Peripheral Defocus in Orthokeratology Myopia Correction: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Study Selection
2.3. Data Extraction and Quality Assessments
2.4. Statistical Analysis
3. Results
Author, Year, Journal | Study Type, Time | Methodology | Country (City), n | Age Mean ± SD (Min, Max, Years) | M_Baseline (Min, Max, (D) |
---|---|---|---|---|---|
Chen [27], 2023, Frontiers | Prospectively designed, self-controlled observational study, 12 months | Open-field autorefractor WAM-5500 (GrandSeiko Co., Ltd., Hiroshima, Japan) Cycloplegic autorefraction 30 N to 30 T, 5° increment; eye rotate | China (Chengdu), 19 | 9.84 ± 1.64 (8 to 14) | −2.73 ± 1.09 (−1.00 to −5.00) |
Gifford [23], 2020, Contact Lens and Anterior Eye | Prospective, From 1 month to 12 months | Open-field autorefractor Shin-Nippon SRW-5000 (Rexxam Co., Ltd., Osaka, Japan) Non-Cycloplegic autorefraction 30 N to 30 T, 10° increment; eye rotate | Australia (Queensland), 8 | 13.2 ± 2.1 (8 to 16) | −2.55 ± 1.32 (−0.75 to −5.00) |
Australia (Queensland), 11 | 23.4 ± 3.5 (19 to 29) | −2.19 ± 0.96 (−1.00 to −3.25) | |||
Huang [28], 2022, GACEO | Prospective, nonrandomized, controlled study, 12 months | Open-field autorefractor WAM-5500 (GrandSeiko Co., Ltd., Hiroshima, Japan) Cycloplegic autorefraction 30 N to 30 T, 10° increment; eye rotate | China (Wenzhou), 30 | 9.90 ± 1.27 (8 to 13) | −2.63 ± 0.71 (−1.00 to −5.00) |
Jakobsen [29], 2023, Acta Ophthal. | Randomized controlled clinical trial, 12 months | Open-field autorefractor Shin-Nippon Nvision-K 5001 (Rexxam Co., Ltd., Osaka, Japan.) Cycloplegic autorefraction 30 N to 30 T, 10° increment; eye rotate | Scandinavian (Danish), 20 | 9.96 ± 1.54 (6 to 12) | −2.10 ± 1.16 (−0.50 to −4.75) |
Kang [24], 2011, OVS | Randomly fitted, 3 months | Open-field autorefractor Shin-Nippon N-Vision K5001 autorefractor (Rexxam Co., Ltd., Osaka, Japan) Non-cycloplegic autorefraction 35 N to 35 T, 10° increment; X | East Asian, 16 | x (11 to 16) | −2.37 ± 1.10 (−1.00 to −4.00) |
Kang [25], 2013, OPO | Randomly fitted, 14 days | Open-field autorefractor Shin-Nippon NVision-K 5001 autorefractor (Rexxam Co., Ltd., Osaka, Japan) Non-cycloplegic autorefraction 30 N to 30 T, 10° increment, and 35°N,T; X | East Asian, 17 | 24.2 (18 to 38) | −2.33 ± 1.15 (−1.00 to −4.00) |
Liu [26], 2023, CLAE | Randomized, controlled single-masked clinical trial, 3 months | Open-field autorefractor WAM-5500 (GrandSeiko Co., Ltd., Hiroshima, Japan) Cycloplegic autorefraction 30 N to 30 T, 10° increment; X | China (Chengdu), 33 | 9.43 ± 1.94 (8 to 12) | −2.65 ± 0.80 (−0.75 to −4.00) |
China (Chengdu), 29 | 9.62 ± 1.08 (8 to 12) | −2.55 ± 0.90 (−0.75 to −4.00) | |||
Low [30], 2024, Clin Optom | Cross sectional study, 12 months | Open-field autorefractor WAM-5500 (GrandSeiko Co., Ltd., Hiroshima, Japan) Cycloplegic autorefraction 30 N to 30 T, 10° increment; eye rotate | Malaysia (Kuala Lumpur), 45 | 8.38 ± 0.49 (8 to 9) | −2.92 ± 1.07 (−0.75 to −4.00) |
Queirós [21], 2010, OVS | Nonrandomized, controlled study, 1 month | Open-field autorefractor WAM-5500 (GrandSeiko Co., Ltd., Hiroshima, Japan) Non-cycloplegic autorefraction 35 N to 35 T, 10° increment; eye rotate | Portugal (Braga), 28 | 24.6 ± 6.3 (20 to 41) | −1.95 ± 1.27 (−0.88 to −5.25) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Ferreira, A.; Hughes, R.; Carter, G.; Mitchell, P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: An evidence-based systematic review. Am. J. Ophthalmol. 2014, 157, 9–25.e12. [Google Scholar] [CrossRef] [PubMed]
- Wolffsohn, J.S.; Calossi, A.; Cho, P.; Gifford, K.; Jones, L.; Jones, D.; Guthrie, S.; Li, M.; Lipener, C.; Logan, N.S.; et al. Global trends in myopia management attitudes and strategies in clinical practice—2019 Update. Contact Lens Anterior Eye 2020, 43, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kurupp, A.R.C.; Raju, A.; Luthra, G.; Shahbaz, M.; Almatooq, H.; Foucambert, P.; Esbrand, F.D.; Zafar, S.; Panthangi, V.; Khan, S. The Impact of the COVID-19 Pandemic on Myopia Progression in Children: A Systematic Review. Cureus 2022, 14, e28444. [Google Scholar] [CrossRef]
- Smith, E.L., III; Kee, C.S.; Ramamirtham, R.; Qiao-Grider, Y.; Hung, L.F. Peripheral vision can influence eye growth and refractive development in infant monkeys. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3965–3972. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L., III; Ramamirtham, R.; Qiao-Grider, Y.; Hung, L.-F.; Huang, J.; Kee, C.-S.; Coats, D.; Paysse, E. Effects of foveal ablation on emmetropization and form-deprivation myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3914–3922. [Google Scholar] [CrossRef]
- Diether, S.; Schaeffel, F. Local changes in eye growth induced by imposed local refractive error despite active accommodation. Vis. Res. 1997, 37, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Bakaraju, R.C.; Ehrmann, K.; Papas, E.; Ho, A. Do peripheral refraction and aberrations profiles vary with the type of myopia?—An illustration using a ray-tracing approach. J. Optom. 2009, 2, 29–38. [Google Scholar] [CrossRef]
- Fedtke, C.; Ehrmann, K.; Holden, B.A. A review of peripheral refraction techniques. Optom. Vis. Sci. 2009, 86, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Hoogerheide, J.; Rempt, F.; Hoogenboom, W.P. Acquired myopia in young pilots. Ophthalmologica 1971, 163, 209–215. [Google Scholar] [CrossRef]
- Atchison, D.A.; Jones, C.E.; Schmid, K.L.; Pritchard, N.; Pope, J.; Strugnell, W.E.; Riley, R.A. Eye shape in emmetropia and myopia. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3380–3386. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.A.; Sinnott, L.T.; Mutti, D.O.; Mitchell, G.L.; Moeschberger, M.L.; Zadnik, K. Parental history of myopia, sports and outdoor activities, and future myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3524–3532. [Google Scholar] [CrossRef]
- Seidemann, A.; Schaeffel, F.; Guirao, A.; Lopez-Gil, N.; Artal, P. Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2002, 19, 2363–2373. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Lopes-Ferreira, D.; González-Méijome, J.M. Astigmatic Peripheral Defocus with Different Contact Lenses: Review and Meta-Analysis. Curr. Eye Res. 2016, 41, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Mutti, D.O.; Hayes, J.R.; Mitchell, G.L.; Jones, L.A.; Moeschberger, M.L.; Cotter, S.A.; Kleinstein, R.N.; Manny, R.E.; Twelker, J.D.; Zadnik, K. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2510–2519. [Google Scholar] [CrossRef]
- Mutti, D.O.; Sinnott, L.T.; Jones, L.A.; Cotter, S.A.; Kleinstein, R.N.; Manny, R.E.; Twelker, J.D.; Zadnik, K.; CLEERE Study Group. Relative Peripheral Refractive Error and the Risk of Juvenile-Onset Myopia. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5426. [Google Scholar]
- Logan, N.S.; Bullimore, M.A. Optical interventions for myopia control. Eye 2024, 38, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Lipson, M.J. The Role of Orthokeratology in Myopia Management. Eye Contact Lens 2022, 48, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Charman, W.N.; Mountford, J.; Atchison, D.A.; Markwell, E.L. Peripheral refraction in orthokeratology patients. Optom. Vis. Sci. 2006, 83, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Amorim-De-Sousa, A.; Lopes-Ferreira, D.; Villa-Collar, C.; Gutiérrez, Á.R.; González-Méijome, J.M. Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery. Eye Vis. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; González-Méijome, J.M.; Jorge, J.; Villa-Collar, C.; Gutiérrez, A.R. Peripheral refraction in myopic patients after orthokeratology. Optom. Vis. Sci. 2010, 87, 323–329. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Gifford, K.L.; Gifford, P.; Hendicott, P.L.; Schmid, K.L. Stability of peripheral refraction changes in orthokeratology for myopia. Contact Lens Anterior Eye 2020, 43, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Swarbrick, H. Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses. Optom. Vis. Sci. 2011, 88, 476–482. [Google Scholar] [CrossRef]
- Kang, P.; Swarbrick, H. Time course of the effects of orthokeratology on peripheral refraction and corneal topography. Ophthalmic Physiol. Opt. 2013, 33, 277–282. [Google Scholar] [CrossRef]
- Liu, T.; Ma, W.; Wang, J.; Yang, B.; Dong, G.; Chen, C.; Wang, X.; Liu, L. The effects of base curve aspheric orthokeratology lenses on corneal topography and peripheral refraction: A randomized prospective trial. Contact Lens Anterior Eye 2023, 46, 101814. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xiong, Y.; Qi, X.; Liu, L. Nasal-temporal asymmetric changes in retinal peripheral refractive error in myopic adolescents induced by overnight orthokeratology lenses. Front. Neurol. 2022, 13, 1006112. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Ding, C.; Chen, Y.; Mao, X.; Chen, H.; Bao, J. Comparison of peripheral refraction and higher-order aberrations between orthokeratology and multifocal soft contact lens designed with highly addition. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, T.M.; Søndergaard, A.P.; Møller, F. Peripheral refraction, relative peripheral refraction, and axial growth: 18-month data from the randomised study—Clinical study Of Near-sightedness; Treatment with Orthokeratology Lenses (CONTROL study). Acta Ophthalmol. 2023, 101, e69–e80. [Google Scholar] [CrossRef]
- Low, Y.C.; Mohd-Ali, B.; Shahimin, M.M.; Mohidin, N.; Abdul-Hamid, H.; Mokri, S.S. Peripheral Eye Length Evaluation in Myopic Children Undergoing Orthokeratology Treatment for 12 Months Using MRI. Clin. Optom. 2024, 16, 35–44. [Google Scholar] [CrossRef]
- Singh, K.; Bhattacharyya, M.; Goel, A.; Arora, R.; Gotmare, N.; Aggarwal, H. Orthokeratology in Moderate Myopia: A Study of Predictability and Safety. J. Ophthalmic Vis. Res. 2020, 15, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Villa-Collar, C.; Gutiérrez, Á.R.M.; Jorge, J.; Ribeiro-Queirós, M.S.D.; Peixoto-De-Matos, S.C.O.; González-Méijome, J.M.F. Anterior and posterior corneal elevation after orthokeratology and standard and customized LASIK surgery. Eye Contact Lens 2011, 37, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; le Moal, P.R.; Angioi-Duprez, K.; Berrod, J.-P.; Conart, J.-B.; Chaume, A.; Pauné, J. Efficacy of the DRL orthokeratology lens in slowing axial elongation in French children. Front. Med. 2023, 10, 1323851. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Villa-Collar, C.; Gutiérrez, A.R.; Jorge, J.; González-Méijome, J.M. Quality of life of myopic subjects with different methods of visual correction using the NEI RQL-42 questionnaire. Eye Contact Lens 2012, 38, 116–121. [Google Scholar] [CrossRef]
- Bullimore, M.A.; Jong, M.; Brennan, N.A. Myopia control: Seeing beyond efficacy. Optom. Vis. Sci. 2024, 101, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Lin, Z.; Wu, H.; Xu, Q.; Wen, L.; Luo, Z.; Hu, Z.; Li, X.; Yang, Z. Two-Dimensional Peripheral Refraction and Higher-Order Wavefront Aberrations Induced by Orthokeratology Lenses Decentration. Transl. Vis. Sci. Technol. 2023, 12, 8. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.; She, M.; Zhou, X. Relative peripheral refraction in myopic children wearing orthokeratology lenses using a novel multispectral refraction topographer. Clin. Exp. Optom. 2023, 106, 746–751. [Google Scholar] [CrossRef]
- Faria-Ribeiro, M.; Queirós, A.; Lopes-Ferreira, D.; Jorge, J.; González-Méijome, J.M. Peripheral refraction and retinal contour in stable and progressive myopia. Optom. Vis. Sci. 2013, 90, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.; Cheung, S.W.; Edwards, M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: A pilot study on refractive changes and myopic control. Curr. Eye Res. 2005, 30, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, T.; Kakita, T.; Okamoto, F.; Takahashi, H.; Oshika, T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: A 5-year follow-up study. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3913–3919. [Google Scholar] [CrossRef]
- Walline, J.J.; Jones, L.A.; Sinnott, L.T. Corneal reshaping and myopia progression. Br. J. Ophthalmol. 2009, 93, 1181–1185. [Google Scholar] [CrossRef]
- Santodomingo-Rubido, J.; Villa-Collar, C.; Gilmartin, B.; Gutiérrez-Ortega, R. Myopia control with orthokeratology contact lenses in Spain: Refractive and biometric changes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5060–5065. [Google Scholar] [CrossRef] [PubMed]
- Erdinest, N.; London, N.; Lavy, I.; Berkow, D.; Landau, D.; Levinger, N.; Morad, Y. Peripheral defocus as it relates to myopia progression: A mini-review. Taiwan J. Ophthalmol. 2023, 13, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Zheleznyak, L. Peripheral optical anisotropy in refractive error groups. Ophthalmic Physiol. Opt. 2023, 43, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Osuagwu, U.L.; Suheimat, M.; Atchison, D.A. Peripheral aberrations in adult hyperopes, emmetropes and myopes. Ophthalmic Physiol. Opt. 2017, 37, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.T.; Cho, P. Repeatability of relative peripheral refraction in untreated and orthokeratology-treated eyes. Optom. Vis. Sci. 2012, 89, 1477–1486. [Google Scholar] [CrossRef]
- Radhakrishnan, H.; Charman, W.N. Peripheral refraction measurement: Does it matter if one turns the eye or the head? Ophthalmic Physiol. Opt. 2008, 28, 73–82. [Google Scholar] [CrossRef]
- Yelagondula, V.K.M.; Achanta, D.S.R.; Panigrahi, S.B.; Panthadi, S.K.; Verkicharla, P.K. Asymmetric Peripheral Refraction Profile in Myopes along the Horizontal Meridian. Optom. Vis. Sci. 2022, 99, 350–357. [Google Scholar] [CrossRef]
- Santodomingo-Rubido, J.; Villa-Collar, C.; Gilmartin, B.; Gutiérrez-Ortega, R.; Sugimoto, K. Long-term Efficacy of Orthokeratology Contact Lens Wear in Controlling the Progression of Childhood Myopia. Curr. Eye Res. 2017, 42, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Pauné, J.; Fonts, S.; Rodríguez, L.; Queirós, A. The role of back optic zone diameter in myopia control with orthokeratology lenses. J. Clin. Med. 2021, 10, 336. [Google Scholar] [CrossRef]
- Pauné, J.; Morales, H.; Armengol, J.; Quevedo, L.; Faria-Ribeiro, M.; González-Méijome, J.M. Myopia Control with a Novel Peripheral Gradient Soft Lens and Orthokeratology: A 2-Year Clinical Trial. Biomed. Res. Int. 2015, 2015, 507572. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Beaujeux, P.; Bloise, L.; Chaume, A.; Colliot, J.P.; Proust, D.P.; Rossi, P.; Tritsch, B.; Crinon, D.B.; Pauné, J. Assessment of the Clinical Effectiveness of DRL Orthokeratology Lenses vs. Single-Vision Spectacles in Controlling the Progression of Myopia in Children and Teenagers: 2 Year Retrospective Study. Children 2023, 10, 402. [Google Scholar] [CrossRef]
- Ortiz-Peregrina, S.; Casares-López, M.; Castro-Torres, J.J.; Anera, R.G.; Artal, P. Effect of peripheral refractive errors on driving performance. Biomed. Opt. Express 2022, 13, 5533. [Google Scholar] [CrossRef]
- García-Pedreño, C.; Tabernero, J.; Benito, A.; Artal, P. Impact of Peripheral Refractive Errors in Mobility Performance. Investig. Ophthalmol. Vis. Sci. 2024, 65, 42. [Google Scholar] [CrossRef] [PubMed]
- Fernandes PR, B.; Neves HI, F.; Lopes-Ferreira, D.P.; Jorge JM, M.; González-Meijome, J.M. Adaptation to multifocal and monovision contact lens correction. Optom. Vis. Sci. 2013, 90, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, A.; Dorronsoro, C.; Sawides, L.; Marcos, S. Short-term neural adaptation to simultaneous bifocal images. PLoS ONE 2014, 9, e93089. [Google Scholar] [CrossRef] [PubMed]
- Sanz, E.S.; Cerviño, A.; Queiros, A.; Villa-Collar, C.; Lopes-Ferreira, D.; González-Méijome, J.M. Short-term changes in light distortion in orthokeratology subjects. Biomed. Res. Int. 2015, 2015, 278425. [Google Scholar]
- Pepin, S.M. Neuroadaptation of presbyopia-correcting intraocular lenses. Curr. Opin. Ophthalmol. 2008, 19, 10–12. [Google Scholar] [CrossRef]
- Marcellán Vidosa, M.C.; Remón, L.; Ávila, F.J. Peripheral refraction under different levels of illuminance. Ophthalmic Physiol. Opt. 2024, 44, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Fedtke, C.; Ehrmann, K.; Falk, D.; Bakaraju, R.C.; Holden, B.A. The BHVI-eyemapper: Peripheral refraction and aberration profiles. Optom. Vis. Sci. 2014, 91, 1199–1207. [Google Scholar] [CrossRef]
- Calabuig, A.; Pinate, A.; Suchkov, N.; Wahl, S. Model eye assessment by 3D fast-scanning peripheral refraction wavefront sensor. In Unconventional Optical Imaging III; SPIE: Bellingham, WA, USA, 2022. [Google Scholar] [CrossRef]
- Li, Q.; Fang, F. Impacts of the gradient-index crystalline lens structure on its peripheral optical power profile. Adv. Opt. Technol. 2022, 11, 23–32. [Google Scholar] [CrossRef]
- Marcellán, M.C.; Ávila, F.J.; Ares, J.; Remón, L. Peripheral Refraction of Two Myopia Control Contact Lens Models in a Young Myopic Population. Int. J. Environ. Res. Public Health 2023, 20, 1258. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Friedman, I.B.; Medow, N.B.; Zhang, C. Update on orthokeratology in managing progressive myopia in children: Efficacy, mechanisms, and concerns. J. Pediatr. Ophthalmol. Strabismus 2017, 54, 142–148. [Google Scholar] [CrossRef]
- Tang, W.-T.; Zhao, W.-J.; Liao, J.; Xu, X.-Y.; Zhang, H.-D.; Zhang, L.; Luo, X.-N. One-year results for myopia control of orthokeratology with different back optic zone diameters: A randomized trial using a novel multispectral-based topographer. Int. J. Ophthalmol. 2024, 17, 324–330. [Google Scholar] [CrossRef]
- Pauné, J.; Queiros, A.; Quevedo, L.; Neves, H.; Lopes-Ferreira, D.; González-Méijome, J. Peripheral myopization and visual performance with experimental rigid gas permeable and soft contact lens design. Contact Lens Anterior Eye 2014, 37, 455–460. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.; Zhang, S.; Li, L. Efficacy and security of orthokeratology lens on myopia progression in teenagers for 5 years. Recent Adv. Ophthalmol. 2021, 41, 236–239. [Google Scholar]
- Queirós, A.; Villa-Collar, C.; Amorim-De-Sousa, A.; Gargallo-Martinez, B.; Gutiérrez-Ortega, R.; González-Pérez, J.; González-Méijome, J.M. Corneal morphology and visual outcomes in LASIK patients after orthokeratology: A pilot study. Contact Lens Anterior Eye 2018, 41, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Sartor, L.; Hunter, D.S.; Vo, M.L.; Samarawickrama, C. Benefits and risks of orthokeratology treatment: A systematic review and meta-analysis. Int. Ophthalmol. 2024, 44, 239. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Wang, J.; Zhu, M.; Lin, Z.; Zhao, J.; Tang, Y.; Deng, H. Does Orthokeratology Wearing Affect the Tear Quality of Children? Front. Pediatr. 2022, 9, 773484. [Google Scholar] [CrossRef]
- Tse, J.S.-H.; Lam, T.C.; Cheung, J.K.-W.; Sze, Y.-H.; Wong, T.-K.; Chan, H.H.-L. Data on assessment of safety and tear proteome change in response to orthokeratology lens—Insight from integrating clinical data and next generation proteomics. Data Br. 2020, 29, 105186. [Google Scholar] [CrossRef]
- Cooper, J.; Tkatchenko, A.V. A Review of Current Concepts of the Etiology and Treatment of Myopia. Eye Contact Lens 2018, 44, 231–247. [Google Scholar] [CrossRef]
- Queirós, A. New Frontiers in Myopia Progression in Children. J. Clin. Med. 2024, 13, 7314. [Google Scholar] [CrossRef] [PubMed]
Study | Mean RPR @ 30°N/T (D) | Control Efficacy (%) | Effect Size in Axial Length (mm) |
---|---|---|---|
Chen_2023 [27] | −2.98 ± 1.32 | 69% | 0.17 |
Gifford_2020 [23] | −3.22 ± 0.41 | −36% | −0.09 |
Gifford_2020 [23] | −3.41 ± 0.53 | −24% | −0.06 |
Huang_2022 [28] | −2.45 ± 0.96 | 112% | 0.28 |
Jakobsen_2023 [29] | −2.58 ± 0.33 | 46% | 0.11 |
Low_2024 [30] | −2.64 ± 0.06 | −88% | −0.21 |
Mean | −2.88 ± 0.63 | 13% | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Queirós, A.; Pinheiro, I.; Fernandes, P. Peripheral Defocus in Orthokeratology Myopia Correction: Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 662. https://doi.org/10.3390/jcm14030662
Queirós A, Pinheiro I, Fernandes P. Peripheral Defocus in Orthokeratology Myopia Correction: Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2025; 14(3):662. https://doi.org/10.3390/jcm14030662
Chicago/Turabian StyleQueirós, António, Inês Pinheiro, and Paulo Fernandes. 2025. "Peripheral Defocus in Orthokeratology Myopia Correction: Systematic Review and Meta-Analysis" Journal of Clinical Medicine 14, no. 3: 662. https://doi.org/10.3390/jcm14030662
APA StyleQueirós, A., Pinheiro, I., & Fernandes, P. (2025). Peripheral Defocus in Orthokeratology Myopia Correction: Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 14(3), 662. https://doi.org/10.3390/jcm14030662