Real-Time Biomarkers of Liver Graft Quality in Hypothermic Oxygenated Machine Perfusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Procurement, Machine Perfusion, and Graft Implantation
2.3. Perfusate Analysis During dHOPE
2.4. Data Collection and Statistical Analysis
3. Results
3.1. Donor and Recipient Characteristics
3.2. Machine Perfusion Characteristics
3.3. Prediction of Graft Function
3.4. Prediction of Post-Transplant Complications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tullius, S.G.; Rabb, H. Improving the Supply and Quality of Deceased-Donor Organs for Transplantation. N. Engl. J. Med. 2018, 378, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
- Jay, C.; Ladner, D.; Wang, E.; Lyuksemburg, V.; Kang, R.; Chang, Y.; Feinglass, J.; Holl, J.L.; Abecassis, M.; Skaro, A.I. A Comprehensive Risk Assessment of Mortality Following Donation after Cardiac Death Liver Transplant—An Analysis of the National Registry. J. Hepatol. 2011, 55, 808–813. [Google Scholar] [CrossRef]
- Croome, K.P.; Taner, C.B. The Changing Landscapes in DCD Liver Transplantation. Curr. Transplant. Rep. 2020, 7, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Kalisvaart, M.; de Haan, J.E.; Polak, W.G.; Metselaar, H.J.; Wijnhoven, B.P.L.; IJzermans, J.N.M.; de Jonge, J. Comparison of Postoperative Outcomes Between Donation After Circulatory Death and Donation After Brain Death Liver Transplantation Using the Comprehensive Complication Index. Ann. Surg. 2017, 266, 772–778. [Google Scholar] [CrossRef]
- Collett, D.; Friend, P.J.; Watson, C.J.E. Factors Associated With Short- and Long-Term Liver Graft Survival in the United Kingdom: Development of a UK Donor Liver Index. Transplantation 2017, 101, 786–792. [Google Scholar] [CrossRef]
- Braat, A.E.; Blok, J.J.; Putter, H.; Adam, R.; Burroughs, A.K.; Rahmel, A.O.; Porte, R.J.; Rogiers, X.; Ringers, J. The Eurotransplant Donor Risk Index in Liver Transplantation: ET-DRI. Am. J. Transplant. 2012, 12, 2789–2796. [Google Scholar] [CrossRef]
- Schaubel, D.E.; Sima, C.S.; Goodrich, N.P.; Feng, S.; Merion, R.M. The Survival Benefit of Deceased Donor Liver Transplantation as a Function of Candidate Disease Severity and Donor Quality. Am. J. Transplant. 2008, 8, 419–425. [Google Scholar] [CrossRef]
- Feng, S.; Goodrich, N.P.; Bragg-Gresham, J.L.; Dykstra, D.M.; Punch, J.D.; DebRoy, M.A.; Greenstein, S.M.; Merion, R.M. Characteristics Associated with Liver Graft Failure: The Concept of a Donor Risk Index. Am. J. Transplant. 2006, 6, 783–790. [Google Scholar] [CrossRef]
- Mergental, H.; Perera, M.T.P.R.; Laing, R.W.; Muiesan, P.; Isaac, J.R.; Smith, A.; Stephenson, B.T.F.; Cilliers, H.; Neil, D.A.H.; Hübscher, S.G.; et al. Transplantation of Declined Liver Allografts Following Normothermic Ex-Situ Evaluation. Am. J. Transplant. 2016, 16, 3235–3245. [Google Scholar] [CrossRef] [PubMed]
- Mergental, H.; Stephenson, B.T.F.; Laing, R.W.; Kirkham, A.J.; Neil, D.A.H.; Wallace, L.L.; Boteon, Y.L.; Widmer, J.; Bhogal, R.H.; Perera, M.T.P.R.; et al. Development of Clinical Criteria for Functional Assessment to Predict Primary Nonfunction of High-Risk Livers Using Normothermic Machine Perfusion. Liver Transplant. 2018, 24, 1453–1469. [Google Scholar] [CrossRef] [PubMed]
- Mergental, H.; Laing, R.W.; Kirkham, A.J.; Perera, M.T.P.R.; Boteon, Y.L.; Attard, J.; Barton, D.; Curbishley, S.; Wilkhu, M.; Neil, D.A.H.; et al. Transplantation of Discarded Livers Following Viability Testing with Normothermic Machine Perfusion. Nat. Commun. 2020, 11, 2939. [Google Scholar] [CrossRef]
- Reiling, J.; Butler, N.; Simpson, A.; Hodgkinson, P.; Campbell, C.; Lockwood, D.; Bridle, K.; Santrampurwala, N.; Britton, L.; Crawford, D.; et al. Assessment and Transplantation of Orphan Donor Livers: A Back-to-Base Approach to Normothermic Machine Perfusion. Liver Transplant. 2020, 26, 1618–1628. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, O.B.; de Vries, Y.; Fujiyoshi, M.; Nijsten, M.W.N.; Ubbink, R.; Pelgrim, G.J.; Werner, M.J.M.; Reyntjens, K.M.E.M.; van den Berg, A.P.; de Boer, M.T.; et al. Transplantation of High-Risk Donor Livers After Ex Situ Resuscitation and Assessment Using Combined Hypo- and Normothermic Machine Perfusion: A Prospective Clinical Trial. Ann. Surg. 2019, 270, 906. [Google Scholar] [CrossRef]
- van Leeuwen, O.B.; Bodewes, S.B.; Lantinga, V.A.; Haring, M.P.D.; Thorne, A.M.; Brüggenwirth, I.M.A.; van den Berg, A.P.; de Boer, M.T.; de Jong, I.E.M.; de Kleine, R.H.J.; et al. Sequential Hypothermic and Normothermic Machine Perfusion Enables Safe Transplantation of High-risk Donor Livers. Am. J. Transplant. 2022, 22, 1658–1670. [Google Scholar] [CrossRef] [PubMed]
- Panconesi, R.; Flores Carvalho, M.; Mueller, M.; Meierhofer, D.; Dutkowski, P.; Muiesan, P.; Schlegel, A. Viability Assessment in Liver Transplantation—What Is the Impact of Dynamic Organ Preservation? Biomedicines 2021, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; Muller, X.; Mueller, M.; Stepanova, A.; Kron, P.; de Rougemont, O.; Muiesan, P.; Clavien, P.-A.; Galkin, A.; Meierhofer, D.; et al. Hypothermic Oxygenated Perfusion Protects from Mitochondrial Injury before Liver Transplantation. EBioMedicine 2020, 60, 103014. [Google Scholar] [CrossRef]
- Watson, C.J.E.; Kosmoliaptsis, V.; Randle, L.V.; Gimson, A.E.; Brais, R.; Klinck, J.R.; Hamed, M.; Tsyben, A.; Butler, A.J. Normothermic Perfusion in the Assessment and Preservation of Declined Livers Before Transplantation: Hyperoxia and Vasoplegia-Important Lessons From the First 12 Cases. Transplantation 2017, 101, 1084–1098. [Google Scholar] [CrossRef]
- Westerkamp, A.C.; Karimian, N.; Matton, A.P.M.; Mahboub, P.; van Rijn, R.; Wiersema-Buist, J.; de Boer, M.T.; Leuvenink, H.G.D.; Gouw, A.S.H.; Lisman, T.; et al. Oxygenated Hypothermic Machine Perfusion After Static Cold Storage Improves Hepatobiliary Function of Extended Criteria Donor Livers. Transplantation 2016, 100, 825–835. [Google Scholar] [CrossRef] [PubMed]
- van Rijn, R.; Karimian, N.; Matton, A.P.M.; Burlage, L.C.; Westerkamp, A.C.; van den Berg, A.P.; de Kleine, R.H.J.; de Boer, M.T.; Lisman, T.; Porte, R.J. Dual Hypothermic Oxygenated Machine Perfusion in Liver Transplants Donated after Circulatory Death. Br. J. Surg. 2017, 104, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Lüer, B.; Koetting, M.; Efferz, P.; Minor, T. Role of Oxygen during Hypothermic Machine Perfusion Preservation of the Liver. Transpl. Int. 2010, 23, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; de Rougemont, O.; Graf, R.; Clavien, P.-A.; Dutkowski, P. Protective Mechanisms of End-Ischemic Cold Machine Perfusion in DCD Liver Grafts. J. Hepatol. 2013, 58, 278–286. [Google Scholar] [CrossRef]
- Guarrera, J.V.; Henry, S.D.; Chen, S.W.C.; Brown, T.; Nachber, E.; Arrington, B.; Boykin, J.; Samstein, B.; Brown, R.S.; Emond, J.C.; et al. Hypothermic Machine Preservation Attenuates Ischemia/Reperfusion Markers after Liver Transplantation: Preliminary Results. J. Surg. Res. 2011, 167, e365–e373. [Google Scholar] [CrossRef] [PubMed]
- Dutkowski, P.; Schlegel, A.; de Oliveira, M.; Müllhaupt, B.; Neff, F.; Clavien, P.-A. HOPE for Human Liver Grafts Obtained from Donors after Cardiac Death. J. Hepatol. 2014, 60, 765–772. [Google Scholar] [CrossRef]
- van Rijn, R.; Schurink, I.J.; de Vries, Y.; van den Berg, A.P.; Cortes Cerisuelo, M.; Darwish Murad, S.; Erdmann, J.I.; Gilbo, N.; de Haas, R.J.; Heaton, N.; et al. Hypothermic Machine Perfusion in Liver Transplantation—A Randomized Trial. N. Engl. J. Med. 2021, 384, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Dutkowski, P.; Polak, W.G.; Muiesan, P.; Schlegel, A.; Verhoeven, C.J.; Scalera, I.; DeOliveira, M.L.; Kron, P.; Clavien, P.-A. First Comparison of Hypothermic Oxygenated PErfusion Versus Static Cold Storage of Human Donation After Cardiac Death Liver Transplants: An International-Matched Case Analysis. Ann. Surg. 2015, 262, 764–770; discussion 770–771. [Google Scholar] [CrossRef]
- Czigany, Z.; Pratschke, J.; Froněk, J.; Guba, M.; Schöning, W.; Raptis, D.A.; Andrassy, J.; Kramer, M.; Strnad, P.; Tolba, R.H.; et al. Hypothermic Oxygenated Machine Perfusion Reduces Early Allograft Injury and Improves Post-Transplant Outcomes in Extended Criteria Donation Liver Transplantation From Donation After Brain Death: Results From a Multicenter Randomized Controlled Trial (HOPE ECD-DBD). Ann. Surg. 2021, 274, 705–712. [Google Scholar] [CrossRef]
- Schlegel, A.; Mueller, M.; Muller, X.; Eden, J.; Panconesi, R.; von Felten, S.; Steigmiller, K.; Sousa Da Silva, R.X.; de Rougemont, O.; Mabrut, J.-Y.; et al. A Multicenter Randomized-Controlled Trial of Hypothermic Oxygenated Perfusion (HOPE) for Human Liver Grafts before Transplantation. J. Hepatol. 2023, 78, 783–793. [Google Scholar] [CrossRef]
- Ravaioli, M.; Germinario, G.; Dajti, G.; Sessa, M.; Vasuri, F.; Siniscalchi, A.; Morelli, M.C.; Serenari, M.; Del Gaudio, M.; Zanfi, C.; et al. Hypothermic Oxygenated Perfusion in Extended Criteria Donor Liver Transplantation—A Randomized Clinical Trial. Am. J. Transplant. 2022, 22, 2401–2408. [Google Scholar] [CrossRef] [PubMed]
- Grąt, M.; Morawski, M.; Zhylko, A.; Rykowski, P.; Krasnodębski, M.; Wyporski, A.; Borkowski, J.; Lewandowski, Z.; Kobryń, K.; Stankiewicz, R.; et al. Routine End-Ischemic Hypothermic Oxygenated Machine Perfusion in Liver Transplantation from Donors After Brain Death: A Randomized Controlled Trial. Ann. Surg. 2023, 278, 662–668. [Google Scholar] [CrossRef]
- Muller, X.; Schlegel, A.; Kron, P.; Eshmuminov, D.; Würdinger, M.; Meierhofer, D.; Clavien, P.-A.; Dutkowski, P. Novel Real-Time Prediction of Liver Graft Function During Hypothermic Oxygenated Machine Perfusion Before Liver Transplantation. Ann. Surg. 2019, 270, 783–790. [Google Scholar] [CrossRef]
- Morawski, M.; Zhylko, A.; Rykowski, P.; Krasnodębski, M.; Hołówko, W.; Lewandowski, Z.; Mielczarek-Puta, M.; Struga, M.; Szczepankiewicz, B.; Górnicka, B.; et al. Routine End-Ischemic Hypothermic Machine Perfusion in Liver Transplantation from Donors after Brain Death: Results of 2-Year Follow-up of a Randomized Controlled Trial. Int. J. Surg. 2024, 110, 7003–7010. [Google Scholar] [CrossRef] [PubMed]
- Olthoff, K.M.; Kulik, L.; Samstein, B.; Kaminski, M.; Abecassis, M.; Emond, J.; Shaked, A.; Christie, J.D. Validation of a Current Definition of Early Allograft Dysfunction in Liver Transplant Recipients and Analysis of Risk Factors. Liver Transplant. 2010, 16, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Pareja, E.; Cortes, M.; Hervás, D.; Mir, J.; Valdivieso, A.; Castell, J.V.; Lahoz, A. A Score Model for the Continuous Grading of Early Allograft Dysfunction Severity. Liver Transplant. 2015, 21, 38–46. [Google Scholar] [CrossRef]
- Agopian, V.G.; Harlander-Locke, M.P.; Markovic, D.; Dumronggittigule, W.; Xia, V.; Kaldas, F.M.; Zarrinpar, A.; Yersiz, H.; Farmer, D.G.; Hiatt, J.R.; et al. Evaluation of Early Allograft Function Using the Liver Graft Assessment Following Transplantation Risk Score Model. JAMA Surg. 2018, 153, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Kang, Y.; Freeman, J.A.; Fortunato, F.L.; Pinsky, M.R. Postreperfusion Syndrome: Hypotension after Reperfusion of the Transplanted Liver. J. Crit. Care 1993, 8, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of Surgical Complications: A New Proposal with Evaluation in a Cohort of 6336 Patients and Results of a Survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Slankamenac, K.; Graf, R.; Barkun, J.; Puhan, M.A.; Clavien, P.-A. The Comprehensive Complication Index: A Novel Continuous Scale to Measure Surgical Morbidity. Ann. Surg. 2013, 258, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.M.; Davies, S.E.; Brais, R.J.; Randle, L.V.; Klinck, J.R.; Allison, M.E.D.; Chen, Y.; Pasea, L.; Harper, S.F.J.; Pettigrew, G.J. Analysis of Ischemia/Reperfusion Injury in Time-zero Biopsies Predicts Liver Allograft Outcomes. Liver Transplant. 2015, 21, 487. [Google Scholar] [CrossRef]
- Williams, W.W.; Markmann, J.F. Warming Up to Cold Perfusion. N. Engl. J. Med. 2021, 384, 1458–1459. [Google Scholar] [CrossRef]
- Meszaros, A.T.; Weissenbacher, A.; Schartner, M.; Egelseer-Bruendl, T.; Hermann, M.; Unterweger, J.; Mittelberger, C.; Reyer, B.A.; Hofmann, J.; Zelger, B.G.; et al. The Predictive Value of Graft Viability and Bioenergetics Testing Towards the Outcome in Liver Transplantation. Transpl. Int. 2024, 37, 12380. [Google Scholar] [CrossRef]
- Cortes, M.; Pareja, E.; García-Cañaveras, J.C.; Donato, M.T.; Montero, S.; Mir, J.; Castell, J.V.; Lahoz, A. Metabolomics Discloses Donor Liver Biomarkers Associated with Early Allograft Dysfunction. J. Hepatol. 2014, 61, 564–574. [Google Scholar] [CrossRef]
- Xu, J.; Hassan-Ally, M.; Casas-Ferreira, A.M.; Suvitaival, T.; Ma, Y.; Vilca-Melendez, H.; Rela, M.; Heaton, N.; Wayel, J.; Legido-Quigley, C. Deregulation of the Purine Pathway in Pre-Transplant Liver Biopsies Is Associated with Graft Function and Survival after Transplantation. J. Clin. Med. 2020, 9, 711. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Casas-Ferreira, A.M.; Ma, Y.; Sen, A.; Kim, M.; Proitsi, P.; Shkodra, M.; Tena, M.; Srinivasan, P.; Heaton, N.; et al. Lipidomics Comparing DCD and DBD Liver Allografts Uncovers Lysophospholipids Elevated in Recipients Undergoing Early Allograft Dysfunction. Sci. Rep. 2015, 5, 17737. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhu, H.; Wang, W.; Xu, J.; Que, S.; Zhuang, L.; Qian, J.; Wang, S.; Yu, J.; Zhang, F.; et al. Metabonomic Profile of Macrosteatotic Allografts for Orthotopic Liver Transplantation in Patients With Initial Poor Function: Mechanistic Investigation and Prognostic Prediction. Front. Cell Dev. Biol. 2020, 8, 826. [Google Scholar] [CrossRef]
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; et al. Ischaemic Accumulation of Succinate Controls Reperfusion Injury through Mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef]
- Chouchani, E.T.; Pell, V.R.; James, A.M.; Work, L.M.; Saeb-Parsy, K.; Frezza, C.; Krieg, T.; Murphy, M.P. A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury. Cell Metab. 2016, 23, 254–263. [Google Scholar] [CrossRef]
- Stepanova, A.; Sosunov, S.; Niatsetskaya, Z.; Konrad, C.; Starkov, A.A.; Manfredi, G.; Wittig, I.; Ten, V.; Galkin, A. Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury. Antioxid. Redox Signal. 2019, 31, 608–622. [Google Scholar] [CrossRef]
- Huwyler, F.; Eden, J.; Binz, J.; Cunningham, L.; Sousa Da Silva, R.X.; Clavien, P.-A.; Dutkowski, P.; Tibbitt, M.W.; Hefti, M. A Spectrofluorometric Method for Real-Time Graft Assessment and Patient Monitoring. Adv. Sci. 2023, 10, 2301537. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; Porte, R.J.; Dutkowski, P. Protective Mechanisms and Current Clinical Evidence of Hypothermic Oxygenated Machine Perfusion (HOPE) in Preventing Post-Transplant Cholangiopathy. J. Hepatol. 2022, 76, 1330–1347. [Google Scholar] [CrossRef]
- Kron, P.; Schlegel, A.; Mancina, L.; Clavien, P.-A.; Dutkowski, P. Hypothermic Oxygenated Perfusion (HOPE) for Fatty Liver Grafts in Rats and Humans. J. Hepatol. 2018, 68, 82–91. [Google Scholar] [CrossRef]
- Brüggenwirth, I.M.A.; van Leeuwen, O.B.; de Vries, Y.; Bodewes, S.B.; Adelmeijer, J.; Wiersema-Buist, J.; Lisman, T.; Martins, P.N.; de Meijer, V.E.; Porte, R.J. Extended Hypothermic Oxygenated Machine Perfusion Enables Ex Situ Preservation of Porcine Livers for up to 24 Hours. JHEP Rep. 2020, 2, 100092. [Google Scholar] [CrossRef] [PubMed]
- Brüggenwirth, I.M.A.; Mueller, M.; Lantinga, V.A.; Camagni, S.; De Carlis, R.; De Carlis, L.; Colledan, M.; Dondossola, D.; Drefs, M.; Eden, J.; et al. Prolonged Preservation by Hypothermic Machine Perfusion Facilitates Logistics in Liver Transplantation: A European Observational Cohort Study. Am. J. Transplant. 2022, 22, 1842–1851. [Google Scholar] [CrossRef]
- Watson, C.J.E.; Jochmans, I. From “Gut Feeling” to Objectivity: Machine Preservation of the Liver as a Tool to Assess Organ Viability. Curr. Transplant. Rep. 2018, 5, 72–81. [Google Scholar] [CrossRef]
- de Vries, Y.; Brüggenwirth, I.M.A.; Karangwa, S.A.; von Meijenfeldt, F.A.; van Leeuwen, O.B.; Burlage, L.C.; de Jong, I.E.M.; Gouw, A.S.H.; de Meijer, V.E.; Lisman, T.; et al. Dual Versus Single Oxygenated Hypothermic Machine Perfusion of Porcine Livers: Impact on Hepatobiliary and Endothelial Cell Injury. Transplant. Direct 2021, 7, e741. [Google Scholar] [CrossRef]
- Eden, J.; Brüggenwirth, I.M.A.; Berlakovich, G.; Buchholz, B.M.; Botea, F.; Camagni, S.; Cescon, M.; Cillo, U.; Colli, F.; Compagnon, P.; et al. Long-Term Outcomes after Hypothermic Oxygenated Machine Perfusion and Transplantation of 1,202 Donor Livers in a Real-World Setting (HOPE-REAL Study). J. Hepatol. 2025, 82, 97–106. [Google Scholar] [CrossRef]
- Faitot, F.; Besch, C.; Battini, S.; Ruhland, E.; Onea, M.; Addeo, P.; Woehl-Jaeglé, M.-L.; Ellero, B.; Bachellier, P.; Namer, I.-J. Impact of Real-Time Metabolomics in Liver Transplantation: Graft Evaluation and Donor-Recipient Matching. J. Hepatol. 2018, 68, 699–706. [Google Scholar] [CrossRef]
- Patrono, D.; Catalano, G.; Rizza, G.; Lavorato, N.; Berchialla, P.; Gambella, A.; Caropreso, P.; Mengozzi, G.; Romagnoli, R. Perfusate Analysis During Dual Hypothermic Oxygenated Machine Perfusion of Liver Grafts: Correlations With Donor Factors and Early Outcomes. Transplantation 2020, 104, 1929. [Google Scholar] [CrossRef]
- Brüggenwirth, I.M.A.; Lantinga, V.A.; Lascaris, B.; Thorne, A.M.; Meerdink, M.; de Kleine, R.H.; Blokzijl, H.; van den Berg, A.P.; Reyntjens, K.M.E.M.; Lisman, T.; et al. Prolonged Hypothermic Machine Perfusion Enables Daytime Liver Transplantation—An IDEAL Stage 2 Prospective Clinical Trial. eClinicalMedicine 2024, 68, 102411. [Google Scholar] [CrossRef] [PubMed]
- Boicean, A.; Birlutiu, V.; Ichim, C.; Brusnic, O.; Onișor, D.M. Fecal Microbiota Transplantation in Liver Cirrhosis. Biomedicines 2023, 11, 2930. [Google Scholar] [CrossRef]
Recipient Characteristics | dHOPE (n = 26) |
---|---|
Age in years (range) | 46 (39–62) |
Sex—n (%) | |
Female | 8 (30.8) |
Male | 18 (69.2) |
Body mass index (kg/m2) | 26 (23–28) |
Childe-Turcotte-Pugh class—n (%) | |
A | 15 (57.7) |
B | 9 (34.6) |
C | 2 (7.7) |
Model for end-stage liver disease score | 12.0 (8.0–21.0) |
ALT at OLTx (IU/mL) | 63 (21–132) |
AST at OLTx (IU/mL) | 61 (32–111) |
Albumin at OLTx (g/dL) | 3.9 (3.5–4.7) |
Bilirubin at OLTx (mg/dL) | 1.6 (0.8–9.3) |
INR | 1.2 (1.0–1.3) |
Creatinine (mg/dL) | 0.94 (0.73–1.20) |
Transplant indication—n (%) | |
Alcohol-related liver disease | 6 (23.1) |
Primary sclerosing cholangitis | 6 (23.1) |
Hepatitis C virus | 5 (19.2) |
Hepatocellular carcinoma | 3 (11.5) |
Autoimmune hepatitis | 3 (11.5) |
Hepatitis B virus | 1 (3.8) |
Non-alcohol steatohepatitis | 1 (3.8) |
Donor Characteristics | dHOPE (n = 26) |
---|---|
Age in years (range) | 53 (40–60) |
Height (cm) | 178 (170–180) |
Bodyweight (kg) | 84 (77–90) |
Body mass index (kg/m2) | 26 (25–29) |
Na+ (mmol/L) | 155 (150–160) |
ALT (U/L) | 53 (34–100) |
AST (U/L) | 66 (40–80) |
Bilirubin (mg/dL) | 0.48 (0.30–0.71) |
INR | 1.3 (1.1–1.4) |
Donor Risk Index a | 1.7 (1.4–2.0) |
Histological steatosis assessment—n (%) b | |
<30% steatosis | 25 (96.2) |
>30% steatosis | 1 (3.8) |
Liver weight (g) | 1800 (1565–1845) |
Characteristics | dHOPE (n = 26) |
---|---|
Machine perfusion time (min) | 120 (120–180) |
Mean portal vein flow (mL/min) | 284 (168–394) |
Mean hepatic artery flow (mL/min) | 95 (78–124) |
Anhepatic time (min) a | 122 (93–154) |
Total OLTx time (min) | 435 (360–491) |
Intraoperative transfusion of PRBCs (units) | 4.00 (0.75–6.00) |
Total hypothermic time (min) b | 608 (560–687) |
CIT (min) c | 450 (420–550) |
WIT (min) d | 65 (50–80) |
Post-reperfusion syndrome—n (%) e | 6 (23.1) |
Donor Characteristics | Overall (n = 25) | Lac < 3.45 mmol/L (n = 16) | Lac ≥ 3.45 mmol/L (n = 9) | p Value a |
---|---|---|---|---|
Age in years (range) | 52 (38–59) | 51 (36–56) | 56 (35–64) | 0.427 |
Height (cm) | 177 (167–180) | 175 (166–180) | 178 (165–184) | 0.834 |
Bodyweight (kg) | 83 (77–90) | 80 (71–87) | 90 (81–91) | 0.122 |
Body mass index (kg/m2) | 26 (25–29) | 26 (24–29) | 26 (25–31) | 0.318 |
Na+ (mmol/L) | 154 (150–161) | 156 (149–170) | 150 (148–160) | 0.477 |
ALT (U/L) | 47 (34–103) | 55 (34–111) | 40 (33–88) | 0.627 |
AST (U/L) | 66 (40–84) | 70 (47–85) | 50 (36–101) | 0.380 |
Bilirubin (mg/dL) | 0.50 (0.32–0.73) | 0.50 (0.41–0.74) | 0.30 (0.20–1.0) | 0.182 |
INR | 1.3 (1.1–1.4) | 1.2 (1.1–1.5) | 1.3 (1.0–1.4) | 0.771 |
Donor Risk Index b | 1.7 (1.4–1.9) | 1.6 (1.4–1.9) | 1.8 (1.5–2.0) | 0.569 |
Histological steatosis—n (%) c | 0.530 | |||
>30% steatosis | 1 (4) | 0 (0) | 1 (11) | |
Histological IRI—n (%) d | ||||
Nil | 9 (36) | 5 (31) | 4 (44) | 0.671 |
Mild | 10 (40) | 7 (44) | 3 (33) | 0.691 |
Moderate | 5 (20) | 3 (19) | 2 (22) | 0.999 |
Severe | 1 (4) | 1 (6) | 0 (0) | 0.999 |
CIT (min) e | 450 (420–533) | 450 (358–477) | 516 (435–569) | 0.109 |
Liver weight (g) | 1800 (1565–1845) | 1737 (1400–1811) | 1843 (1800–2350) | 0.008 |
Donor Characteristics | Overall (n = 26) | EAD “−” (n = 19) | EAD “+” (n = 7) | p Value a |
---|---|---|---|---|
Age in years (range) | 53 (40–60) | 55 (40–60) | 48 (24–67) | 0.877 |
Height (cm) | 178 (170–180) | 172 (164–180) | 180 (170–183) | 0.484 |
Bodyweight (kg) | 84 (77–90) | 80 (75–90) | 85 (81–92) | 0.353 |
Body mass index (kg/m2) | 26 (25–29) | 27 (24–30) | 25 (25–29) | 0.766 |
Na+ (mmol/L) | 155 (150–160) | 156 (149–160) | 150 (150–162) | 0.810 |
ALT (U/L) | 53 (34–100) | 70 (40–105) | 34 (31–59) | 0.139 |
AST (U/L) | 66 (40–80) | 68 (40–88) | 50 (31–72) | 0.311 |
Bilirubin (mg/dL) | 0.48 (0.30–0.71) | 0.46 (0.33–0.70) | 0.50 (0.20–1.40) | 0.944 |
INR | 1.3 (1.1–1.4) | 1.2 (1.1–1.5) | 1.3 (0.99–1.3) | 0.810 |
Donor Risk Index b | 1.7 (1.4–2.0) | 1.7 (1.4–2.0) | 1.8 (1.4–2.1) | 0.855 |
Histological steatosis assessment—n (%) c | 0.269 | |||
>30% steatosis | 1 (4) | 0 (0) | 1 (14) | |
CIT (min) d | 450 (420–550) | 450 (380–480) | 516 (450–570) | 0.041 |
Liver weight (g) | 1800 (1565–1845) | 1789 (1439–1813) | 1837 (1773–1976) | 0.119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhylko, A.; Morawski, M.; Rykowski, P.; Krasnodębski, M.; Wyporski, A.; Borkowski, J.; Zhylko, D.; Kobryń, K.; Stankiewicz, R.; Stypułkowski, J.; et al. Real-Time Biomarkers of Liver Graft Quality in Hypothermic Oxygenated Machine Perfusion. J. Clin. Med. 2025, 14, 471. https://doi.org/10.3390/jcm14020471
Zhylko A, Morawski M, Rykowski P, Krasnodębski M, Wyporski A, Borkowski J, Zhylko D, Kobryń K, Stankiewicz R, Stypułkowski J, et al. Real-Time Biomarkers of Liver Graft Quality in Hypothermic Oxygenated Machine Perfusion. Journal of Clinical Medicine. 2025; 14(2):471. https://doi.org/10.3390/jcm14020471
Chicago/Turabian StyleZhylko, Andriy, Marcin Morawski, Paweł Rykowski, Maciej Krasnodębski, Anya Wyporski, Jan Borkowski, Dmytro Zhylko, Konrad Kobryń, Rafał Stankiewicz, Jan Stypułkowski, and et al. 2025. "Real-Time Biomarkers of Liver Graft Quality in Hypothermic Oxygenated Machine Perfusion" Journal of Clinical Medicine 14, no. 2: 471. https://doi.org/10.3390/jcm14020471
APA StyleZhylko, A., Morawski, M., Rykowski, P., Krasnodębski, M., Wyporski, A., Borkowski, J., Zhylko, D., Kobryń, K., Stankiewicz, R., Stypułkowski, J., Hołówko, W., Patkowski, W., Wróblewski, T., Szczepankiewicz, B., Górnicka, B., Mielczarek-Puta, M., Struga, M., Krawczyk, M., & Grąt, M. (2025). Real-Time Biomarkers of Liver Graft Quality in Hypothermic Oxygenated Machine Perfusion. Journal of Clinical Medicine, 14(2), 471. https://doi.org/10.3390/jcm14020471