Battery Life of Pulse Generators in Spinal Cord Stimulation: Analysis and Comparison Between Surgical and Percutaneous Leads in Energy Efficiency
Abstract
1. Introduction
2. Materials and Methods
2.1. Implantation Procedure
2.2. Data Collection and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCS | Spinal cord stimulation |
FBS | Failed back syndrome |
CRPS | Complex regional pain syndrome |
PG | Pulse generator |
References
- Spirollari, E.; Vazquez, S.; Ng, C.; Naftchi, A.F.; Graifman, G.; Das, A.; Greisman, J.D.; Dominguez, J.F.; Kinon, M.D.; Sukul, V.V. Comparison of Characteristics, Inpatient Outcomes, and Trends in Percutaneous Versus Open Placement of Spinal Cord Stimulators. Neuromodulation 2023, 26, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Rock, A.K.; Truong, H.; Park, Y.L.; Pilitsis, J.G. Spinal Cord Stimulation. Neurosurg. Clin. N. Am. 2019, 30, 169–194. [Google Scholar] [CrossRef] [PubMed]
- Bendersky, D.; Yampolsky, C. Is spinal cord stimulation safe? A review of its complications. World Neurosurg. 2014, 82, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Petraglia, F.W., III; Farber, S.H.; Gramer, R.; Verla, T.; Wang, F.; Thomas, S.; Parente, B.; Lad, S.P. 2015. The Incidence of Spinal Cord Injury in Implantation of Percutaneous and Paddle Electrodes for Spinal Cord Stimulation. Neuromodulation 2016, 19, 85–90. [Google Scholar] [CrossRef]
- Cameron, T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: A 20-year literature review. J. Neurosurg. 2004, 100 (Suppl. S3), 254–267. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Taylor, R.S.; Jacques, L.; Eldabe, S.; Meglio, M.; Molet, J.; Thomson, S.; O’Callaghan, J.; Eisenberg, E.; Milbouw, G.; et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: A multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 2007, 132, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Niyomsri, S.; Duarte, R.V.; Eldabe, S.; Fiore, G.; Kopell, B.H.; McNicol, E.; Taylor, R.S. A Systematic Review of Economic Evaluations Reporting the Cost-Effectiveness of Spinal Cord Stimulation. Value Health 2020, 23, 656–665. [Google Scholar] [CrossRef] [PubMed]
- The History of Spinal Cord Stimulation for Chronic Pain—The Old and the New—Genesis Research Services. 2023. Available online: https://genesisresearchservices.com/the-history-of-spinal-cord-stimulation-for-chronic-pain-the-old-and-the-new/ (accessed on 15 May 2025).
- Kinfe, T.M.; Quack, F.; Wille, C.; Schu, S.; Vesper, J. Paddle versus cylindrical leads for percutaneous implantation in spinal cord stimulation for failed back surgery syndrome: A single-center trial. J. Neurol. Surg. Cent. Eur. Neurosurg. 2014, 75, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Manchikanti, L.; Pampati, V.; Vangala, B.P.; Soin, A.; Sanapati, M.R.; Thota, S.; Hirsch, J.A. Spinal Cord Stimulation Trends of Utilization and Expenditures in Fee-For-Service (FFS) Medicare Population from 2009 to 2018. Pain Physician 2021, 24, 293–308. [Google Scholar] [PubMed]
- Beletsky, A.; Liu, C.; Vickery, K.; Winston, N.; Loomba, M.; Gabriel, R.A.; Chen, J. Spinal Cord Stimulator (SCS) Placement: Examining Outcomes Between the Open and Percutaneous Approach. Neuromodulation 2023, 26, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, A.Z.; Chang, H.H.; DiSilvestro, K.; Veeramani, A.; McDonald, C.; Zhang, A.S.; Daniels, A. Spinal Cord Stimulation via Percutaneous and Open Implantation: Systematic Review and Meta-Analysis Examining Complication Rates. World Neurosurg. 2021, 154, 132–143.e1. [Google Scholar] [CrossRef] [PubMed]
- Monlezun, O.; Voirin, J.; Roulaud, M.; Ingrand, P.; Veyrieras, C.; Brandet, C.; Bataille, B.; Guetarni, F.; Prévost, A.; Rigoard, P.; et al. “MAST” prospective study: Value of minimal access spine technologies technique for multicolumn spinal cord stimulation surgical lead implantation in the context of a French multicentre randomized controlled trial (ESTIMET study). Neurochirurgie 2015, 61 (Suppl. S1), S125–S130. [Google Scholar] [CrossRef] [PubMed]
- Peeters, J.B.; Raftopoulos, C. Tonic, Burst, High-Density, and 10-kHz High-Frequency Spinal Cord Stimulation: Efficiency and Patients’ Preferences in a Failed Back Surgery Syndrome Predominant Population. Review of Literature. World Neurosurg. 2020, 144, e331–e340. [Google Scholar] [CrossRef] [PubMed]
- Head, J.; Mazza, J.; Sabourin, V.; Turpin, J.; Hoelscher, C.; Wu, C.; Sharan, A. Waves of Pain Relief: A Systematic Review of Clinical Trials in Spinal Cord Stimulation Waveforms for the Treatment of Chronic Neuropathic Low Back and Leg Pain. World Neurosurg. 2019, 131, 264–274.e3. [Google Scholar] [CrossRef] [PubMed]
- Gómez-González, M.A.; Cordero Tous, N.; De la Cruz Sabido, J.; Sánchez Corral, C.; Lechuga Carrasco, B.; López-Vicente, M.; Olivares Granados, G. Following Up Patients with Chronic Pain Using a Mobile App with a Support Center: Unicenter Prospective Study. JMIR Hum. Factors 2025, 12, e60160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- ProclaimTM XR & ProclaimTM Plus SCS Systems. Neuromodulation. Abbott. Available online: https://www.neuromodulation.abbott/us/en/healthcare-professionals/hcp-chronic-pain/proclaim-xr-scs-system.html (accessed on 5 August 2025).
- VantaTM SCS Neurostimulator. Neuromodulation. Medtronic. Available online: https://www.medtronic.com/me-en/healthcare-professionals/products/neurological/spinal-cord-stimulation-systems/vanta-pc-neurostimulator.html (accessed on 5 August 2025).
- Buyten, J.P. The performance and safety of an implantable spinal cord stimulation system in patients with chronic pain: A 5-year study. Neuromodulation 2003, 6, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Malik, S.; Demeria, D. Treatment of chronic pain with spinal cord stimulation versus alternative therapies: Cost-effectiveness analysis. Neurosurgery 2002, 51, 106–115; discussion 115–116. [Google Scholar] [CrossRef] [PubMed]
- Kemler, M.A.; Raphael, J.H.; Bentley, A.; Taylor, R.S. The cost-effectiveness of spinal cord stimulation for complex regional pain syndrome. Value Health 2010, 13, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Costandi, S.; Mekhail, N.; Azer, G.; Mehanny, D.S.; Hanna, D.; Salma, Y.; Bolash, R.; Saweris, Y. Longevity and Utilization Cost of Rechargeable and Non-Rechargeable Spinal Cord Stimulation Implants: A Comparative Study. Pain Pract. 2020, 20, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Hornberger, J.; Kumar, K.; Verhulst, E.; Clark, M.A.; Hernandez, J. Rechargeable spinal cord stimulation versus non-rechargeable system for patients with failed back surgery syndrome: A cost-consequences analysis. Clin. J. Pain 2008, 24, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Luecke, T.; Kuhlmann, H.; May, M.; Petermann, M.; Libutzki, B.; Jäehnichen, G. Spinal cord stimulation: A real-world data analysis on outcomes and differences between rechargeable and non-rechargeable implantable pulse generators. J. Int. Med. Res. 2021, 49, 3000605211038457. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gilbert, J.E.; Zhang, T.; Esteller, R.; Grill, W.M. Evaluating optimized temporal patterns of spinal cord stimulation (SCS). Brain Stimul. 2022, 15, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Sankarasubramanian, V.; Buitenweg, J.R.; Holsheimer, J.; Veltink, P.H. Staggered transverse tripoles with quadripolar lateral anodes using percutaneous and surgical leads in spinal cord stimulation. Neurosurgery 2013, 72, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Manola, L.; Holsheimer, J.; Veltink, P. Technical performance of percutaneous leads for spinal cord stimulation: A modeling study. Neuromodulation 2005, 8, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Tito, F.; Sindaco, G.; Eggington, S.; Tacconi, E.; Borghetti, F.; Corbo, M.; Pari, G. Optimizing Healthcare Expenditure for Spinal Cord Stimulation in Italy: The Value of Battery Longevity Improvement and a Direct-to-Implant Approach. J. Health Econ. Outcomes Res. 2024, 11, 149–156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Non-Rechargeable PGs (n = 123) | Rechargeable PGs (n = 160) | |
---|---|---|
Cause of pain | ||
FBS | 92 (74.80%) | 107 (66.88%) |
CPRS | 30 (24.39%) | 43 (26.88%) |
Others | 1 (0.81%) | 10 (6.25%) |
Type of lead | ||
Surgical | 86 (69.92%) | 55 (34.38%) |
Percutaneous | 37 (30.08% | 105 (65.62%) |
Lead location | ||
Cervical | 13 (10.57%) | 32 (20.00%) |
Dorsal | 110 (89.43%) | 128 (80.00%) |
Type of stimulation | ||
Tonic | 118 (95.93%) | 122 (76.25%) |
Non-paresthetic | 5 (4.07%) | 38 (23.75%) |
Shutdown at the end | ||
Yes | 24 (19.51%) | 125 (78.12%) |
No | 99 (80.49%) | 35 (21.88%) |
Early shutdown | ||
Yes | 27 (21.95%) | 29 (18.12%) |
No | 96 (78.05%) | 131 (81.88%) |
Time of life | ||
Mean ± standard deviation | 38.89 ± 24.83 | 82.69 ± 45.88 |
Minimum–maximum | 0–79 | 9–173 |
Time | Non-Rechargeable PG (n = 96) | Rechargeable PG (n = 131) | p |
---|---|---|---|
50 months | 0.25 (25%) | 0.01 (1%) | <0.05 |
100 months | 0.60 (60%) | 0.22 (22%) | |
150 months | 0.72 (72%) | 0.22 (22%) |
Time | Non-Rechargeable PG (n = 27) | Rechargeable PG (n = 29) | p |
---|---|---|---|
50 months | 0.17 (17%) | 0.16 (16%) | 0.45 |
100 months | 0.22 (22%) | 0.27 (17%) | |
150 months | 0.24 (24%) | 0.34 (34%) |
Time | All PG | Rechargeable PG | ||
---|---|---|---|---|
Surgical Paddle (n = 108) | Percutaneous Paddle (n = 119) | Surgical Paddle (n = 5) | Percutaneous Paddle (n = 1) | |
50 months | 0.18 (18%) | 0.10 (10%) | 0.02 (2%) | 0.01 (1%) |
100 months | 0.49 (49%) | 0.41 (41%) | 0.28 (28%) | 0.01 (1%) |
125 months | 0.53 (53%) | 0.60 (60%) | 0.28 (28%) | 0.01 (1%) |
p value | 0.08 | 0.22 |
Time | All PG | Rechargeable PG | ||
---|---|---|---|---|
Surgical Paddle (n = 33) | Percutaneous Paddle (n = 23) | Surgical Paddle (n = 11) | Percutaneous Paddle (n = 18) | |
50 months | 0.17 (17%) | 0.17 (17%) | 0.17 (17%) | 0.20 (20%) |
100 months | 0.27 (27%) | 0.27 (27%) | 0.29 (29%) | 0.25 (25%) |
125 months | 0.28 (0.28%) | 0.21 (21%) | 0.36 (36%) | 0.25 (25%) |
p value | 0.55 | 0.79 |
Variable | p Value | 50 Months | 80 Months | ||
---|---|---|---|---|---|
Type of stimulation | Shutdown: 0.21 Early shutdown: 0.74 | Tonic (n = 240) | Shutdown (n = 227) | 0.01 (1%) | 0.12 (12%) |
Early shutdown (n = 13) | 0.14 (14%) | 0.27 (27%) | |||
Non-paresthetic (n = 43) | Shutdown (n = 35) | 0.03 (3%) | 0.4 (4%) | ||
Early shutdown (n = 8) | 0.23 (23%) | 0.23 (23%) |
Variable | p Value | 50 Months | 100 Months | 150 Months | ||
---|---|---|---|---|---|---|
Paddle placement | Shutdown: 0.19 Early shutdown: 0.74 | Cervical (n = 45) | Shutdown (n = 40) | 0.08 (8%) | 0.19 (19%) | 0.19 (19%) |
Early shutdown (n = 5) | 0.08 (8%) | 0.33 (33%) | 0.33 (33%) | |||
Dorsal (n = 238) | Shutdown (n = 187) | 0.18 (18%) | 0.25 (25%) | 0.27 (27%) | ||
Early shutdown (n = 51) | 0.14 (14%) | 0.47 (47%) | 0.56 (56%) | |||
Cause of pain | Shutdown: 0.88 Early shutdown: 0.90 | FBS (n = 199) | Shutdown (n = 155) | 0.17 (17%) | 0.24 (24%) | |
Early shutdown (n = 44) | 0.13 (13%) | 0.3 (3%) | ||||
CRPS (n = 73) | Shutdown (n = 62) | 0.15 (15%) | 0.23 (23%) | |||
Early shutdown (n = 11) | 0.15 (15%) | 0.25 (25%) | ||||
Others (n = 11) | Shutdown (n = 10) | 0.12 (12%) | 0.23 (23%) | |||
Early shutdown (n = 1) | 0.00 (0%) | 0.00 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez González, M.A.; Cordero Tous, N.; Sánchez Corral, C.; Lechuga Carrasco, B.; Sánchez García, M.A.; Gálvez Mateos, R.; Olivares Granados, G. Battery Life of Pulse Generators in Spinal Cord Stimulation: Analysis and Comparison Between Surgical and Percutaneous Leads in Energy Efficiency. J. Clin. Med. 2025, 14, 6646. https://doi.org/10.3390/jcm14186646
Gómez González MA, Cordero Tous N, Sánchez Corral C, Lechuga Carrasco B, Sánchez García MA, Gálvez Mateos R, Olivares Granados G. Battery Life of Pulse Generators in Spinal Cord Stimulation: Analysis and Comparison Between Surgical and Percutaneous Leads in Energy Efficiency. Journal of Clinical Medicine. 2025; 14(18):6646. https://doi.org/10.3390/jcm14186646
Chicago/Turabian StyleGómez González, Marta Antonia, Nicolás Cordero Tous, Carlos Sánchez Corral, Beatriz Lechuga Carrasco, Manuel Alejandro Sánchez García, Rafael Gálvez Mateos, and Gonzalo Olivares Granados. 2025. "Battery Life of Pulse Generators in Spinal Cord Stimulation: Analysis and Comparison Between Surgical and Percutaneous Leads in Energy Efficiency" Journal of Clinical Medicine 14, no. 18: 6646. https://doi.org/10.3390/jcm14186646
APA StyleGómez González, M. A., Cordero Tous, N., Sánchez Corral, C., Lechuga Carrasco, B., Sánchez García, M. A., Gálvez Mateos, R., & Olivares Granados, G. (2025). Battery Life of Pulse Generators in Spinal Cord Stimulation: Analysis and Comparison Between Surgical and Percutaneous Leads in Energy Efficiency. Journal of Clinical Medicine, 14(18), 6646. https://doi.org/10.3390/jcm14186646