Perioperative Transfusion and Mortality for Cardiovascular Surgery: A Cohort Study Based on Population in Republic of Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Statement
2.2. Data Source and Study Population
2.3. Blood Transfusion
2.4. Endpoints
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Study Population
3.2. Factors Associated with Perioperative Blood Transfusion
3.3. In-Hospital Mortality and 1-Year All-Cause Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brouwers, C.; Hooftman, B.; Vonk, S.; Vonk, A.; Stooker, W.; Te Gussinklo, W.; Wesselink, R.; Wagner, C.; de Bruijne, M. Benchmarking the use of blood products in cardiac surgery to stimulate awareness of transfusion behaviour: Results from a four-year longitudinal study. Neth. Heart J. 2017, 25, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Hemli, J.M.; Ducca, E.L.; Chaplin, W.F.; Arader, L.L.; Scheinerman, S.J.; Lesser, M.L.; Ahn, S.; Mihelis, E.A.; Jahn, L.A.; Patel, N.C. Transfusion in root replacement for aortic dissection: The STS Adult Cardiac Surgery Database analysis. Ann. Thorac. Surg. 2022, 114, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Sultan, I.; Bianco, V.; Aranda-Michel, E.; Kilic, A.; Serna-Gallegos, D.; Navid, F.; Wang, Y.; Gleason, T.G. The use of blood and blood products in aortic surgery is associated with adverse outcomes. J. Thorac. Cardiovasc. Surg. 2023, 165, 544–551.e543. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Liu, J.; Zhang, F.; Chen, C.; Zhou, L.; Du, L.; Yan, M. Transfusion of red blood cells, fresh frozen plasma, or platelets is associated with mortality and infection after cardiac surgery in a dose-dependent manner. Anesth. Analg. 2020, 130, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Murphy, G.J.; Angelini, G.D. Indications for blood transfusion in cardiac surgery. Ann. Thorac. Surg. 2006, 82, 2323–2334. [Google Scholar] [CrossRef]
- Linden, P.V.d.; De Hert, S.; Bélisle, S.; De Groote, F.; Mathieu, N.; d’Eugenio, S.; Julien, V.; Huynh, C.; Melot, C. Comparative effects of red blood cell transfusion and increasing blood flow on tissue oxygenation in oxygen supply-dependent conditions. Am. J. Respir. Crit. Care Med. 2001, 163, 1605–1608. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.L.; Stanworth, S.J.; Guyatt, G.; Valentine, S.; Dennis, J.; Bakhtary, S.; Cohn, C.S.; Dubon, A.; Grossman, B.J.; Gupta, G.K.; et al. Red Blood Cell Transfusion: 2023 AABB International Guidelines. JAMA 2023, 330, 1892–1902. [Google Scholar] [CrossRef] [PubMed]
- Turgeman, A.; McRae, H.L.; Cahill, C.; Blumberg, N.; Refaai, M.A. Impact of RBC Transfusion on Peripheral Capillary Oxygen Saturation and Partial Pressure of Arterial Oxygen. Am. J. Clin. Pathol. 2021, 156, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Fransen, E.; Maessen, J.; Dentener, M.; Senden, N.; Buurman, W. Impact of blood transfusions on inflammatory mediator release in patients undergoing cardiac surgery. Chest 1999, 116, 1233–1239. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Koo, B.N.; Kwon, M.A.; Kim, S.H.; Kim, J.Y.; Moon, Y.J.; Park, S.Y.; Lee, E.H.; Chae, M.S.; Choi, S.U.; Choi, J.H.; et al. Korean clinical practice guideline for perioperative red blood cell transfusion from Korean Society of Anesthesiologists. Korean J. Anesth. 2019, 72, 91–118. [Google Scholar] [CrossRef] [PubMed]
- Snyder-Ramos, S.A.; Mohnle, P.; Weng, Y.S.; Bottiger, B.W.; Kulier, A.; Levin, J.; Mangano, D.T.; Investigators of the Multicenter Study of Perioperative, I; MCSPI Research Group. The ongoing variability in blood transfusion practices in cardiac surgery. Transfusion 2008, 48, 1284–1299. [Google Scholar] [CrossRef] [PubMed]
- Irving, A.H.; Harris, A.; Petrie, D.; Higgins, A.; Smith, J.; McQuilten, Z.K. Impact of patient blood management guidelines on blood transfusions and patient outcomes during cardiac surgery. J. Thorac. Cardiovasc. Surg. 2020, 160, 437–445.e20. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, A.T.; Rasmussen, L.S.; Sillesen, M.; Steinmetz, J.; Eid, A.I.; Meier, K.; Kaafarani, H.M.A.; Velmahos, G.C. Red blood cell transfusion in surgery: An observational study of the trends in the USA from 2011 to 2016. Anaesthesia 2020, 75, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.L.; Duff, A.; Poses, R.M.; Berlin, J.A.; Spence, R.K.; Trout, R.; Noveck, H.; Strom, B.L. Effect of anaemia and cardiovascular disease on surgical mortality and morbidity. Lancet 1996, 348, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.L.; Noveck, H.; Berlin, J.A.; Gould, S.A. Mortality and morbidity in patients with very low postoperative Hb levels who decline blood transfusion. Transfusion 2002, 42, 812–818. [Google Scholar] [CrossRef] [PubMed]
- DeFoe, G.R.; Ross, C.S.; Olmstead, E.M.; Surgenor, S.D.; Fillinger, M.P.; Groom, R.C.; Forest, R.J.; Pieroni, J.W.; Warren, C.S.; Bogosian, M.E. Lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass grafting. Ann. Thorac. Surg. 2001, 71, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.C.; Helm, R.E.; Krieger, K.H.; Rosengart, T.K.; DuBois, W.J.; Sason, C.; Lesser, M.L.; Isom, O.W.; Gold, J.P. Impact of minimum hematocrit during cardiopulmonary bypass on mortality in patients undergoing coronary artery surgery. Circulation 1997, 96, 194–199. [Google Scholar]
- Spiess, B.D.; Ley, C.; Body, S.C.; Siegel, L.C.; Stover, E.P.; Maddi, R.; D’Ambra, M.; Jain, U.; Liu, F.; Herskowitz, A. Hematocrit value on intensive care unit entry influences the frequency of Q-wave myocardial infarction after coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 1998, 116, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Bracey, A.; Radovancevic, R.; Riggs, S.; Houston, S.; Cozart, H.; Vaughn, W.; Radovancevic, B.; McAllister, H., Jr.; Cooley, D. Lowering the hemoglobin threshold for transfusion in coronary artery bypass procedures: Effect on patient outcome. Transfusion 1999, 39, 1070–1077. [Google Scholar] [CrossRef]
- Murphy, G.J.; Reeves, B.C.; Rogers, C.A.; Rizvi, S.I.; Culliford, L.; Angelini, G.D. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation 2007, 116, 2544–2552. [Google Scholar] [CrossRef]
- Vlot, E.A.; Verwijmeren, L.; van de Garde, E.M.W.; Kloppenburg, G.T.L.; van Dongen, E.P.A.; Noordzij, P.G. Intra-operative red blood cell transfusion and mortality after cardiac surgery. BMC Anesth. 2019, 19, 65. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, B.; Dulhunty, J.; Mullany, D.V.; Fraser, J.F. Impact of blood product transfusion on short and long-term survival after cardiac surgery: More evidence. Ann. Thorac. Surg. 2012, 94, 460–467. [Google Scholar] [CrossRef]
- Horvath, K.A.; Acker, M.A.; Chang, H.; Bagiella, E.; Smith, P.K.; Iribarne, A.; Kron, I.L.; Lackner, P.; Argenziano, M.; Ascheim, D.D. Blood transfusion and infection after cardiac surgery. Ann. Thorac. Surg. 2013, 95, 2194–2201. [Google Scholar] [CrossRef] [PubMed]
- Paone, G.; Likosky, D.S.; Brewer, R.; Theurer, P.F.; Bell, G.F.; Cogan, C.M.; Prager, R.L. Transfusion of 1 and 2 units of red blood cells is associated with increased morbidity and mortality. Ann. Thorac. Surg. 2014, 97, 87–94. [Google Scholar] [CrossRef]
- Vamvakas, E.C.; Blajchman, M.A. Transfusion-related mortality: The ongoing risks of allogeneic blood transfusion and the available strategies for their prevention. Blood 2009, 113, 3406–3417. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.E.; Reynolds, J.W.; Hobbs, R.; Bai, Y.; Hartwell, B.; Pommerening, M.J.; Fox, E.E.; Wade, C.E.; Holcomb, J.B.; Cotton, B.A. The incidence of transfusion-related acute lung injury at a large, urban tertiary medical center: A decade’s experience. Anesth. Analg. 2018, 127, 444–449. [Google Scholar] [CrossRef]
- Saha, S.; Krishna, D.; Prasath, R.; Sachan, D. Incidence and analysis of 7 years adverse transfusion reaction: A retrospective analysis. Indian. J. Hematol. Blood Transfus. 2020, 36, 149–155. [Google Scholar] [CrossRef]
- Wagner, S.J.; Friedman, L.I.; Dodd, R.Y. Transfusion-associated bacterial sepsis. Clin. Microbiol. Rev. 1994, 7, 290–302. [Google Scholar] [CrossRef]
- Fong, I.; Fong, I. Blood transfusion-associated infections in the twenty-first century: New challenges. In Current Trends and Concerns in Infectious Diseases; Springer: Cham, Switzerland, 2020; pp. 191–215. [Google Scholar]
- Smith, D.; Grossi, E.A.; Balsam, L.B.; Ursomanno, P.; Rabinovich, A.; Galloway, A.C.; DeAnda, A., Jr. The impact of a blood conservation program in complex aortic surgery. Aorta 2013, 1, 219–226. [Google Scholar] [CrossRef]
- Chu, M.; Losenno, K.; Moore, K.; Berta, D.; Hewitt, J.; Ralley, F. Blood conservation strategies reduce the need for transfusions in ascending and aortic arch surgery. Perfusion 2013, 28, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Yaffee, D.W.; DeAnda, A.; Ngai, J.Y.; Ursomanno, P.A.; Rabinovich, A.E.; Ward, A.F.; Galloway, A.C.; Grossi, E.A. Blood conservation strategies can be applied safely to high-risk complex aortic surgery. J. Cardiothorac. Vasc. Anesth. 2015, 29, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Cambria, R.P.; Clouse, W.D.; Davison, J.K.; Dunn, P.F.; Corey, M.; Dorer, D. Thoracoabdominal aneurysm repair: Results with 337 operations performed over a 15-year interval. Ann. Surg. 2002, 236, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Yanagawa, B.; Ribeiro, R.; Lee, J.; Mazer, C.D.; Cheng, D.; Martin, J.; Verma, S.; Friedrich, J.O.; Group, C.C.S.M.-A.W. Platelet transfusion in cardiac surgery: A systematic review and meta-analysis. The Annals of Thoracic Surgery 2021, 111, 607–614. [Google Scholar] [CrossRef]
- Spiess, B.D.; Royston, D.; Levy, J.H.; Fitch, J.; Dietrich, W.; Body, S.; Murkin, J.; Nadel, A. Platelet transfusions during coronary artery bypass graft surgery are associated with serious adverse outcomes. Transfusion 2004, 44, 1143–1148. [Google Scholar] [CrossRef]
Variable | Mean (SD) or Number (%) | |
---|---|---|
Age, year | 63.0 (13.8) | |
Sex, male | 36,447 (58.0) | |
Having a job | 33,599 (53.5) | |
Household income level | ||
Medical aid program | 3296 (5.2) | |
Q1 (Lowest) | 9678 (15.4) | |
Q2 | 9346 (14.9) | |
Q3 | 12,709 (20.2) | |
Q4 (Highest) | 19,833 (31.6) | |
Unknown | 7932 (12.6) | |
Residence | ||
Urban area | 24,706 (39.3) | |
Rural area | 31,224 (49.7) | |
Unknown | 6864 (10.9) | |
ICU stay, day | 3.1 (3.6) | |
LOS, day | 17.1 (9.3) | |
CCI, point | 1.8 (1.7) | |
Underlying disability | ||
Mild to moderate | 5191 (8.3) | |
Severe | 4013 (6.4) | |
Hospital admission through ER | 17,940 (28.6) | |
Result of hospitalization | ||
Discharge and follow-up in same hospital | 19,973 (31.8) | |
Transfer to long-term facility care center | 1052 (1.7) | |
Death during hospitalization | 2582 (4.1) | |
Discharge and outpatient clinic follow-up | 39,187 (62.4) | |
Type of hospital | ||
Tertiary general hospital | 48,922 (77.9) | |
General hospital | 13,872 (22.1) | |
Type of surgery | ||
CABG only | 10,704 (17.0) | |
Valve only | 35,812 (57.0) | |
CABG + valve | 3230 (5.1) | |
Aortic procedures | 7968 (12.7) | |
Others | 5080 (8.1) | |
CPB use during surgery | 52,330 (83.3) | |
Redo case | 1704 (2.7) | |
Mechanical ventilator support | 59,850 (95.3) | |
ECMO support | 2612 (4.2) | |
CRRT use | 3737 (6.0) | |
1-year mortality | 6393 (10.2) | |
Total cost for hospitalization, USD | 24,964.6 (14,070.0) | |
Total transfusion | 55,766 (88.8%) | |
pRBC | 53,453 (85.1%) | |
FFP | 41,157 (65.5%) | |
Platelet transfusion | 29,377 (46.8%) | |
Cryoprecipitate transfusion | 14,704 (23.4%) |
Variable | BT Group n = 55,766 | Non-BT Group n = 7028 | p-Value | |
---|---|---|---|---|
Age, year | 63.6 (13.7) | 58.3 (13.5) | <0.001 | |
Sex, male | 31,112 (55.8) | 5335 (75.9) | <0.001 | |
Having a job | 29,445 (52.8) | 4154 (59.1) | <0.001 | |
Household income level | <0.001 | |||
Medical aid program | 3060 (5.5) | 236 (3.4) | ||
Q1 (Lowest) | 8601 (15.4) | 1077 (15.3) | ||
Q2 | 8209 (14.7) | 1137 (16.2) | ||
Q3 | 11,099 (19.9) | 1610 (22.9) | ||
Q4 (Highest) | 17,388 (31.2) | 2445 (34.8) | ||
Unknown | 7409 (13.3) | 523 (7.4) | ||
Residence | <0.001 | |||
Urban area | 21,807 (39.1) | 2899 (41.2) | ||
Rural area | 27,492 (49.3) | 3732 (53.1) | ||
Unknown | 6467 (11.6) | 397 (5.6) | ||
ICU stay, day | 3.3 (3.7) | 1.5 (1.1) | <0.001 | |
LOS, day | 17.7 (9.4) | 11.8 (5.9) | <0.001 | |
CCI, point | 1.9 (1.7) | 1.2 (1.4) | <0.001 | |
Underlying disability | <0.001 | |||
Mild to moderate | 4736 (8.5) | 455 (6.5) | ||
Severe | 3795 (6.8) | 218 (3.1) | ||
Hospital admission through ER | 16,997 (30.5) | 943 (13.4) | <0.001 | |
Result of hospitalization | <0.001 | |||
Discharge and follow-up in same hospital | 18,312 (32.8) | 1661 (23.6) | ||
Transfer to long-term facility care center | 995 (1.8) | 57 (0.8) | ||
Death during hospitalization | 2569 (4.6) | 13 (0.2) | ||
Discharge and outpatient clinic follow-up | 33,890 (60.8) | 5297 (75.4) | ||
Type of hospital | 0.018 | |||
Tertiary general hospital | 43,369 (77.8) | 5553 (79.0) | ||
General hospital | 12,397 (22.2) | 1475 (21.0) | ||
CPB use during surgery | 47,566 (85.3) | 4764 (67.8) | <0.001 | |
Redo case | 1558 (2.8) | 146 (2.1) | <0.001 | |
Mechanical ventilator support | 53,853 (96.6) | 5997 (85.3) | <0.001 | |
ECMO support | 2600 (4.7) | 12 (0.2) | <0.001 | |
CRRT use | 3721 (6.7) | 16 (0.2) | <0.001 | |
1-year mortality | 6282 (11.3) | 111 (1.6) | <0.001 | |
Total cost for hospitalization, USD | 25,928.8 (14,517.6) | 17,313.7 (5525.4) | <0.001 |
Variable | OR (95% CI) | p-Value | |
---|---|---|---|
Age, year | 1.03 (1.03, 1.03) | <0.001 | |
Sex, male | 0.41 (0.39, 0.44) | <0.001 | |
Having a job | 0.99 (0.93, 1.05) | 0.703 | |
Household income level | |||
Medical aid program | 1.16 (0.98, 1.36) | 0.080 | |
Q1 (Lowest) | 1 | ||
Q2 | 0.95 (0.86, 1.04) | 0.256 | |
Q3 | 0.89 (0.81, 0.97) | 0.007 | |
Q4 (Highest) | 0.84 (0.78, 0.92) | <0.001 | |
Unknown | 0.91 (0.74, 1.12) | 0.369 | |
Residence | |||
Urban area | 1 | ||
Rural area | 0.97 (0.92, 1.03) | 0.336 | |
Unknown | 1.72 (1.36, 2.17) | <0.001 | |
CCI, point | 1.26 (1.23, 1.29) | <0.001 | |
Underlying disability | |||
Mild to moderate | 1.29 (1.16, 1.44) | <0.001 | |
Severe | 2.13 (1.83, 2.47) | <0.001 | |
Hospital admission through ER | 2.12 (1.83, 2.47) | <0.001 | |
Type of hospital | |||
Tertiary general hospital | 1 | ||
General hospital | 0.90 (0.84, 0.96) | <0.001 | |
Type of surgery | |||
CABG only | 1 | ||
Valve only | 0.63 (0.56, 0.71) | <0.001 | |
CABG + valve | 1.13 (0.94, 1.37) | 0.191 | |
Aortic procedures | 2.26 (1.99, 2.56) | <0.001 | |
Others | 0.54 (0.47, 0.61) | <0.001 | |
CPB use during surgery | 3.66 (3.28, 4.09) | <0.001 | |
Redo case | 1.21 (1.01, 1.45) | 0.039 | |
Mechanical ventilator support | 4.21 (3.79, 4.67) | <0.001 | |
ECMO support | 14.47 (8.15, 25.70) | <0.001 | |
CRRT use | 1.26 (1.23, 1.29) | <0.001 | |
Year of surgery | |||
2010 | 1 | ||
2011 | 0.93 (0.79, 1.09) | 0.371 | |
2012 | 0.83 (0.71, 0.98) | 0.026 | |
2013 | 0.75 (0.64, 0.88) | <0.001 | |
2014 | 0.64 (0.55, 0.75) | <0.001 | |
2015 | 0.56 (0.48, 0.65) | <0.001 | |
2016 | 0.55 (0.48, 0.64) | <0.001 | |
2017 | 0.58 (0.46, 0.61) | <0.001 | |
2018 | 0.53 (0.46, 0.60) | <0.001 | |
2019 | 0.52 (0.46, 0.60) | <0.001 |
Variable | OR (95% CI) | p-Value | |
---|---|---|---|
Multivariable model 1 (in-hospital mortality) | |||
Transfusion group (vs no transfusion group) | 6.87 (3.95, 11.93) | <0.001 | |
Multivariable model 2 (in-hospital mortality) | |||
pRBC (vs no pRBC transfusion group) | 3.48 (2.15, 5.65) | <0.001 | |
FFP (vs no FFP transfusion group) | 2.06 (1.80, 2.35) | <0.001 | |
PLT transfusion (vs no PLT transfusion group) | 2.51 (2.06, 3.07) | <0.001 | |
CPP transfusion (vs no CPP transfusion group) | 1.58 (1.42, 1.74) | <0.001 | |
Multivariable model 3 (1-year all-cause mortality) | |||
Transfusion group (vs no transfusion group) | 3.35 (2.75, 3.93) | <0.001 | |
Multivariable model 4 (1-year all-cause mortality) | |||
pRBC (vs no pRBC transfusion group) | 2.10 (1.50, 2.51) | <0.001 | |
FFP (vs no FFP transfusion group) | 1.58 (1.44, 1.69) | <0.001 | |
PLT transfusion (vs no PLT transfusion group) | 1.75 (1.54, 1.88) | <0.001 | |
CPP transfusion (vs no CPP transfusion group) | 1.34 (1.27, 1.43) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, T.-K.; Song, I.-A. Perioperative Transfusion and Mortality for Cardiovascular Surgery: A Cohort Study Based on Population in Republic of Korea. J. Clin. Med. 2024, 13, 2328. https://doi.org/10.3390/jcm13082328
Oh T-K, Song I-A. Perioperative Transfusion and Mortality for Cardiovascular Surgery: A Cohort Study Based on Population in Republic of Korea. Journal of Clinical Medicine. 2024; 13(8):2328. https://doi.org/10.3390/jcm13082328
Chicago/Turabian StyleOh, Tak-Kyu, and In-Ae Song. 2024. "Perioperative Transfusion and Mortality for Cardiovascular Surgery: A Cohort Study Based on Population in Republic of Korea" Journal of Clinical Medicine 13, no. 8: 2328. https://doi.org/10.3390/jcm13082328
APA StyleOh, T. -K., & Song, I. -A. (2024). Perioperative Transfusion and Mortality for Cardiovascular Surgery: A Cohort Study Based on Population in Republic of Korea. Journal of Clinical Medicine, 13(8), 2328. https://doi.org/10.3390/jcm13082328