The Fatigue and Altered Cognition Scale among SARS-CoV-2 Survivors: Psychometric Properties and Item Correlations with Depression and Anxiety Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Measures
2.3. Analytic Plan
3. Results
3.1. Descriptive Differences
3.2. Data Quality and Scaling Evaluation
3.3. Reliability
3.4. Factor Structure
3.5. Measurement Invariance
3.6. Associations between FACs Items and PHQ-8 and GAD-7 Items
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gross, R.; Re, V.L., III. Disentangling the postacute sequelae of SARS-CoV-2: E Unibus Pluram (From One, Many). JAMA 2023, 329, 1918–1919. [Google Scholar] [CrossRef] [PubMed]
- Thaweethai, T.; Jolley, S.E.; Karlson, E.W.; Levitan, E.B.; Levy, B.; McComsey, G.A.; McCorkell, L.; Nadkarni, G.N.; Parthasarathy, S.; Singh, U.; et al. Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA 2023, 329, 1934–1946. [Google Scholar] [CrossRef] [PubMed]
- Chatys-Bogacka, Z.; Mazurkiewicz, I.; Slowik, J.; Bociaga-Jasik, M.; Dzieza-Grudnik, A.; Slowik, A.; Wnuk, M.; Drabik, L. Brain fog and quality of life at work in non-hospitalized patients after COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 12816. [Google Scholar] [CrossRef]
- Frontera, J.A.; Simon, N.M. Bridging knowledge gaps in the diagnosis and management of neuropsychiatric sequelae of COVID-19. JAMA Psychiatry 2022, 79, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.; Miller, A.K.; Reiter, K.; Bonner-Jackson, A. Neurocognitive profiles in patients with persisting cognitive symptoms associated with COVID-19. Arch. Clin. Neuropsychol. 2022, 37, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Ocon, A.J. Caught in the thickness of brain fog: Exploring the cognitive symptoms of chronic fatigue syndrome. Front. Physiol. 2013, 4, 63. [Google Scholar] [CrossRef] [PubMed]
- Herrera, J.E.; Niehaus, W.N.; Whiteson, J.; Azola, A.; Baratta, J.M.; Fleming, T.K.; Kim, S.Y.; Naqvi, H.; Sampsel, S.; Silver, J.K.; et al. Multidisciplinary collaborative consensus guidance statement on the assessment and treatment of fatigue in postacute sequelae of SARS-CoV-2 infection (PASC) patients. PM R 2021, 13, 1027–1043. [Google Scholar] [CrossRef] [PubMed]
- Zgaljardic, D.J.; Durham, W.J.; Mossberg, K.A.; Foreman, J.; Joshipura, K.; Masel, B.E.; Urban, R.; Sheffield-Moore, M. Neuropsychological and physiological correlates of fatigue following traumatic brain injury. Brain Inj. 2014, 28, 389–397. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Text Revision Dsm-5-tr, 5th ed.; Amer Psychiatric Publishing Inc.: Arlington, VA, USA, 2022. [Google Scholar]
- Deng, J.; Zhou, F.; Hou, W.; Silver, Z.; Wong, C.Y.; Chang, O.; Huang, E.; Zuo, Q.K. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: A meta-analysis. Ann. N. Y. Acad. Sci. 2021, 1486, 90–111. [Google Scholar] [CrossRef]
- Ramos-Usuga, D.; Perrin, P.B.; Bogdanova, Y.; Olabarrieta-Landa, L.; Alzueta, E.; Baker, F.C.; Iacovides, S.; Cortes, M.; Arango-Lasprilla, J.C. Moderate, little, or no improvements in neurobehavioral symptoms among individuals with long COVID: A 34-country retrospective study. Int. J. Environ. Res. Public Health 2022, 19, 12593. [Google Scholar] [CrossRef]
- Mattioli, F.; Stampatori, C.; Righetti, F.; Sala, E.; Tomasi, C.; De Palma, G. Neurological and cognitive sequelae of COVID-19: A four month follow-up. J. Neurol. 2021, 268, 4422–4428. [Google Scholar] [CrossRef] [PubMed]
- Costas-Carrera, A.; Sánchez-Rodríguez, M.M.; Cañizares, S.; Ojeda, A.; Martín-Villalba, I.; Primé-Tous, M.; Rodríguez-Rey, M.A.; Segú, X.; Valdesoiro-Pulido, F.; Borras, R.; et al. Neuropsychological functioning in post-ICU patients after severe COVID-19 infection: The role of cognitive reserve. Brain Behav. Immun. Health 2022, 21, 100425. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.; Ferrando, S.J.; Dornbush, R.; Shahar, S.; Smiley, A.; Klepacz, L. Screening for brain fog: Is the montreal cognitive assessment an effective screening tool for neurocognitive complaints post-COVID-19? Gen. Hosp. Psychiatry 2022, 78, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Wright, T.; Urban, R.; Durham, W.; Dillon, E.L.; Randolph, K.M.; Danesi, C.; Gilkison, C.; Karmonik, C.; Zgaljardic, D.J.; Masel, B.; et al. Growth hormone alters brain morphometry, connectivity, and behavior in subjects with fatigue after mild traumatic brain injury. J. Neurotrauma 2020, 37, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- Elliott, T.R.; Hsiao, Y.-Y.; Randolph, K.; Urban, R.J.; Sheffield-Moore, M.; Pyles, R.B.; Masel, B.E.; Wexler, T.; Wright, T.J. Efficient assessment of brain fog and fatigue: Development of the fatigue and altered cognition scale (FACs). PLoS ONE 2023, 18, e0295593. [Google Scholar] [CrossRef] [PubMed]
- Wells, R.; Paterson, F.; Bacchi, S.; Page, A.; Baumert, M.; Lau, D.H. Brain fog in postural tachycardia syndrome: An objective cerebral blood flow and neurocognitive analysis. J. Arrhythm. 2020, 36, 549–552. [Google Scholar] [CrossRef]
- Coles, T.; Chen, K.; Nelson, L.; Harris, N.; Vera-Llonch, M.; Krasner, A.; Martin, S. Psychometric evaluation of the hypoparathyroidism symptom diary. Patient Relat. Outcome Meas. 2019, 10, 25–36. [Google Scholar] [CrossRef]
- Katz, R.S.; Heard, A.R.; Mills, M.; Leavitt, F. The prevalence and clinical impact of reported cognitive difficulties (fibrofog) in patients with rheumatic disease with and without fibromyalgia. J. Clin. Rheumatol. 2004, 10, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.; Crowe, M.; Novack, T.; Davis, R.D.; Stavrinos, D. Severity and correlates of brain fog in people with traumatic brain injury. Res. Nurs. Health 2023, 46, 136–147. [Google Scholar] [CrossRef]
- Legarda, S.B.; Lahti, C.E.; McDermott, D.; Michas-Martin, A. Use of novel concussion protocol with infralow frequency neuromodulation demonstrates significant treatment response in patients with persistent postconcussion symptoms, a retrospective study. Front. Hum. Neurosci. 2022, 16, 894758. [Google Scholar] [CrossRef]
- Urban, R.J. A treatable syndrome in patients with traumatic brain injury. J. Neurotrauma 2020, 37, 1124–1125. [Google Scholar] [CrossRef]
- Yuen, K.C.J.; Masel, B.; Jaffee, M.S.; O’Shanick, G.; Wexler, T.L.; Reifschneider, K.; Urban, R.J.; Hoang, S.; Kelepouris, N.; Hoffman, A.R. A consensus on optimization of care in patients with growth hormone deficiency and mild traumatic brain injury. Growth Horm. IGF Res. 2022, 66, 101495. [Google Scholar] [CrossRef] [PubMed]
- Wright, T.J.; Pyles, R.B.; Sheffield-Moore, M.; Deer, R.R.; Randolph, K.M.; McGovern, K.A.; Danesi, C.P.; Gilkison, C.R.; Ward, W.W.; Vargas, J.A.; et al. Low growth hormone secretion associated with post-acute sequelae SARS-CoV-2 infection (PASC) neurologic symptoms: A case-control pilot study. Mol. Cell. Endocrinol. 2024, 579, 112071. [Google Scholar] [CrossRef] [PubMed]
- High, W.M., Jr.; Briones-Galang, M.; Clark, J.A.; Gilkison, C.; Mossberg, K.A.; Zgaljardic, D.J.; Masel, B.E.; Urban, R.J. Effect of growth hormone replacement therapy on cognition after traumatic brain injury. J Neurotrauma 2010, 27, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Mossberg, K.A.; Durham, W.J.; Zgaljardic, D.J.; Gilkison, C.R.; Danesi, C.P.; Sheffield-Moore, M.; Masel, B.E.; Urban, R.J. Functional changes after recombinant human growth hormone replacement in patients with chronic traumatic brain injury and abnormal growth hormone secretion. J. Neurotrauma 2017, 34, 845–852. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Pogue, J.R.; da Graca, B.M.; Adams, M.; Kruegar, C.; Patel, R.; Bennett, M.; Warren, A.M. Strategies and lessons learned from a longitudinal study to maximize recruitment in the midst of a global pandemic. Bayl. Univ. Med. Cent. Proc. 2022, 35, 309–314. [Google Scholar] [CrossRef]
- Price, D.D.; Staud, R.; Robinson, M.E. How should we use the visual analogue scale (VAS) in rehabilitation outcomes? II: Visual analogue scales as ratio scales: An alternative to the view of Kersten et al. J. Rehab. Med. 2012, 44, 800–801. [Google Scholar] [CrossRef]
- Byrom, B.; Elash, C.A.; Eremenco, S.; Bodart, S.; Muehlhausen, W.; Platko, J.V.; Watson, C.; Howry, C. Measurement comparability of electronic and paper administration of visual analogue scales: A review of published studies. Ther. Innov. Regul. Sci. 2022, 56, 394–404. [Google Scholar] [CrossRef]
- Kroenke, K.; Strine, T.W.; Spitzer, R.L.; Williams, J.B.W.; Berry, J.T.; Mokdad, A.H. The PHQ-8 as a measure of current depression in the general population. J. Affect. Disord. 2009, 114, 163–173. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L. The PHQ-9: A new depression diagnostic and severity measure. Psychiatr. Ann. 2002, 32, 509–515. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef]
- Petrillo, J.; Cano, S.J.; McLeod, L.D.; Coon, C.D. Using classical test theory, item response theory, and Rasch measurement theory to evaluate patient-reported outcome measures: A comparison of worked examples. Value Health 2015, 18, 25–34. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Cronbach’s alpha. BMJ 1997, 314, 572. [Google Scholar] [CrossRef]
- SEM: Measuring Model Fit (David A. Kenny). Available online: https://davidakenny.net/cm/fit.htm (accessed on 14 March 2024).
- Browne, M.W.; Cudeck, R. Alternative ways of assessing model fit. Sociol. Methods Res. 1992, 21, 230–258. [Google Scholar] [CrossRef]
- McDonald, R.P.; Ho, M.-H.R. Principles and practice in reporting structural equation analyses. Psychol. Methods 2002, 7, 64–82. [Google Scholar] [CrossRef]
- Marsh, H.W.; Wen, Z.; Hau, K.-T. Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. Psychol. Methods 2004, 9, 275–300. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Meredith, W. Measurement invariance, factor analysis and factorial invariance. Psychometrika 1993, 58, 525–543. [Google Scholar] [CrossRef]
- Millsap, R.E. Statistical Approaches to Measurement Invariance; Routledge: London, UK, 2012. [Google Scholar]
- IBM Documentation. Available online: https://www.ibm.com/docs/en/spss-statistics/28.0.0 (accessed on 14 March 2024).
- Kelley, K. MBESS: The MBESS R Package. R Package Version 4.4.3. Available online: https://CRAN.R-project.org/package=MBESS (accessed on 9 April 2024).
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide. 1998–2017; Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- Löwe, B.; Spitzer, R.L.; Williams, J.B.W.; Mussell, M.; Schellberg, D.; Kroenke, K. Depression, anxiety and somatization in primary care: Syndrome overlap and functional impairment. Gen. Hosp. Psychiatry 2008, 30, 191–199. [Google Scholar] [CrossRef]
- Hahs-Vaughn, D.L.; Lomax, R. An Introduction to Statistical Concepts, 4th ed.; Routledge: London, UK, 2020. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Guilford Press: New York, NY, USA, 2016. [Google Scholar]
- Chen, F.F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Model. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Brown, L.A.; Ballentine, E.; Zhu, Y.; McGinley, E.L.; Pezzin, L.; Abramoff, B. The unique contribution of depression to cognitive impairment in post-acute sequelae of SARS-CoV-2 infection. Brain Behav. Immun. Health 2022, 22, 100460. [Google Scholar] [CrossRef]
- Sacks-Zimmerman, A.; Bergquist, T.F.; Farr, E.M.; Cornwell, M.A.; Kanellopoulos, D. Rehabilitation of neuropsychiatric symptoms in patients with long COVID: Position statement. Arch. Phys. Med. Rehabil. 2023, 104, 350–354. [Google Scholar] [CrossRef]
- Overview of the Impacts of Long COVID on Behavioral Health. 6 April 2023. Available online: https://www.samhsa.gov/resource/ebp/overview-impacts-long-covid-behavioral-health (accessed on 14 March 2024).
- Liyanage-Don, N.A.; Winawer, M.R.; Hamberger, M.J.; Agarwal, S.; Trainor, A.R.; Quispe, K.A.; Kronish, I.M. Association of depression and COVID-induced PTSD with cognitive symptoms after COVID-19 illness. Gen. Hosp. Psychiatry 2022, 76, 45–48. [Google Scholar] [CrossRef]
- Walker, S.; Goodfellow, H.; Pookarnjanamorakot, P.; Murray, E.; Bindman, J.; Blandford, A.; Bradbury, K.; Cooper, B.; Hamilton, F.L.; Hurst, J.R.; et al. Impact of fatigue as the primary determinant of functional limitations among patients with post-COVID-19 syndrome: A cross-sectional observational study. BMJ Open 2023, 13, e069217. [Google Scholar] [CrossRef]
- Liu, T.C.; Yoo, S.M.; Sim, M.S.; Motwani, Y.; Viswanathan, N.; Wenger, N.S. Perceived cognitive deficits in patients with symptomatic SARS-CoV-2 and their association with post–COVID-19 condition. JAMA Netw. Open 2023, 6, e2311974. [Google Scholar] [CrossRef]
- Munipalli, B.; Seim, L.; Dawson, N.L.; Knight, D.; Dabrh, A.M.A. Post-acute sequelae of COVID-19 (PASC): A meta-narrative review of pathophysiology, prevalence, and management. SN Compr. Clin. Med. 2022, 4, 90. [Google Scholar] [CrossRef]
- Tsampasian, V.; Elghazaly, H.; Chattopadhyay, R.; Dębski, M.; Naing, T.K.P.; Garg, P.; Clark, A.; Ntatsaki, E.; Vassiliou, V.S. Risk factors associated with Post-COVID-19 condition: A systematic review and meta-analysis. JAMA Intern. Med. 2023, 183, 566–580. [Google Scholar] [CrossRef]
- Becker, J.H.; Lin, J.J.; Doernberg, M.; Stone, K.; Navis, A.; Festa, J.R.; Wisnivesky, J.P. Assessment of cognitive function in patients after COVID-19 infection. JAMA Netw. Open 2021, 4, e2130645. [Google Scholar] [CrossRef]
Characteristics | ||
---|---|---|
Age, M, SD | 55.10 | 14.30 |
Sex, N, % | ||
Male | 173 | 30.95 |
Female | 380 | 67.98 |
Prefer not to answer or missing response | 6 | 1.07 |
* Race/Ethnicity, N, % | ||
White | 465 | 83.18 |
Asian | 13 | 2.33 |
Hispanic | 54 | 9.66 |
Black | 40 | 7.16 |
Native Hawaiian or Pacific Islander | 4 | 0.72 |
Other | 9 | 1.61 |
Highest School Grade Completed, N, % | ||
9–11th grade | 1 | 0.18 |
High school graduate/GED | 38 | 6.80 |
Vocational/technical school | 24 | 4.29 |
Associate degree/some college | 126 | 22.54 |
Bachelor’s degree | 168 | 30.05 |
Advanced degree | 196 | 35.06 |
Other | 1 | 0.18 |
Prefer not to answer or missing response | 5 | 0.89 |
Yearly Household Income, N, % | ||
Less than USD 9999 | 9 | 1.61 |
USD 10,000 to USD 19,999 | 16 | 2.86 |
USD 20,000 to USD 29,999 | 23 | 4.11 |
USD 30,000 to USD 44,999 | 40 | 7.16 |
USD 45,000 to USD 59,999 | 51 | 9.12 |
USD 60,000 to USD 74,999 | 59 | 10.55 |
USD 75,000 to USD 99,999 | 79 | 14.13 |
USD 100,000 to USD 149,999 | 106 | 18.96 |
USD 150,000 or More | 126 | 22.54 |
Prefer not to answer or missing response | 50 | 8.94 |
* Chronic Health Condition, N, % | ||
Chronic Lung Disease (asthma/emphysema/COPD) | 83 | 14.85 |
Diabetes Mellitus | 81 | 14.49 |
Cardiovascular Disease (including high blood pressure, CHF) | 176 | 31.48 |
Chronic Renal Disease | 18 | 3.22 |
Liver Disease | 13 | 2.33 |
Immunocompromised Condition | 53 | 9.48 |
Neurologic/ neurodevelopmental/ intellectual disability | 20 | 3.58 |
Traumatic Brain Injury | 5 | 0.89 |
Spinal Cord Injury | 10 | 1.79 |
Cancer | 37 | 6.62 |
Other chronic diseases | 70 | 12.52 |
Previously diagnosed with psychological condition, N, % | ||
No | 367 | 65.65 |
Yes | 171 | 30.59 |
Prefer not to answer or missing response | 21 | 3.76 |
Item | n | Min. | Max. | Mean | SD | Skewness | Item-Scale Correlations |
---|---|---|---|---|---|---|---|
Fatigue Scale | |||||||
Q1: I felt fatigued | 555 | 0 | 100 | 52.30 | 31.80 | −0.28 | 0.89 |
Q2: I felt alert * | 539 | 0 | 100 | 38.33 | 24.37 | 0.38 | 0.68 |
Q6: I felt worn out | 551 | 0 | 100 | 56.22 | 31.16 | −0.38 | 0.91 |
Q7: I felt sluggish | 553 | 0 | 100 | 51.67 | 30.97 | −0.26 | 0.92 |
Q8: I felt run down | 550 | 0 | 100 | 52.02 | 32.23 | −0.27 | 0.92 |
Q10: I had the energy to do what I wanted to do * | 552 | 0 | 100 | 47.55 | 27.35 | −0.03 | 0.70 |
Q13: I had to force myself to get things done | 552 | 0 | 100 | 48.39 | 32.22 | −0.14 | 0.84 |
Q15: I felt tired | 551 | 0 | 100 | 58.98 | 29.94 | −0.51 | 0.88 |
Q17: I had to struggle to finish what I started to do | 549 | 0 | 100 | 43.18 | 31.11 | 0.07 | 0.83 |
Q20: I had problems feeling energetic no matter if I slept or napped | 550 | 0 | 100 | 50.05 | 33.13 | −0.18 | 0.90 |
Altered Cognition Scale | |||||||
Q3: I lost track of what I was going to say | 547 | 0 | 100 | 43.62 | 31.24 | 0.07 | 0.85 |
Q4: I was forgetful | 546 | 0 | 100 | 45.12 | 30.91 | 0.04 | 0.89 |
Q5: I had trouble concentrating | 547 | 0 | 100 | 44.86 | 32.03 | 0.06 | 0.91 |
Q9: I had trouble focusing on things I wanted to do | 550 | 0 | 100 | 44.83 | 31.96 | 0.04 | 0.91 |
Q11: I was easily confused | 548 | 0 | 100 | 29.11 | 28.44 | 0.79 | 0.86 |
Q12: I felt “spaced out” like I was in a fog | 548 | 0 | 100 | 33.64 | 31.63 | 0.53 | 0.87 |
Q14: I was clear-headed * | 544 | 0 | 100 | 40.93 | 28.04 | 0.26 | 0.78 |
Q16: I didn’t process things as quickly or accurately as I should have | 548 | 0 | 100 | 41.95 | 30.91 | 0.14 | 0.89 |
Q18: I had trouble paying attention | 553 | 0 | 100 | 40.86 | 30.30 | 0.17 | 0.91 |
Q19: It was hard for me to make up my mind and reach a decision | 542 | 0 | 100 | 36.25 | 29.69 | 0.34 | 0.85 |
Model | df | RMSEA | ΔRMSEA | CFI | ΔCFI | SRMR | ΔSRMR | |
---|---|---|---|---|---|---|---|---|
Configural | 1307.365 | 328 | 0.098 | - | 0.922 | - | 0.060 | - |
Metric | 1329.43 | 346 | 0.098 | <0.001 | 0.922 | <0.001 | 0.061 | 0.001 |
Scalar | 1357.41 | 364 | 0.099 | 0.001 | 0.921 | −0.001 | 0.062 | 0.001 |
Strict | 1438.27 | 384 | 0.100 | 0.001 | 0.916 | −0.005 | 0.064 | 0.002 |
Model | df | RMSEA | ΔRMSEA | CFI | ΔCFI | SRMR | ΔSRMR | |
---|---|---|---|---|---|---|---|---|
Configural | 1233.178 | 328 | 0.099 | - | 0.929 | - | 0.057 | - |
Metric | 1247.794 | 346 | 0.099 | <0.001 | 0.930 | 0.001 | 0.058 | 0.001 |
Scalar | 1268.750 | 364 | 0.096 | −0.003 | 0.929 | −0.001 | 0.059 | 0.001 |
Strict | 1385.726 | 384 | 0.099 | 0.003 | 0.922 | −0.007 | 0.067 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, Y.-Y.; Elliott, T.R.; Jaramillo, J.; Douglas, M.E.; Powers, M.B.; Warren, A.M. The Fatigue and Altered Cognition Scale among SARS-CoV-2 Survivors: Psychometric Properties and Item Correlations with Depression and Anxiety Symptoms. J. Clin. Med. 2024, 13, 2186. https://doi.org/10.3390/jcm13082186
Hsiao Y-Y, Elliott TR, Jaramillo J, Douglas ME, Powers MB, Warren AM. The Fatigue and Altered Cognition Scale among SARS-CoV-2 Survivors: Psychometric Properties and Item Correlations with Depression and Anxiety Symptoms. Journal of Clinical Medicine. 2024; 13(8):2186. https://doi.org/10.3390/jcm13082186
Chicago/Turabian StyleHsiao, Yu-Yu, Timothy R. Elliott, Julie Jaramillo, Megan E. Douglas, Mark B. Powers, and Ann Marie Warren. 2024. "The Fatigue and Altered Cognition Scale among SARS-CoV-2 Survivors: Psychometric Properties and Item Correlations with Depression and Anxiety Symptoms" Journal of Clinical Medicine 13, no. 8: 2186. https://doi.org/10.3390/jcm13082186
APA StyleHsiao, Y.-Y., Elliott, T. R., Jaramillo, J., Douglas, M. E., Powers, M. B., & Warren, A. M. (2024). The Fatigue and Altered Cognition Scale among SARS-CoV-2 Survivors: Psychometric Properties and Item Correlations with Depression and Anxiety Symptoms. Journal of Clinical Medicine, 13(8), 2186. https://doi.org/10.3390/jcm13082186