Exploring Predictors of Type 2 Diabetes Within Animal-Sourced and Plant-Based Dietary Patterns with the XGBoost Machine Learning Classifier: NHANES 2013–2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Sample Extraction
Inclusion and Exclusion Criteria
2.2. Dietary Groups
Propensity Score-Matching
2.3. T2D Cases
2.4. Serum Metabolic Markers and Derived Variables
2.5. Statistical Analyses
3. Results
4. Discussion
4.1. Strengths
4.2. Limitations
4.3. Practical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASFs | animal-sourced foods |
AUPRC | area under the precision-recall curve |
AUROC | area under the receiver operating characteristic curve |
BMI | body mass index |
FAs | fatty acids |
HEI | healthy eating index |
HS-CRP | high-sensitivity c-reactive protein |
ML | machine learning |
MUFAs | monounsaturated fatty acids |
PA | physical activity |
PAX | ratio of total physical activity to sedentary time |
PBFs | Plant-based foods |
PUFAs | polyunsaturated fatty acids |
RCT | randomized controlled trial |
SFAs | saturated fatty acids |
T2D | Type 2 diabetes |
ω3FAs | dietary omega-3 fatty acids |
ω6FAs | dietary omega-6 fatty acids |
ω6FAs | ω3FAs ratio of omega-6 to omega-3 fatty acids |
UFAs | unsaturated fatty acids |
References
- Petersen, K.S.; Flock, M.R.; Richter, C.K.; Mukherjea, R.; Slavin, J.L.; Kris-Etherton, P.M. Healthy dietary patterns for preventing cardiometabolic disease: The role of plant-based foods and animal products. Curr. Dev. Nutr. 2017, 1, cdn-117. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Gan, L.; Graubard, B.I.; Männistö, S.; Fang, F.; Weinstein, S.J.; Liao, L.M.; Sinha, R.; Chen, X.; Albanes, D.; et al. Plant and Animal Fat Intake and Overall and Cardiovascular Disease Mortality. JAMA Intern. Med. 2024, 184, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern. Med. 2016, 176, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Sacks, F.M.; Carey, V.J.; Obarzanek, E.; Swain, J.F.; Miller, E.R.; Conlin, P.R.; Erlinger, T.P.; Rosner, B.A.; Laranjo, N.M.; et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: Results of the OmniHeart randomized trial. JAMA 2005, 294, 2455–2464. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, L.E.; Kushi, L.H.; Jacobs, D.R., Jr.; Cerhan, J.R. Associations of dietary protein with disease and mortality in a prospective study of postmenopausal women. Am. J. Epidemiol. 2005, 161, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Scott, D.; Hodge, A.M.; English, D.R.; Giles, G.G.; Ebeling, P.R.; Sanders, K.M. Dietary protein intake and risk of type 2 diabetes: Results from the Melbourne Collaborative Cohort Study and a meta-analysis of prospective studies. Am. J. Clin. Nutr. 2016, 104, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Nie, X.; Wu, Z.; Zhang, Y.; Feng, G.; Cai, S.; Lv, Y.; Peng, X. Can statistic adjustment of OR minimize the potential confounding bias for meta-analysis of case-control study? A secondary data analysis. BMC Med. Res. Methodol. 2017, 17, 179. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X. Effects of physical activity and sedentary behaviors on cardiovascular disease and the risk of all-cause mortality in overweight or obese middle-aged and older adults. Front. Public Health 2024, 12, 1302783. [Google Scholar] [CrossRef]
- Tong, T.Y.; Appleby, P.N.; Bradbury, K.E.; Perez-Cornago, A.; Travis, R.C.; Clarke, R.; Key, T.J. Risks of ischaemic heart disease and stroke in meat eaters, fish eaters, and vegetarians over 18 years of follow-up: Results from the prospective EPIC-Oxford study. BMJ 2019, 366, l4897. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Bhupathiraju, S.N.; Rimm, E.B.; Spiegelman, D.; Chiuve, S.E.; Borgi, L.; Willett, W.C.; Manson, J.E.; Sun, Q.; Hu, F.B. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: Results from three prospective cohort studies. PLoS Med. 2016, 13, e1002039. [Google Scholar] [CrossRef]
- Eckart, A.C.; Stavitz, J.A.; Bhochhibhoya, A.; Sharma Ghimire, P. Associations of animal source foods, cardiovascular disease history, and health behaviors from the national health and nutrition examination survey: 2013–2016. Glob. Epidemiol. 2023, 5, 100112. [Google Scholar] [CrossRef] [PubMed]
- Villegas, R.; Yang, G.; Gao, Y.T.; Cai, H.; Li, H.; Zheng, W.; Shu, X.O. Dietary patterns are associated with lower incidence of type 2 diabetes in middle-aged women: The Shanghai Women’s Health Study. Int. J. Epidemiol. 2010, 39, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L.; Goran, M.I.; Bosy-Westphal, A.; King, J.C.; Schmidt, L.A.; Schwarz, J.M.; Stice, E.; Sylvetsky, A.C.; Turnbaugh, P.J.; Bray, G.A.; et al. Pathways and mechanisms linking dietary components to cardiometabolic disease: Thinking beyond calories. Obes. Rev. 2018, 19, 1205–1235. [Google Scholar] [CrossRef] [PubMed]
- Odegaard, A.O.; Koh, W.P.; Butler, L.M.; Duval, S.; Gross, M.D.; Yu, M.C.; Yuan, J.M.; Pereira, M.A. Dietary patterns and incident type 2 diabetes in Chinese men and women: The Singapore Chinese Health Study. Diabetes Care 2011, 34, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Cross, A.J.; Graubard, B.I.; Leitzmann, M.F.; Schatzkin, A. Meat intake and mortality: A prospective study of over half a million people. Arch. Intern. Med. 2009, 169, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Fregoso-Aparicio, L.; Noguez, J.; Montesinos, L.; García-García, J.A. Machine learning and deep learning predictive models for type 2 diabetes: A systematic review. Diabetol. Metab. Syndr. 2021, 13, 148. [Google Scholar] [CrossRef]
- Gunasekara, N.; Pfahringer, B.; Gomes, H.; Bifet, A. Gradient boosted trees for evolving data streams. Mach. Learn. 2024, 113, 3325–3352. [Google Scholar] [CrossRef]
- Tan, C.; Li, B.; Xiao, L.; Zhang, Y.; Su, Y.; Ding, N. A prediction model of the incidence of type 2 diabetes in individuals with abdominal obesity: Insights from the general population. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 3555–3564. [Google Scholar] [CrossRef]
- Farvahari, A.; Gozashti, M.H.; Dehesh, T. The usage of lasso, ridge, and linear regression to explore the most influential metabolic variables that affect fasting blood sugar in type 2 Diabetes patients. Rom. J. Diabetes Nutr. Metab. Dis. 2019, 26, 371–379. [Google Scholar]
- Qin, Y.; Wu, J.; Xiao, W.; Wang, K.; Huang, A.; Liu, B.; Yu, J.; Li, C.; Yu, F.; Ren, Z. Machine learning models for data-driven prediction of diabetes by lifestyle type. Int. J. Environ. Res. Public Health 2022, 19, 15027. [Google Scholar] [CrossRef]
- Meng, X.H.; Huang, Y.X.; Rao, D.P.; Zhang, Q.; Liu, Q. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J. Med. Sci. 2013, 29, 93–99. [Google Scholar] [CrossRef]
- National Center for Health Statistics. NHANES Survey Methods and Analytic Guidelines. Available online: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx (accessed on 1 October 2024).
- National Cancer Institute, Division of Cancer Control and Population Sciences. Developing the Healthy Eating Index. Available online: https://epi.grants.cancer.gov/hei/developing.html#history (accessed on 1 October 2024).
- Serra, M.C.; Ryan, A.S.; Hafer-Macko, C.E.; Yepes, M.; Nahab, F.B.; Ziegler, T.R. Dietary and serum Omega-6/Omega-3 fatty acids are Associated with Physical and metabolic function in stroke survivors. Nutrients 2020, 12, 701. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.S.; Shetty, P.K. ω-6/ω-3 fatty acid ratio as an essential predictive biomarker in the management of type 2 diabetes mellitus. Nutrition 2020, 79, 110968. [Google Scholar] [CrossRef]
- Albert, B.B.; Derraik, J.G.; Brennan, C.M.; Biggs, J.B.; Smith, G.C.; Garg, M.L.; Cameron-Smith, D.; Hofman, P.L.; Cutfield, W.S. Higher omega-3 index is associated with increased insulin sensitivity and more favourable metabolic profile in middle-aged overweight men. Sci. Rep. 2014, 4, 6697. [Google Scholar] [CrossRef] [PubMed]
- Nanayakkara, N.; Curtis, A.J.; Heritier, S.; Gadowski, A.M.; Pavkov, M.E.; Kenealy, T.; Owens, D.R.; Thomas, R.L.; Song, S.; Wong, J.; et al. Impact of age at type 2 diabetes mellitus diagnosis on mortality and vascular complications: Systematic review and meta-analyses. Diabetologia 2021, 64, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Janssen, J.A. Hyperinsulinemia and its pivotal role in aging, obesity, type 2 diabetes, cardiovascular disease and cancer. Int. J. Mol. Sci. 2021, 22, 7797. [Google Scholar] [CrossRef]
- Campagna, D.; Alamo, A.; Di Pino, A.; Russo, C.; Calogero, A.E.; Purrello, F.; Polosa, R. Smoking and diabetes: Dangerous liaisons and confusing relationships. Diabetol. Metab. Syndr. 2019, 11, 85. [Google Scholar] [CrossRef]
- Levine, M.E.; Suarez, J.A.; Brandhorst, S.; Balasubramanian, P.; Cheng, C.W.; Madia, F.; Fontana, L.; Mirisola, M.G.; Guevara-Aguirre, J.; Wan, J.; et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014, 19, 407–417. [Google Scholar] [CrossRef]
- Markova, M.; Pivovarova, O.; Hornemann, S.; Sucher, S.; Frahnow, T.; Wegner, K.; Machann, J.; Petzke, K.J.; Hierholzer, J.; Lichtinghagen, R.; et al. Isocaloric diets high in animal or plant protein reduce liver fat and inflammation in individuals with type 2 diabetes. Gastroenterology 2017, 152, 571–585. [Google Scholar] [CrossRef]
- Malik, V.S.; Li, Y.; Tobias, D.K.; Pan, A.; Hu, F.B. Dietary protein intake and risk of type 2 diabetes in US men and women. Am. J. Epidemiol. 2016, 183, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Sluijs, I.; Beulens, J.W.; Van Der, A.D.L.; Spijkerman, A.M.; Grobbee, D.E.; Van Der Schouw, Y.T. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care 2010, 33, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Azemati, B.; Rajaram, S.; Jaceldo-Siegl, K.; Sabate, J.; Shavlik, D.; Fraser, G.E.; Haddad, E.H. Animal-protein intake is associated with insulin resistance in Adventist Health Study 2 (AHS-2) calibration substudy participants: A cross-sectional analysis. Curr. Dev. Nutr. 2017, 1, e000299. [Google Scholar] [CrossRef]
- Van Nielen, M.; Feskens, E.J.; Mensink, M.; Sluijs, I.; Molina, E.; Amiano, P.; Ardanaz, E.; Balkau, B.; Beulens, J.W.; Boeing, H.; et al. Dietary protein intake and incidence of type 2 diabetes in Europe: The EPIC-InterAct Case-Cohort Study. Diabetes Care 2014, 37, 1854–1862. [Google Scholar] [CrossRef] [PubMed]
- Brochu, M.; Mathieu, M.E.; Karelis, A.D.; Doucet, É.; Lavoie, M.E.; Garrel, D.; Rabasa-Lhoret, R. Contribution of the lean body mass to insulin resistance in postmenopausal women with visceral obesity: A Monet study. Obesity 2008, 16, 1085–1093. [Google Scholar] [CrossRef]
- Ehrhardt, N.; Cui, J.; Dagdeviren, S.; Saengnipanthkul, S.; Goodridge, H.S.; Kim, J.K.; Lantier, L.; Guo, X.; Chen, Y.D.; Raffel, L.J.; et al. Adiposity-independent effects of aging on insulin sensitivity and clearance in mice and humans. Obesity 2019, 27, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Matta, J.; Mayo, N.; Dionne, I.J.; Gaudreau, P.; Fulop, T.; Tessier, D.; Gray-Donald, K.; Shatenstein, B.; Morais, J.A. Muscle mass index and animal source of dietary protein are positively associated with insulin resistance in participants of the NuAge study. J. Nutr. Health Aging 2016, 20, 90–97. [Google Scholar] [CrossRef]
- Aubertin-Leheudre, M.; Adlercreutz, H. Relationship between animal protein intake and muscle mass index in healthy women. Br. J. Nutr. 2009, 102, 1803–1810. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, Y.; Zheng, C. Type 2 diabetes mellitus related sarcopenia: A type of muscle loss distinct from sarcopenia and disuse muscle atrophy. Front. Endocrinol. 2024, 15, 1375610. [Google Scholar] [CrossRef] [PubMed]
- Bowen, K.J.; Harris, W.S.; Kris-Etherton, P.M. Omega-3 fatty acids and cardiovascular disease: Are there benefits? Curr. Treat. Options Cardiovasc. Med. 2016, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.; Halsey, J.; Kromhout, D.; Gerstein, H.C.; Marchioli, R.; Tavazzi, L.; Geleijnse, J.M.; Rauch, B.; Ness, A.; Galan, P.; et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: Meta-analysis of 10 trials involving 77,917 individuals. JAMA Cardiol. 2018, 3, 225–233. [Google Scholar] [CrossRef]
- Watanabe, Y.; Tatsuno, I. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: Present, past and future. Expert Rev. Clin. Pharmacol. 2017, 10, 865–873. [Google Scholar] [CrossRef]
- Brown, T.J.; Brainard, J.; Song, F.; Wang, X.; Abdelhamid, A.; Hooper, L. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: Systematic review and meta-analysis of randomised controlled trials. BMJ 2019, 366, l4697. [Google Scholar] [CrossRef]
- Johnston, L.W.; Harris, S.B.; Retnakaran, R.; Giacca, A.; Liu, Z.; Bazinet, R.P.; Hanley, A.J. Association of NEFA composition with insulin sensitivity and beta cell function in the Prospective Metabolism and Islet Cell Evaluation (PROMISE) cohort. Diabetologia 2018, 61, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Yang, W.; Li, Y.; Feng, J.; Miao, J.; Shi, H.; Xue, H. Monounsaturated and polyunsaturated fatty acids concerning prediabetes and type 2 diabetes mellitus risk among participants in the National Health and Nutrition Examination Surveys (NHANES) from 2005 to March 2020. Front. Nutr. 2023, 10, 1284800. [Google Scholar] [CrossRef]
- Sheppard, K.W.; Cheatham, C.L. Omega-6/omega-3 fatty acid intake of children and older adults in the US: Dietary intake in comparison to current dietary recommendations and the Healthy Eating Index. Lipids Health Dis. 2018, 17, 43. [Google Scholar] [CrossRef]
- Egalini, F.; Guardamagna, O.; Gaggero, G.; Varaldo, E.; Giannone, B.; Beccuti, G.; Benso, A.; Broglio, F. The effects of omega 3 and omega 6 fatty acids on glucose metabolism: An updated review. Nutrients 2023, 15, 2672. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.S.; Maki, K.C.; Calder, P.C.; Belury, M.A.; Messina, M.; Kirkpatrick, C.F.; Harris, W.S. Perspective on the health effects of unsaturated fatty acids and commonly consumed plant oils high in unsaturated fat. Br. J. Nutr. 2024, 132, 1039–1050. [Google Scholar] [CrossRef]
- Oh, Y.S.; Bae, G.D.; Baek, D.J.; Park, E.Y.; Jun, H.S. Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front. Endocrinol. 2018, 9, 384. [Google Scholar] [CrossRef]
- Keane, D.C.; Takahashi, H.K.; Dhayal, S.; Morgan, N.G.; Curi, R.; Newsholme, P. Arachidonic acid actions on functional integrity and attenuation of the negative effects of palmitic acid in a clonal pancreatic β-cell line. Clin. Sci. 2011, 120, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Korat, A.A.; Malik, V.; Hu, F.B. Metabolic effects of monounsaturated fatty acid–enriched diets compared with carbohydrate or polyunsaturated fatty acid–enriched diets in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2016, 39, 1448–1457. [Google Scholar] [CrossRef]
- Bowden Davies, K.A.; Sprung, V.S.; Norman, J.A.; Thompson, A.; Mitchell, K.L.; Halford, J.C.; Harrold, J.A.; Wilding, J.P.; Kemp, G.J.; Cuthbertson, D.J. Short-term decreased physical activity with increased sedentary behaviour causes metabolic derangements and altered body composition: Effects in individuals with and without a first-degree relative with type 2 diabetes. Diabetologia 2018, 61, 1282–1294. [Google Scholar] [CrossRef] [PubMed]
- Carbone, S.; Del Buono, M.G.; Ozemek, C.; Lavie, C.J. Obesity, risk of diabetes and role of physical activity, exercise training and cardiorespiratory fitness. Prog. Cardiovasc. Dis. 2019, 62, 327–333. [Google Scholar] [CrossRef]
- Ye, J.; Yin, J. Type 2 diabetes: A sacrifice program handling energy surplus. Life Metab. 2024, 3, loae033. [Google Scholar] [CrossRef]
- Zeng, X.; Ji, Q.P.; Jiang, Z.Z.; Xu, Y. The effect of different dietary restriction on weight management and metabolic parameters in people with type 2 diabetes mellitus: A network meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 2024, 16, 254. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Chaimani, A.; Hoffmann, G.; Schwedhelm, C.; Boeing, H. A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur. J. Epidemiol. 2018, 33, 157–170. [Google Scholar] [CrossRef]
PBF Pattern (n = 1373) T2D (9.5%) | ASF Pattern (n = 1373) T2D (11.3%) | Median Diff. (%) [ASF/PBF] | |||
---|---|---|---|---|---|
Median | IQR | Median | IQR | ||
Age (years) | 48.00 | 31.00 | 47.00 | 30.00 | 0.98 |
Alpha-Linolenic acid (18:3n–3) (μmol/L) | 73.30 | 54.50 | 69.80 | 46.60 | 0.95 |
Arachidonic acid (20:4n–6) (μmol/L) | 784.00 | 352.00 | 829.00 | 345.00 | 1.06 |
ASF MUFAs (gm) | 5.22 | 7.43 | |||
ASF PUFAs (gm) | 2.60 | 4.12 | |||
Total ASF protein (gm) | 23.88 | 26.19 | |||
Total ASF fat (gm) | 14.64 | 19.62 | |||
BMI Change (past year) | 0.19 | 2.23 | 0.23 | 2.60 | 1.25 |
Body Mass Index (kg/m2) | 27.10 | 8.70 | 27.80 | 8.30 | 1.03 |
Carbohydrate (gm) | 243.59 | 132.84 | 238.31 | 151.00 | 0.98 |
Cholesterol (mg) | 220.00 | 256.00 | 300.00 | 301.00 | 1.36 |
Total dietary omega–3 (gm) | 0.09 | 0.24 | 0.24 | 0.45 | 2.74 |
Total dietary omega–6 (gm) | 15.08 | 12.77 | 16.74 | 11.95 | 1.11 |
Dietary O6:O3 ratio | 131.24 | 431.06 | 61.46 | 145.56 | 0.47 |
Dietary fiber (gm) | 16.90 | 12.70 | 15.20 | 12.60 | 0.90 |
Direct HDL-Cholesterol (mg/dL) | 53.00 | 22.00 | 52.00 | 22.00 | 0.98 |
Docosahexaenoic acid (22:6n–3) (μmol/L) | 152.00 | 88.00 | 140.00 | 81.00 | 0.92 |
Eicosapentaenoic acid (20:5n–3) (μmol/L) | 53.40 | 42.70 | 51.80 | 51.40 | 0.97 |
Energy (kcal) | 2028.00 | 1046.00 | 2161.00 | 1191.00 | 1.07 |
Fasting glucose (mg/dL) | 100.00 | 14.00 | 100.00 | 15.00 | 1.00 |
Glycohemoglobin (%) | 5.40 | 0.50 | 5.40 | 0.60 | 1.00 |
hs-CRP (mg/L) | 1.50 | 3.50 | 1.80 | 3.4 | 1.20 |
Insulin (μU/mL) | 8.65 | 8.67 | 9.03 | 9.23 | 1.04 |
LDL-cholesterol (mg/dL) | 108.00 | 46.00 | 110.00 | 50.00 | 1.02 |
Linoleic acid (18:2n–6) (μmol/L) | 3410.00 | 1220.00 | 3220.00 | 1060.00 | 0.94 |
Minutes sedentary activity | 420.00 | 300.00 | 360.00 | 300.00 | 0.86 |
PAX | 0.00 | 0.00 | 0.00 | 0.00 | |
PBF MUFAs (gm) | 1.68 | 4.39 | 3.12 | 6.62 | 1.86 |
PBF PUFAs (gm) | 1.23 | 3.08 | 1.91 | 5.37 | 1.55 |
Total plant protein (gm) | 4.19 | 7.37 | 6.25 | 12.24 | 1.49 |
Total plant fat (gm) | 5.22 | 12.08 | 9.54 | 18.82 | 1.83 |
Total kcals from PBFs (%) | 9.0 | 13.0 | 0.00 | 10.0 | 0.00 |
Total kcals from ASFs (%) | 14.71 | 17.4 | |||
Protein (gm) | 73.68 | 46.13 | 86.44 | 54.70 | 1.17 |
Serum omega–6 (μmol/L) | 4453.10 | 1409.80 | 4416.90 | 1449.30 | 0.99 |
Serum omega–3 (μmol/L) | 341.65 | 205.00 | 344.17 | 180.42 | 1.01 |
Serum omega–6: omega–3 ratio | 13.21 | 5.32 | 13.57 | 5.34 | 1.03 |
Total cholesterol (mg/dL) | 186.00 | 54.00 | 186.00 | 57.00 | 1.00 |
Total fat (gm) | 75.79 | 50.07 | 82.83 | 55.85 | 1.09 |
Total monounsaturated fatty acids (gm) | 26.61 | 18.89 | 28.64 | 20.21 | 1.08 |
Total body fat (%) [DEXA] | 32.00 | 12.20 | 31.70 | 13.40 | 0.99 |
Total polyunsaturated fatty acids (gm) | 16.91 | 14.07 | 18.78 | 13.59 | 1.11 |
Total saturated fatty acids (gm) | 24.43 | 18.54 | 26.78 | 21.31 | 1.10 |
Total daily recreational physical activity (min) | 0.00 | 0.00 | 0.00 | 0.00 | |
Triglyceride (mg/dL) | 94.00 | 78.00 | 90.00 | 72.00 | 0.96 |
UFAs:SFAs ratio | 1.83 | 0.99 | 1.83 | 0.93 | 1.00 |
Non-Diabetics (n = 2460) | Diabetics (n = 286) | Median Diff. (%) [T2D/Non-T2D] | |||
---|---|---|---|---|---|
Median | IQR | Median | IQR | ||
Age (years) | 46.00 | 30.00 | 63.00 | 16.00 | 1.37 |
Alpha-Linolenic acid (18:3n–3) (μmol/L) | 72.00 | 49.30 | 75.50 | 59.00 | 1.05 |
Arachidonic acid (20:4n–6) (μmol/L) | 797.00 | 352.00 | 886.00 | 307.00 | 1.11 |
ASF MUFAs (gm) | 5.20 | 7.42 | 5.69 | 8.26 | 1.09 |
ASF PUFAs (gm) | 2.57 | 4.11 | 3.34 | 4.30 | 1.30 |
Total ASF protein (gm) | 24.04 | 26.50 | 22.51 | 21.72 | 0.94 |
Total ASF fat (gm) | 14.63 | 19.62 | 15.56 | 20.13 | 1.06 |
Total kcals from ASFs (%) | 15.00 | 17.00 | 16.00 | 19.00 | 1.07 |
BMI Change (past year) | 0.26 | 2.34 | −0.60 | 2.98 | −2.33 |
Body Mass Index (kg/m2) | 27.20 | 8.40 | 31.10 | 8.00 | 1.14 |
Carbohydrate (gm) | 244.18 | 143.49 | 209.18 | 119.75 | 0.86 |
Cholesterol (mg) | 249.00 | 284.00 | 232.00 | 289.00 | 0.93 |
Total dietary omega–3 (gm) | 0.16 | 0.34 | 0.17 | 0.38 | 1.02 |
Total dietary omega–6 (gm) | 16.15 | 12.40 | 13.55 | 11.34 | 0.84 |
Dietary O6:O3 ratio | 90.32 | 276.07 | 68.67 | 261.12 | 0.76 |
Dietary fiber (gm) | 16.20 | 12.70 | 14.90 | 10.60 | 0.92 |
Direct HDL-Cholesterol (mg/dL) | 52.00 | 22.00 | 47.00 | 19.00 | 0.90 |
Docosahexaenoic acid (22:6n–3) (μmol/L) | 143.00 | 79.00 | 152.00 | 78.00 | 1.06 |
Eicosapentaenoic acid (20:5n–3) (μmol/L) | 53.40 | 47.40 | 51.90 | 53.30 | 0.97 |
Energy (kcal) | 2101.00 | 1141.00 | 1781.00 | 1036.00 | 0.85 |
Fasting Glucose (mg/dL) | 99.00 | 13.00 | 134.00 | 62.00 | 1.35 |
Glycohemoglobin (%) | 5.40 | 0.50 | 6.80 | 1.80 | 1.26 |
hs-CRP (mg/L) | 1.60 | 3.40 | 2.40 | 4.90 | 1.5 |
Insulin (μU/mL) | 8.65 | 8.76 | 11.47 | 11.19 | 1.33 |
LDL-cholesterol (mg/dL) | 110.00 | 48.00 | 100.00 | 54.00 | 0.91 |
Linoleic acid (18:2n–6) (μmol/L) | 3320.00 | 1100.00 | 3410.00 | 1390.00 | 1.03 |
Minutes sedentary activity | 360.00 | 300.00 | 420.00 | 240.00 | 1.17 |
PAX | 0.00 | 0.00 | 0.00 | 0.00 | |
PBF MUFAs (gm) | 1.94 | 5.22 | 1.36 | 4.16 | 0.70 |
PBF PUFAs (gm) | 1.38 | 3.50 | 1.24 | 3.10 | 0.90 |
Total plant protein (gm) | 4.62 | 8.69 | 4.83 | 7.50 | 1.05 |
Total plant fat (gm) | 6.32 | 13.97 | 4.00 | 12.19 | 0.63 |
Total kcals from PBFs (%) | 0.05 | 0.14 | 0.05 | 0.14 | 1.02 |
Protein (gm) | 81.27 | 51.96 | 68.14 | 40.53 | 0.84 |
Serum omega–6 (μmol/L) | 4424.00 | 1426.30 | 4545.20 | 1706.10 | 1.02 |
Serum omega–3 (μmol/L) | 344.17 | 185.80 | 336.54 | 175.19 | 0.98 |
Serum omega–6:omega–3 ratio | 13.36 | 5.24 | 13.29 | 6.52 | 0.99 |
Total Cholesterol (mg/dL) | 186.00 | 55.00 | 171.00 | 63.00 | 0.92 |
Total fat (gm) | 79.70 | 53.87 | 69.41 | 45.09 | 0.87 |
Total monounsaturated fatty acids (gm) | 27.64 | 19.84 | 23.94 | 19.01 | 0.87 |
Total body fat (%) [DEXA] | 31.50 | 12.70 | 39.10 | 9.50 | 1.24 |
Total polyunsaturated fatty acids (gm) | 18.21 | 13.64 | 15.52 | 12.43 | 0.85 |
Total saturated fatty acids (gm) | 25.51 | 20.17 | 22.51 | 17.03 | 0.88 |
Total daily recreational physical activity (min) | 0.00 | 0.00 | 0.00 | 0.00 | |
Triglyceride (mg/dL) | 91.00 | 68.00 | 114.00 | 102.00 | 1.25 |
UFAs: SFAs ratio | 1.82 | 0.98 | 1.89 | 0.86 | 1.03 |
Component | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Variance Explained (%) | 19.8 | 8.9 | 8.4 | 7.1 | 6.3 | 6.0 | 5.6 | 4.7 | 4.2 | 4.0 |
Higher Total Energy and UFAs | Female Gender | PBF Dietary Pattern | Lower SerumO6:O3 Ratio, Higher sO3 | Higher PBF Fat and Protein, Lower Dietary O6:O3 | Age, Smoking, Unhealthy Lifestyle, Recent BMI Decrease | ASF Fat and Protein | Poor Body Composition, Recent BMI Increase | Higher UFA:SFA Ratio | Low Physical Activity, Unhealthy Lifestyle | |
Total Omega-6 (gm) | 0.89 | 0.03 | −0.02 | −0.05 | 0.05 | 0.01 | 0.03 | 0.02 | 0.18 | 0.01 |
PUFAs (gm) | 0.89 | 0.03 | −0.02 | −0.05 | 0.05 | 0.01 | 0.04 | 0.01 | 0.18 | 0.01 |
MUFAs (gm) | 0.89 | −0.04 | −0.03 | −0.01 | 0.02 | 0.00 | 0.05 | 0.00 | −0.10 | −0.02 |
Total Energy (kcals) | 0.85 | −0.11 | −0.01 | −0.01 | 0.07 | −0.03 | 0.07 | −0.01 | −0.23 | −0.03 |
Total Fiber (gm) | 0.63 | −0.07 | 0.14 | 0.11 | 0.10 | −0.03 | −0.12 | −0.03 | 0.04 | −0.16 |
Male Gender | 0.01 | −0.98 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.02 | 0.02 | −0.01 |
Female Gender | −0.01 | 0.98 | 0.00 | 0.00 | 0.00 | −0.01 | 0.00 | −0.02 | −0.02 | 0.01 |
PBF Dietary Pattern | −0.01 | 0.00 | 1.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 |
ASF Dietary Pattern | 0.01 | 0.00 | −1.00 | 0.00 | −0.01 | 0.00 | −0.01 | 0.00 | 0.00 | −0.01 |
Total Serum Omega-3 (μmol/L) | −0.01 | 0.00 | 0.00 | 0.96 | −0.01 | 0.00 | 0.00 | −0.01 | 0.00 | 0.01 |
Total Serum Omega-6 (μmol/L) | 0.29 | 0.10 | −0.05 | 0.64 | −0.08 | −0.02 | −0.06 | −0.05 | −0.10 | 0.24 |
Serum O6:O3 Ratio | 0.22 | 0.06 | −0.04 | −0.75 | −0.04 | −0.03 | −0.08 | −0.03 | −0.07 | 0.17 |
Total Plant Protein (gm) | 0.04 | −0.01 | 0.07 | 0.02 | 0.88 | −0.02 | −0.08 | −0.02 | −0.02 | −0.01 |
Total Plant Fat (gm) | 0.12 | 0.03 | 0.01 | −0.03 | 0.86 | 0.02 | −0.03 | 0.00 | −0.03 | 0.02 |
Total Omega-3 (gm) | −0.05 | 0.01 | −0.16 | −0.03 | 0.62 | −0.01 | 0.27 | 0.02 | 0.20 | 0.01 |
Age (years) | −0.06 | −0.02 | −0.03 | 0.13 | −0.04 | 0.67 | −0.11 | 0.12 | 0.18 | 0.00 |
Smoker | 0.06 | −0.21 | 0.01 | −0.04 | 0.00 | 0.55 | 0.06 | 0.09 | −0.17 | 0.22 |
Unhealthy Lifestyle | −0.01 | 0.01 | 0.00 | −0.03 | 0.03 | 0.45 | 0.02 | 0.30 | −0.14 | 0.45 |
BMI Change (past year) | 0.01 | −0.05 | 0.00 | 0.06 | 0.00 | −0.63 | −0.04 | 0.42 | 0.01 | 0.31 |
Total ASF Protein (gm) | −0.02 | −0.01 | 0.01 | 0.04 | −0.01 | −0.01 | 0.90 | 0.00 | 0.01 | −0.01 |
Total ASF Fat (gm) | 0.08 | 0.02 | 0.02 | −0.01 | −0.03 | 0.00 | 0.89 | 0.01 | −0.02 | 0.02 |
BMI (kg/m2) | 0.04 | −0.06 | −0.02 | −0.03 | −0.02 | −0.01 | 0.03 | 0.89 | 0.01 | −0.08 |
Body Fat (%) | −0.09 | 0.48 | 0.03 | 0.04 | 0.03 | 0.09 | −0.03 | 0.58 | 0.00 | −0.06 |
UFAs:SFAs | 0.07 | −0.04 | 0.00 | 0.00 | 0.01 | 0.01 | −0.01 | 0.01 | 0.92 | 0.05 |
PAX | 0.09 | −0.01 | −0.03 | 0.01 | −0.02 | 0.04 | −0.01 | 0.13 | −0.09 | −0.84 |
Dietary O6:O3 Ratio | 0.38 | 0.09 | 0.16 | −0.03 | −0.41 | 0.04 | −0.03 | −0.02 | 0.18 | −0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eckart, A.C.; Sharma Ghimire, P. Exploring Predictors of Type 2 Diabetes Within Animal-Sourced and Plant-Based Dietary Patterns with the XGBoost Machine Learning Classifier: NHANES 2013–2016. J. Clin. Med. 2025, 14, 458. https://doi.org/10.3390/jcm14020458
Eckart AC, Sharma Ghimire P. Exploring Predictors of Type 2 Diabetes Within Animal-Sourced and Plant-Based Dietary Patterns with the XGBoost Machine Learning Classifier: NHANES 2013–2016. Journal of Clinical Medicine. 2025; 14(2):458. https://doi.org/10.3390/jcm14020458
Chicago/Turabian StyleEckart, Adam C., and Pragya Sharma Ghimire. 2025. "Exploring Predictors of Type 2 Diabetes Within Animal-Sourced and Plant-Based Dietary Patterns with the XGBoost Machine Learning Classifier: NHANES 2013–2016" Journal of Clinical Medicine 14, no. 2: 458. https://doi.org/10.3390/jcm14020458
APA StyleEckart, A. C., & Sharma Ghimire, P. (2025). Exploring Predictors of Type 2 Diabetes Within Animal-Sourced and Plant-Based Dietary Patterns with the XGBoost Machine Learning Classifier: NHANES 2013–2016. Journal of Clinical Medicine, 14(2), 458. https://doi.org/10.3390/jcm14020458