. Characterization and outcomes of women and men with non-ST-segment elevation myocardial infarction and nonobstructive coronary artery disease: Results from the Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes with Early Implementation of the ACC/AHA Guidelines (CRUSADE) quality improvement initiative. Am. Heart J. 2009, 158, 688–694. [Google Scholar]
- Lanza, G.A.; Morrone, D.; Pizzi, C.; Tritto, I.; Bergamaschi, L.; De Vita, A.; Villano, A.; Crea, F. Diagnostic approach for coronary microvascular dysfunction in patients with chest pain and no obstructive coronary artery disease. Trends Cardiovasc. Med. 2021, 32, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Ong, P.; Athanasiadis, A.; Borgulya, G.; Vokshi, I.; Bastiaenen, R.; Kubik, S.; Hill, S.; Schäufele, T.; Mahrholdt, H.; Kaski, J.C.; et al. Clinical usefulness, angiographic characteristics, and safety evaluation of intracoronary acetylcholine provocation testing among 921 consecutive white patients with unobstructed coronary arteries. Circulation 2014, 129, 1723–1730. [Google Scholar] [CrossRef]
- A Montone, R.; Niccoli, G.; Fracassi, F.; Russo, M.; Gurgoglione, F.; Cammà, G.; A Lanza, G.; Crea, F. Patients with acute myocardial infarction and non-obstructive coronary arteries: Safety and prognostic relevance of invasive coronary provocative tests. Eur. Heart J. 2018, 39, 91–98. [Google Scholar] [CrossRef]
- Ford, T.J.; Stanley, B.; Good, R.; Rocchiccioli, P.; McEntegart, M.; Watkins, S.; Eteiba, H.; Shaukat, A.; Lindsay, M.; Robertson, K. Stratified Medical Therapy Using Invasive Coronary Function Testing in Angina: The CorMicA Trial. J. Am. Coll. Cardiol. 2018, 72, 2841–2855. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Mullins, P.A.; Taylor, G.; Petch, M.C.; Schofield, P.M. Both endothelium-dependent and endothelium-independent function is impaired in patients with angina pectoris and normal coronary angiograms. Eur. Heart J. 1997, 18, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Bøttcher, M.; Bøtker, H.E.; Sonne, H.; Nielsen, T.T.; Czernin, J. Endotheliumdependent and independent perfusion reserve and the effect of L-arginine on myocardial perfusion in patients with syndrome X. Circulation 1999, 99, 1795–1801. [Google Scholar] [CrossRef]
- Lanza, G.A.; Buffon, A.; Sestito, A.; Natale, L.; Sgueglia, G.A.; Galiuto, L.; Infusino, F.; Mariani, L.; Centola, A.; Crea, F. Relation between stress-induced myocardial perfusion defects on cardiovascular magnetic resonance and coronary microvascular dysfunction in patients with cardiac syndrome X. J. Am. Coll. Cardiol. 2008, 51, 466–472. [Google Scholar] [CrossRef]
- Pupita, G.; Kaski, J.C.; Galassi, A.R.; Gavrielides, S.; Crea, F.; Maseri, A. Similar time course of ST depression during and after exercise in patients with coronary artery disease and syndrome X. Am. Heart J. 1990, 120, 848–854. [Google Scholar] [CrossRef]
- Kaski, J.C.; Rosano, G.M.; Collins, P.; Nihoyannopoulos, P.; Maseri, A.; Poole-Wilson, P.A. Cardiac syndrome X: Clinical characteristics and left ventricular function: Long-term follow-up study. J. Am. Coll. Cardiol. 1995, 25, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Ong, P.; Athanasiadis, A.; Hill, S.; Schäufele, T.; Mahrholdt, H.; Sechtem, U. Coronary microvascular dysfunction assessed by intracoronary acetylcholine provocation testing is a frequent cause of ischemia and angina in patients with exercise-induced electrocardiographic changes and unobstructed coronary arteries. Clin. Cardiol. 2014, 37, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Beltrame, J.F. Management of vasospastic angina. Heart 2022, 109, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Lanza, G.A.; Manzoli, A.; Bia, E.; Crea, F.; Maseri, A. Acute effects of nitrates on exercise testing in patients with syndrome X. Circulation 1994, 90, 2695–2700. [Google Scholar] [CrossRef] [PubMed]
- Radice, M.; Giudici, V.; Marinelli, G. Long-term follow-up in patients with positive exercise test and angiographically normal coronary arteries (syndrome X). Am. J. Cardiol. 1995, 75, 620–621. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.; Di Franco, A.; Lamendola, P.; Tarzia, P.; Nerla, R.; Stazi, A.; Villano, A.; Sestito, A.; Lanza, G.A.; Crea, F. Lack of effect of nitrates on exercise stress test results in patients with microvascular angina. Cardiovasc. Drugs Ther. 2013, 27, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- NICE Guidelines. Recent-Onset Chest Pain of Suspected Cardiac Origin: Assessment and Diagnosis. Clinical Guideline [CG95] Published: 24 March 2010 Last updated: 30 November 2016. Available online: https://www.nice.org.uk/guidance/cg95 (accessed on 26 March 2024).
- Knuuti, J.; Ballo, H.; Juarez-Orozco, L.E.; Saraste, A.; Kolh, P.; Rutjes, A.W.S.; Jüni, P.; Windecker, S.; Bax, J.J.; Wijns, W. The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: A meta-analysis focused on post-test disease probability. Eur. Heart J. 2018, 39, 3322–3330. [Google Scholar] [CrossRef]
- Rudzinski, P.N.; Kruk, M.; Debski, M.; Demkow, M.; Kepka, C. Can the Application of Fractional Flow Reserve Computed Tomography in High-risk Patients with Chronic Coronary Syndrome Obviate Downstream Diagnostic Invasive Coronary Procedures? J. Thorac. Imaging 2023, 38, W77–W78. [Google Scholar] [CrossRef]
- Tang, C.X.; Qiao, H.Y.; Zhang, X.L.; Di Jiang, M.; Schoepf, U.J.; Rudziński, P.N.; Giovagnoli, D.P.; Lu, M.J.; Li, J.H.; Wang, Y.N.; et al. Functional CAD-RADS using FFRCT on therapeutic management and prognosis in patients with coronary artery disease. Eur. Radiol. 2022, 32, 5210–5221. [Google Scholar] [CrossRef]
- Sinha, A.; Dutta, U.; Demir, O.M.; De Silva, K.; Ellis, H.; Belford, S.; Ogden, M.; Wa, M.L.K.; Morgan, H.P.; Shah, A.M.; et al. Rethinking False Positive Exercise Electrocardiographic Stress Tests by Assessing Coronary Microvascular Function. J. Am. Coll. Cardiol. 2024, 83, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Cannon, R.O., 3rd; Epstein, S.E. “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am. J. Cardiol. 1988, 61, 1338–1343. [Google Scholar] [CrossRef] [PubMed]
- Lanza, G.A.; Crea, F. Primary coronary microvascular dysfunction: Clinical presentation, pathophysiology, and management. Circulation 2010, 121, 2317–2325. [Google Scholar] [CrossRef] [PubMed]
- Ong, P.; Athanasiadis, A.; Borgulya, G.; Mahrholdt, H.; Kaski, J.C.; Sechtem, U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries). J. Am. Coll. Cardiol. 2012, 59, 655–662. [Google Scholar] [CrossRef]
- Ohba, K.; Sugiyama, S.; Sumida, H.; Nozaki, T.; Matsubara, J.; Matsuzawa, Y.; Konishi, M.; Akiyama, E.; Kurokawa, H.; Maeda, H.; et al. Microvascular coronary artery spasm presents distinctive clinical features with endothelial dysfunction as nonobstructive coronary artery disease. J. Am. Heart Assoc. 2012, 1, e002485. [Google Scholar] [CrossRef] [PubMed]
- Pirozzolo, G.; Seitz, A.; Athanasiadis, A.; Bekeredjian, R.; Sechtem, U.; Ong, P. Microvascular spasm in non-ST-segment elevation myocardial infarction without culprit lesion (MINOCA). Clin. Res. Cardiol. 2020, 109, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Konst, R.E.; Damman, P.; Pellegrini, D.; Hartzema-Meijer, M.J.; van Uden, B.J.; Jansen, T.P.; Brandsma, J.; Vart, P.; Gehlmann, H.; Maas, A.H.; et al. Vasomotor dysfunction in patients with angina and nonobstructive coronary artery disease is dominated by vasospasm. Int. J. Cardiol. 2021, 333, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Jansen, T.P.J.; Konst, R.E.; de Vos, A.; Paradies, V.; Teerenstra, S.; van den Oord, S.C.H.; Dimitriu-Leen, A.; Maas, A.H.E.M.; Smits, P.C.; Damman, P.; et al. Efficacy of Diltiazem to Improve Coronary Vasomotor Dysfunction in ANOCA: The EDIT-CMD Randomized Clinical Trial. JACC Cardiovasc. Imaging 2022, 15, 1473–1484. [Google Scholar] [CrossRef]
- Sidik, N.P.; Stanley, B.; Sykes, R.; Morrow, A.J.; Bradley, C.P.; McDermott, M.; Ford, T.J.; Roditi, G.; Hargreaves, A.; Stobo, D.; et al. Invasive Endotyping in Patients with Angina and No Obstructive Coronary Artery Disease: A Randomized Controlled Trial. Circulation 2024, 149, 7–23. [Google Scholar] [CrossRef]
CAS-Group (n = 40) | CMVS-Group (n = 14) | NEG-Group (n = 27) | p | |
---|---|---|---|---|
Age (years) | 60 + 10 | 61 + 9 | 56 + 13 | 0.23 |
Sex (M/F) | 16/24 | 4/10 | 16/11 | 0.13 |
Cardiovascular risk factors | ||||
Family history of CVD | 17 (43%) | 5 (36%) | 14 (52%) | 0.58 |
Hypertension | 23 (58%) | 11 (79%) | 13 (48%) | 0.17 |
Active smoking | 11 (28%) | 4 (29%) | 5 (19%) | 0.66 |
Hypercholesterolemia | 28 (70%) | 9 (64%) | 15 (56%) | 0.48 |
Diabetes | 7 (18%) | 2 (14%) | 3 (11%) | 0.77 |
Clinical presentation | ||||
Stable angina | 15 (38%) | 5 (36%) | 14 (52%) | 0.44 |
Unstable angina | 25 (63%) | 9 (64%) | 13 (48%) | 0.44 |
MINOCA | 7 (18%) | 4 (29%) | 3 (11%) | 0.47 |
Drug therapy | ||||
Beta-blockers | 5 (13%) | 4 (29%) | 10 (37%) | 0.01 |
Ca2+ channel blockers | 38 (95%) | 10 (71%) | 7 (26%) | <0.0001 |
ACE-inhibitors/ARBs | 18 (45%) | 6 (43%) | 10 (37%) | 0.74 |
Statins | 31 (78%) | 5 (36%) | 18 (67%) | 0.02 |
Aspirin | 24 (60%) | 9 (64%) | 11 (41%) | 0.21 |
CAS-Group (n = 40) | CMVS-Group (n = 14) | NEG-Group (n = 27) | p | |
---|---|---|---|---|
Rest | ||||
HR (bpm) | 82 + 17 | 81 + 23 | 77 + 15 | 0.43 |
Systolic BP (mmHg) | 126 + 15 | 131 + 19 | 125 + 12 | 0.49 |
Diastolic BP (mmHg) | 81 + 11 | 80 + 12 | 80 + 8 | 0.98 |
RPP (bpm × mmHg) | 10,361 + 2687 | 10,703 + 3286 | 9594 + 2154 | 0.36 |
Peak exercise | ||||
HR (bpm) | 152 + 23 | 144 + 16 | 156 + 17 | 0.24 |
Systolic BP (mmHg) | 164 + 26 | 172 + 24 | 163 + 23 | 0.49 |
Diastolic BP (mmHg) | 89 + 12 | 95 + 13 | 87 + 11 | 0.11 |
RPP (bpm × mmHg) | 24,828 + 4618 | 24,848 + 4159 | 25,283 + 3806 | 0.90 |
Duration of exercise (s) | 464 + 206 | 463 + 154 | 570 + 168 | 0.06 |
STD > 1 mm | 8 (22%) | 7 (50%) | 6 (22%) | 0.076 |
Angina | 4 (10%) | 4 (28%) | 2 (7%) | 0.08 |
CAS-Group (n = 8) | CMVS-Group (n = 6) | NEG-Group (n = 5) | p | ||
---|---|---|---|---|---|
Rest | |||||
HR (bpm) | B-EST | 81 + 13 | 88 + 34 | 74 + 14 | 0.58 |
N-EST | 81 + 11 | 75 + 10 | 73 + 11 | 0.43 | |
Systolic BP (mmHg) | B-EST | 124 + 15 | 133 + 22 | 123 + 8 | 0.48 |
N-EST | 126 + 9 | 131 + 15 | 118 + 4 | 0.16 | |
Diastolic BP (mmHg) | B-EST | 81 + 4 | 80 + 8 | 80 + 10 | 0.92 |
N-EST | 79 + 4 | 81 + 5 | 82 + 4 | 0.30 | |
RPP (bpm × mmHg) | B-EST | 10,096 + 2628 | 11,680 + 4257 | 9060 + 1668 | 0.37 |
N-EST | 10,226 + 1790 | 9968 + 2470 | 8670 + 1519 | 0.38 | |
Peak exercise | |||||
HR (bpm) | B-EST | 148 + 14 | 140 + 13 | 163 + 16 | 0.06 |
N-EST | 146 + 19 | 146 + 7 | 152 + 14 | 0.74 | |
Systolic BP (mmHg) | B-EST | 170 + 23 | 180 + 30 | 164 + 17 | 0.54 |
N-EST | 164 + 21 | 175 + 32 | 152 + 8 | 0.29 | |
Diastolic BP (mmHg) | B-EST | 87 + 7 | 84 + 11 | 93 + 4 | 0.08 |
N-EST | 83 + 5 | 86 + 6 | 93 + 6 | 0.003 | |
RPP (bpm × mmHg) | B-EST | 25,307 + 4903 | 25,412 + 5497 | 26,512 + 1365 | 0.88 |
N-EST | 24,089 + 5324 | 25,593 + 5065 | 23,078 + 2234 | 0.67 | |
EST duration (s) | B-EST | 489 + 250 | 394 + 102 | 642 + 122 | 0.12 |
N-EST | 471 + 144 | 438 + 67 | 620 + 138 | 0.06 | |
Positive N-EST | 7 (87.5%) | 4 (66.7%) | 4 (80%) | 0.64 | |
Maximal STD (mm) | B-EST | 1.9 + 1.2 | 1.1 + 0.2 | 1.8 + 0.3 | 0.18 |
N-EST | 1.3 + 0.9 | 0.7 + 0.5 | 1.6 + 0.7 | 0.12 | |
Angina | B-EST | 1 (14%) | 3 (25%) | 2 (22%) | 0.86 |
N-EST | 0 (0%) | 4 (33%) | 2 (22%) | 0.23 | |
1 mm STD | |||||
HR (bpm) | B-EST | 135 + 16 | 139 + 13 | 138 + 20 | 0.88 |
N-EST | 131 + 21 | 146 + 7 | 129 + 18 | 0.20 | |
Systolic BP (mmHg) | B-EST | 161 + 19 | 177 + 31 | 150 + 14 | 0.17 |
N-EST | 154 + 17 | 173 + 33 | 144 + 15 | 0.12 | |
Diastolic BP (mmHg) | B-EST | 84 + 5 | 85 + 10 | 92 + 6 | 0.10 |
N-EST | 83 + 5 | 84 + 5 | 91 + 6 | 0.008 | |
RPP (bpm × mmHg) | B-EST | 21,665 + 3000 | 24,715 + 5857 | 20,544 + 2389 | 0.22 |
N-EST | 20,071 + 3981 | 25,297 + 5150 | 18,540 + 2570 | 0.03 | |
Time to 1 mm (s) | B-EST | 364 + 243 | 378 + 108 | 479 + 150 | 0.54 |
N-EST | 404 + 254 | 419 + 41 | 496 + 201 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, A.G.; Gentile, G.; Lenci, L.; De Benedetto, F.; Tremamunno, S.; Cambise, N.; Belmusto, A.; Di Renzo, A.; Tinti, L.; De Vita, A.; et al. Comparison of Baseline and Post-Nitrate Exercise Testing in Patients with Angina but Non-Obstructed Coronary Arteries with Different Acetylcholine Test Results. J. Clin. Med. 2024, 13, 2181. https://doi.org/10.3390/jcm13082181
Marino AG, Gentile G, Lenci L, De Benedetto F, Tremamunno S, Cambise N, Belmusto A, Di Renzo A, Tinti L, De Vita A, et al. Comparison of Baseline and Post-Nitrate Exercise Testing in Patients with Angina but Non-Obstructed Coronary Arteries with Different Acetylcholine Test Results. Journal of Clinical Medicine. 2024; 13(8):2181. https://doi.org/10.3390/jcm13082181
Chicago/Turabian StyleMarino, Angelo Giuseppe, Giuseppe Gentile, Ludovica Lenci, Fabio De Benedetto, Saverio Tremamunno, Nello Cambise, Antonietta Belmusto, Antonio Di Renzo, Lorenzo Tinti, Antonio De Vita, and et al. 2024. "Comparison of Baseline and Post-Nitrate Exercise Testing in Patients with Angina but Non-Obstructed Coronary Arteries with Different Acetylcholine Test Results" Journal of Clinical Medicine 13, no. 8: 2181. https://doi.org/10.3390/jcm13082181
APA StyleMarino, A. G., Gentile, G., Lenci, L., De Benedetto, F., Tremamunno, S., Cambise, N., Belmusto, A., Di Renzo, A., Tinti, L., De Vita, A., & Lanza, G. A. (2024). Comparison of Baseline and Post-Nitrate Exercise Testing in Patients with Angina but Non-Obstructed Coronary Arteries with Different Acetylcholine Test Results. Journal of Clinical Medicine, 13(8), 2181. https://doi.org/10.3390/jcm13082181