Stress Distribution in Interlocking and Blocking Screw Fixation for Distal Tibial Intramedullary Nailing: A Finite Element Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of the Finite Element Model
2.2. Modeling of Mechanical Properties and Boundary Conditions with Stress Distribution Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
T2S | Finite element models with two interlocking screws configuration |
T3S | Finite element models with three interlocking screws configuration |
T2SBS2 | Finite element models with two interlocking screws with two blocking screws |
VMS | von Mises stress |
References
- Sitnik, A.; Beletsky, A.; Schelkun, S. Intra-articular fractures of the distal tibia: Current concepts of management. EFORT Open Rev. 2017, 2, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Freedman, E.L.; Johnson, E.E. Radiographic analysis of tibial fracture malalignment following intramedullary nailing. Clin. Orthop. Relat. Res. 1995, 315, 25–33. [Google Scholar] [CrossRef]
- Liu, X.K.; Xu, W.N.; Xue, Q.Y.; Liang, Q.W. Intramedullary nailing versus minimally invasive plate osteosynthesis for distal tibial fractures: A systematic review and meta-analysis. Orthop. Surg. 2019, 11, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Krettek, C.; Miclau, T.; Schandelmaier, P.; Stephan, C.; Möhlmann, U.; Tscherne, H. The mechanical effect of blocking screws (“Poller screws”) in stabilizing tibia fractures with short proximal or distal fragments after insertion of small-diameter intramedullary nails. J. Orthop. Trauma. 1999, 13, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Eghan-Acquah, E.; Bavil, A.Y.; Diamond, L.E.; Barrett, R.; Carty, C.P.; Barzan, M.; Bade, D.; Nasseri, A.; Lloyd, D.G.; Saxby, D.J.; et al. Evaluation of boundary conditions for predicting femoral bone-implant mechanics during gait in the absence of comprehensive medical imaging. J. Mech. Behav. Biomed. Mater. 2025, 164, 106908. [Google Scholar] [CrossRef] [PubMed]
- Elfar, J.; Menorca, R.M.; Reed, J.D.; Stanbury, S. Composite bone models in orthopaedic surgery research and education. J. Am. Acad. Orthop. Surg. 2014, 22, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Donahue, T.L.H.; Hull, M.L.; Rashid, M.M. A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 2002, 124, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wang, Q.; Ma, T.; Wang, C.; Yang, N.; Xue, H.; Li, Z.; Zhu, Y.; Zhang, K. Failure analysis of primary surgery and therapeutic strategy of revision surgery for complex tibial plateau fractures. J. Orthop. Surg. Res. 2019, 14, 110. [Google Scholar] [CrossRef] [PubMed]
- Bernard, S.; Schneider, J.; Varga, P.; Laugier, P.; Raum, K.; Grimal, Q. Elasticity–density and viscoelasticity–density relationships at the tibia mid-diaphysis assessed from resonant ultrasound spectroscopy measurements. Biomech. Model. Mechanobiol. 2016, 15, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, E.; El Sallah Zagane, S.; Sahli, A.; Benouis, A.; Benbarek, S. Numerical simulation of the femur fracture for different cemented hip femoral prostheses under forces during stumbling. In Proceedings of the 23ᵉ Congrès Français de Mécanique (CFM 2017), Lille, France, 28–31 August 2017; Available online: https://hal.science/hal-03465369 (accessed on 4 July 2025).
- Zhao, D.; Banks, S.A.; D’LIma, D.D.; Colwell, C.W., Jr.; Fregly, B.J. In vivo medial and lateral tibial loads during dynamic and high flexion activities. J. Orthop. Res. 2007, 25, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Deng, Y.; Xie, P.; Tan, J.; Yang, Y.; Ouyang, H.; Zhao, D.; Huang, G.; Huang, W. Optimal design and biomechanical analysis of a biomimetic lightweight design plate for distal tibial fractures: A finite element analysis. Front. Bioeng. Biotechnol. 2022, 10, 820921. [Google Scholar] [CrossRef] [PubMed]
- Sensoz, E.; Özkal, F.M.; Acar, V.; Cakir, F. Finite element analysis of the impact of screw insertion distal to the trochanter minor on the risk of iatrogenic subtrochanteric fracture. Proc. Inst. Mech. Eng. H 2018, 232, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Bong, M.R.; Koval, K.J.; Egol, K.A. The history of intramedullary nailing. Bull. NYU Hosp. Jt. Dis. 2006, 64, 94–97. [Google Scholar] [PubMed]
- A Zelle, B.; Bhandari, M.; Espiritu, M.; Koval, K.J.; Zlowodzki, M.; Evidence-Based Orthopaedic Trauma Working Group. Treatment of distal tibia fractures without articular involvement: A systematic review of 1125 fractures. J. Orthop. Trauma. 2006, 20, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Krettek, C.; Stephan, C.; Schandelmaier, P.; Richter, M.; Pape, H.C.; Miclau, T. The use of Poller screws as blocking screws in stabilising tibial fractures treated with small diameter intramedullary nails. J. Bone Jt. Surg. 1999, 81, 963–968. [Google Scholar] [CrossRef]
- Stedtfeld, H.-W.; Mittlmeier, T.; Landgraf, P.; Ewert, A. The logic and clinical applications of blocking screws. J. Bone Jt. Surg. 2004, 86 (Suppl. S2), 17–25. [Google Scholar] [CrossRef] [PubMed]
- Hannah, A.; Aboelmagd, T.; Yip, G.; Hull, P. A novel technique for accurate Poller (blocking) screw placement. Injury 2014, 45, 1011–1014. [Google Scholar] [CrossRef] [PubMed]
- Sengodan, M.M.; Vaidyanathan, S.; Karunanandaganapathy, S.; Subramanian, S.S.; Rajamani, S.G. Distal tibial metaphyseal fractures: Does blocking screw extend the indication of intramedullary nailing? ISRN Orthop. 2014, 2014, 542623. [Google Scholar] [CrossRef]
- Shahulhameed, A.; Roberts, C.S.; Ojike, N.I. Technique for precise placement of poller screws with intramedullary nailing of metaphyseal fractures of the femur and the tibia. Injury 2011, 42, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, M.; Cakmak, S.; Donmez, F.; Gereli, A. Blocking screws for the treatment of distal femur fractures. Orthopedics 2013, 36, e936–e941. [Google Scholar] [CrossRef] [PubMed]
Materials | Density (g/cm3) | Elastic Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|
Cortical bone | 1.5 | 10.7 | 0.33 |
Cancellous bone | 0.2 | 0.524 | 0.35 |
Titanium alloy implant | 4.62 | 110 | 0.30 |
Bone–Implant Interface | T2S | T3S | T2SBS2 |
---|---|---|---|
1st interlocking screw medial contact | 135.7 | 66.0 | 150.3 |
1st interlocking screw lateral contact | 37.9 | 17.5 | 44.3 |
2nd interlocking screw anterior contact | 104.7 | ||
3rd interlocking screw medial contact | 48.6 | 43.2 | 38.5 |
3rd interlocking screw lateral contact | 57.6 | 45.2 | 42.0 |
Bone–Implant Interface | T2S | T3S | T2SBS2 |
---|---|---|---|
1st interlocking screw medial contact | 140.7 | 74.0 | 144.6 |
1st interlocking screw lateral contact | 23.2 | 14.0 | 31.3 |
2nd interlocking screw anterior contact | 113.4 | ||
3rd interlocking screw medial contact | 47.8 | 34.1 | 39.3 |
3rd interlocking screw lateral contact | 60.2 | 43.0 | 50.3 |
Bone–Implant Interface | T2S | T3S | T2SBS2 |
---|---|---|---|
1st interlocking screw medial contact | 136.3 | 64.9 | 158.1 |
1st interlocking screw lateral contact | 63.5 | 26.5 | 58.0 |
2nd interlocking screw anterior contact | 97.5 | ||
3rd interlocking screw medial contact | 45.3 | 42.2 | 37.5 |
3rd interlocking screw lateral contact | 62.0 | 48.6 | 40.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, G.-H.; Jeong, S.-L.; Ahn, J. Stress Distribution in Interlocking and Blocking Screw Fixation for Distal Tibial Intramedullary Nailing: A Finite Element Analysis. J. Clin. Med. 2025, 14, 4769. https://doi.org/10.3390/jcm14134769
Jung G-H, Jeong S-L, Ahn J. Stress Distribution in Interlocking and Blocking Screw Fixation for Distal Tibial Intramedullary Nailing: A Finite Element Analysis. Journal of Clinical Medicine. 2025; 14(13):4769. https://doi.org/10.3390/jcm14134769
Chicago/Turabian StyleJung, Gu-Hee, Se-Lin Jeong, and Jungtae Ahn. 2025. "Stress Distribution in Interlocking and Blocking Screw Fixation for Distal Tibial Intramedullary Nailing: A Finite Element Analysis" Journal of Clinical Medicine 14, no. 13: 4769. https://doi.org/10.3390/jcm14134769
APA StyleJung, G.-H., Jeong, S.-L., & Ahn, J. (2025). Stress Distribution in Interlocking and Blocking Screw Fixation for Distal Tibial Intramedullary Nailing: A Finite Element Analysis. Journal of Clinical Medicine, 14(13), 4769. https://doi.org/10.3390/jcm14134769