Can AI Predict the Magnitude and Direction of Ortho-K Contact Lens Decentration to Limit Induced HOAs and Astigmatism?
Abstract
:1. Introduction
2. Methods
2.1. Topography Data Collection and Processing
2.2. Ortho-K Contact Lens Decentration Analyses
2.3. Zernike Polynomial Analyses
2.4. Astigmatism Quantification Analyses
2.5. Violin Plot Representation of Induced Astigmatism
2.6. Use of AI to Predict TZD and Ortho-K Lens Decentration
2.7. Statistical Analysis
3. Results
3.1. Zernike Polynomial Fitting
3.2. Decentration Assessment
3.3. AI Prediction of Ortho-K Lens Decentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wlodyga, R.J.B.C. Corneal molding; the easy way. Contact Lens Spectr. 1989, 4, 58–65. [Google Scholar]
- Harris, D.; Stoyan, N. A new approach to orthokeratology. Contact Lens Spectr. 1992, 7, 37–39. [Google Scholar]
- Wu, L.-Y.; Gomes Esporcatte, L.P.; Li, W.-K.; Lin, W.-P.; Wu, R.; White, L.; Salomão, M.Q.; Lopes, B.T.; Ambrósio, R., Jr.; Abass, A. Investigation of the relationship between contact lens design parameters and refractive changes in Ortho-K. Heliyon 2022, 8, e11699. [Google Scholar] [CrossRef]
- Swarbrick, H.O.L.D. Corneal Response to Orthokeratology. Optom. Vis. Sci. 1998, 75, 1. [Google Scholar] [CrossRef] [PubMed]
- Joslin, C.E.; Wu, S.M.; Mcmahon, T.T.; Shahidi, M. Higher-Order Wavefront Aberrations in Corneal Refractive Therapy. Optom. Vis. Sci. 2003, 80, 805–811. [Google Scholar] [CrossRef]
- Collins, M.J.; Buehren, T.; Iskander, D.R. Retinal image quality, reading and myopia. Vis. Res. 2006, 46, 196–215. [Google Scholar] [CrossRef]
- Bakaraju, R.C.; Ehrmann, K.; Papas, E.B.; Ho, A. Do Peripheral Refraction and Aberration Profiles Vary with the Type of Myopia?—An Illustration Using a Ray-Tracing Approach. J. Optom. 2009, 2, 29–38. [Google Scholar] [CrossRef]
- Damani, J.M.; Annasagaram, M.; Kumar, P.; Verkicharla, P.K. Alterations in peripheral refraction with spectacles, soft contact lenses and orthokeratology during near viewing: Implications for myopia control. Clin. Exp. Optom. 2022, 105, 761–770. [Google Scholar] [CrossRef]
- Yoo, Y.S.; Kim, D.Y.; Byun, Y.S.; Ji, Q.; Chung, I.K.; Whang, W.J.; Park, M.R.; Kim, H.S.; Na, K.S.; Joo, C.K.; et al. Impact of peripheral optical properties induced by orthokeratology lens use on myopia progression. Heliyon 2020, 6, e03642. [Google Scholar] [CrossRef]
- Sun, L.; Li, Z.X.; Chen, Y.; He, Z.Q.; Song, H.X. The effect of orthokeratology treatment zone decentration on myopia progression. BMC Ophthalmol. 2022, 22, 76. [Google Scholar] [CrossRef]
- Lau, J.K.; Vincent, S.J.; Cheung, S.W.; Cho, P. Higher-Order Aberrations and Axial Elongation in Myopic Children Treated with Orthokeratology. Investig. Ophthalmol. Vis. Sci. 2020, 61, 22. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Lin, Z.; Wu, H.; Xu, Q.; Wen, L.; Luo, Z.; Hu, Z.; Li, X.; Yang, Z. Two-Dimensional Peripheral Refraction and Higher-Order Wavefront Aberrations Induced by Orthokeratology Lenses Decentration. Transl. Vis. Sci. Technol. 2023, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, T.; Okamoto, C.; Ishii, Y.; Kakita, T.; Oshika, T. Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology. Investig. Ophthalmol. Vis. Sci. 2007, 48, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, J.; Li, X.; Tang, J.; Li, Y.; Wang, K.; Zhao, M. Long-term variations and influential factors of the treatment zone of wearing orthokeratology lenses. Cont. Lens Anterior Eye 2023, 46, 101867. [Google Scholar] [CrossRef]
- Chen, C.; Ma, W.; Wang, J.; Yang, B.; Liu, T.; Liu, L. Higher-Order Aberrations and Visual Performance in Myopic Children Treated with Aspheric Base Curve-Designed Orthokeratology. Eye Contact Lens 2023, 49, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.K.; Vincent, S.J.; Collins, M.J.; Cheung, S.W.; Cho, P. Ocular higher-order aberrations and axial eye growth in young Hong Kong children. Sci. Rep. 2018, 8, 6726. [Google Scholar] [CrossRef]
- Lin, W.; Gu, T.; Bi, H.; Du, B.; Zhang, B.; Wei, R. The treatment zone decentration and corneal refractive profile changes in children undergoing orthokeratology treatment. BMC Ophthalmol. 2022, 22, 177. [Google Scholar] [CrossRef]
- Chen, Z.; Xue, F.; Zhou, J.; Qu, X.; Zhou, X. Prediction of orthokeratology lens decentration with corneal elevation. Optom. Vis. Sci. 2017, 94, 903–907. [Google Scholar] [CrossRef]
- Chen, J.; Huang, W.; Zhu, R.; Jiang, J.; Li, Y. Influence of overnight orthokeratology lens fitting decentration on corneal topography reshaping. Eye Vis. 2018, 5, 5. [Google Scholar] [CrossRef]
- Gu, T.; Gong, B.; Lu, D.; Lin, W.; Li, N.; He, Q.; Wei, R. Influence of corneal topographic parameters in the decentration of orthokeratology. Eye Contact Lens 2019, 45, 372–376. [Google Scholar] [CrossRef]
- Lu, F.; Simpson, T.; Sorbara, L.; Fonn, D. The relationship between the treatment zone diameter and visual, optical and subjective performance in Corneal Refractive Therapy lens wearers. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 2007, 27, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Sandwell, D.T. Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geophys. Res. Lett. 1987, 14, 139–142. [Google Scholar] [CrossRef]
- Olsen, T. On the calculation of power from curvature of the cornea. Br. J. Ophthalmol. 1986, 70, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.-D.; Tsai, C.-Y.; Tsai, R.J.-F.; Kuo, L.-L.; Tsai, I.L.; Liou, S.-W. Validity of the keratometric index: Evaluation by the Pentacam rotating Scheimpflug camera. J. Cataract. Refract. Surg. 2008, 34, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Smit, G.; Atchison, D.A. The Eye and Visual Optical Instruments; Cambridge University Press: Cambridge, UK, 1970. [Google Scholar]
- Vojnikovi, B.O.; Tamajo, E. Gullstrand’s Optical Schematic System of the Eye Modified by Vojnikovi & Tamajo. Coll. Antropol. 2013, 37, 41–45. [Google Scholar]
- Fathy, A.; Lopes, B.T.; Ambrósio, R.; Wu, R.; Abass, A. The Efficiency of Using Mirror Imaged Topography in Fellow Eyes Analyses of Pentacam HR Data. Symmetry 2021, 13, 2132. [Google Scholar] [CrossRef]
- Consejo, A.; Fathy, A.; Lopes, B.T.; Ambrósio, R.; Abass, A. Effect of Corneal Tilt on the Determination of Asphericity. Sensors 2021, 21, 7636. [Google Scholar] [CrossRef]
- Zernike, V.F. Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1934, 1, 689–704. [Google Scholar] [CrossRef]
- Wei, Y.; Lopes, B.T.; Eliasy, A.; Wu, R.; Fathy, A.; Elsheikh, A.; Abass, A. Performance of Zernike polynomials in reconstructing raw-elevation data captured by Pentacam HR, Medmont E300 and Eye Surface Profiler. Heliyon 2021, 7, e08623. [Google Scholar] [CrossRef]
- Baraya, M.; Moore, J.; Lopes, B.T.; Wu, R.; Bao, F.; Zheng, X.; Consejo, A.; Abass, A. Limitations of Reconstructing Pentacam Rabbit Corneal Tomography by Zernike Polynomials. Bioengineering 2023, 10, 39. [Google Scholar] [CrossRef]
- Harvey, H.B.; Sotardi, S.T. The Pareto Principle. J. Am. Coll. Radiol. 2018, 15, 931. [Google Scholar] [CrossRef] [PubMed]
- Tummanapalli, S.S.; Potluri, H.; Vaddavalli, P.K.; Sangwan, V.S. Efficacy of axial and tangential corneal topography maps in detecting subclinical keratoconus. J. Cataract. Refract. Surg. 2015, 41, 2205–2214. [Google Scholar] [CrossRef] [PubMed]
- Salmon, T.O.; Horner, D.G. Comparison of elevation, curvature, and power descriptors for corneal topographic mapping. Optom. Vis. Sci. 1995, 72, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Cavas-Martinez, F.; De la Cruz Sanchez, E.; Nieto Martinez, J.; Fernandez Canavate, F.J.; Fernandez-Pacheco, D.G. Corneal topography in keratoconus: State of the art. Eye Vis. 2016, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hintze, J.L.; Nelson, R.D. Violin Plots: A Box Plot-Density Trace Synergism. Am. Stat. 1998, 52, 181–184. [Google Scholar] [CrossRef]
- Aggarwal, C.C. Neural Networks and Deep Learning: A Textbook; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Zhu, J.; He, Y.; Yang, X.; Yang, S. Ultra-short-term wind power probabilistic forecasting based on an evolutionary non-crossing multi-output quantile regression deep neural network. Energy Convers. Manag. 2024, 301, 118062. [Google Scholar] [CrossRef]
- Subramani, S.; Varshney, N.; Anand, M.V.; Soudagar, M.E.M.; Al-Keridis, L.A.; Upadhyay, T.K.; Alshammari, N.; Saeed, M.; Subramanian, K.; Anbarasu, K.; et al. Cardiovascular diseases prediction by machine learning incorporation with deep learning. Front. Med. 2023, 10, 1150933. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, Y.; Ding, Z.; Li, C.; Ding, H.; Guo, Y.; Hu, D. Research on the direction perception of cruising copepods by the fish lateral line using pressure difference matrix and residual neural network regression method. Ocean. Eng. 2024, 292, 116497. [Google Scholar] [CrossRef]
- Marsaglia, G.; Tsang, W.W.; Wang, J. Evaluating Kolmogorov’s Distribution. J. Stat. Softw. 2003, 8, 1–4. [Google Scholar] [CrossRef]
- Everitt, B.S.; Skrondal, A. The Cambridge Dictionary of Statistics, 4th ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Kendall, M.G.; Stuart, A. Inference and: Relationsship. In The Advanced Theory of Statistics; Arnold: Griffin, GA, USA, 1973; Volume 2. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes 3rd Edition: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Wu, L.-Y.; Lin, W.-P.; Wu, R.; White, L.; Abass, A. FEA-Based Stress–Strain Barometers as Forecasters for Corneal Refractive Power Change in Orthokeratology. Bioengineering 2024, 11, 166. [Google Scholar] [CrossRef]
- Caroline, P.J. Contemporary Orthokeratology. CLAE 2000, 24, 41–46. [Google Scholar]
- Chan, B.; Cho, P.; Cheung, S.W. Orthokeratology practice in children in a university clinic in Hong Kong. Clin. Exp. Optom. 2008, 91, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Walline, J.J.; Rah, M.J.; Jones, L.A. The Children’s Overnight Orthokeratology Investigation (COOKI) pilot study. Optom. Vis. Sci. 2004, 81, 407–413. [Google Scholar] [CrossRef]
- Tomiyama, E.S.; Logan, A.K.; Richdale, K. Corneal Elevation, Power, and Astigmatism to Assess Toric Orthokeratology Lenses in Moderate-to-High Astigmats. Eye Contact Lens 2021, 47, 86–90. [Google Scholar] [CrossRef]
- Gharieb, H.M.; Shalaby, H.S.; Othman, I.S. Distribution of angle lambda and pupil offset as measured by combined Placido Scheimpflug Topography. Int. Ophthalmol. 2023, 43, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, R.; Esporcatte, L.P.G.; White, L.; Salomão, M.Q.; Lopes, B.T.; Ambrósio, R., Jr.; Abass, A. Investigation of How Corneal Densitometry Artefacts Affect the Imaging of Normal and Keratoconic Corneas. Bioengineering 2024, 11, 148. [Google Scholar] [CrossRef]
- Moor, J. The Dartmouth College artificial intelligence conference: The next fifty years. AI Mag. 2006, 27, 87. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef]
- Figueira, E.C.; Chen, T.S.; Agar, A.; Coroneo, M.T.; Wilcsek, G.; Nemet, A.; Francis, I.C. LESCs: Lateralizing Eyelid Sleep Compression Study. Ophthalmic Plast. Reconstr. Surg. 2014, 30, 473–475. [Google Scholar] [CrossRef]
- Kaplowitz, K.; Blizzard, S.; Blizzard, D.J.; Nwogu, E.; Hamill, C.E.; Weinreb, R.N.; Mohsenin, V.; Loewen, N.A. Time Spent in Lateral Sleep Position and Asymmetry in Glaucoma. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3869–3874. [Google Scholar] [CrossRef] [PubMed]
- Abass, A.; Vinciguerra, R.; Lopes, B.T.; Bao, F.; Vinciguerra, P.; Ambrosio, R., Jr.; Elsheikh, A. Positions of Ocular Geometrical and Visual Axes in Brazilian, Chinese and Italian Populations. Curr. Eye Res. 2018, 43, 1404–1414. [Google Scholar] [CrossRef] [PubMed]
- Eliasy, A.; Abass, A.; Lopes, B.T.; Vinciguerra, R.; Zhang, H.; Vinciguerra, P.; Ambrósio, R.; Roberts, C.J.; Elsheikh, A. Characterisation of cone size and centre in keratoconic corneas. J. R. Soc. Interface 2020, 17, 20200271. [Google Scholar] [CrossRef] [PubMed]
Time of Wear (Days) | Number of Eyes | Age in Years (m ± std) | IOP (mmHg) | CCT (µm) | Pre-Simulated Keratometry (Sim-K) (D) | Post-Simulated Keratometry (Sim-K) (D) | Eye | |||
---|---|---|---|---|---|---|---|---|---|---|
Flat (m ± std) | Steep (m ± std) | Flat (m ± std) | Steep (m ± std) | Right | Left | |||||
10 to 100 | 249 | 14.10 ± 4.0 | 15 ± 3 | 554 ± 33 | 42.62 ± 1.31 | 43.96 ± 1.34 | 41.07 ± 1.33 | 42.71 ± 1.49 | 132 | 117 |
Aberrations | Zernike Term | Mean Pre | STD Pre | Mean Post | STD Post | p Pre vs. Post | |
---|---|---|---|---|---|---|---|
Low order aberrations | Piston | −0.9119 | 0.0742 | −0.8770 | 0.0621 | <0.0001 * | |
Vertical tilt | −0.0001 | 0.0150 | +0.0187 | 0.0393 | <0.0001 * | ||
Horizontal tilt | +0.0041 | 0.0148 | −0.0023 | 0.0203 | 0.00066 * | ||
Oblique astigmatism | +0.0005 | 0.0091 | +0.0025 | 0.0131 | 0.08541 | ||
Defocus | −0.9384 | 0.0782 | −0.9186 | 0.0678 | 0.00979 | ||
Vertical astigmatism | +0.0362 | 0.0185 | +0.0514 | 0.0265 | <0.0001 * | ||
High order aberrations | Vertical trefoil | −0.0039 | 0.0049 | −0.0053 | 0.0099 | 0.08019 | |
Vertical coma | −0.0008 | 0.0081 | +0.0074 | 0.0166 | <0.0001 * | ||
Horizontal coma | +0.0030 | 0.0104 | +0.0009 | 0.0070 | 0.02539 | ||
Oblique trefoil | +0.0013 | 0.0046 | +0.0018 | 0.0071 | 0.40385 | ||
Oblique quatrefoil | +0.0007 | 0.0030 | +0.0003 | 0.0043 | 0.34585 | ||
Oblique secondary astigmatism | −0.0001 | 0.0032 | +0.0013 | 0.0057 | 0.00508 | ||
Primary spherical aberration | −0.0265 | 0.0058 | −0.0415 | 0.0102 | <0.0001 * | ||
Vertical secondary astigmatism | +0.0065 | 0.0067 | +0.0161 | 0.0115 | <0.0001 * | ||
Vertical quatrefoil | +0.0003 | 0.0039 | −0.0050 | 0.0054 | <0.0001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-P.; Wu, L.-Y.; Li, W.-K.; Lin, W.-R.; Wu, R.; White, L.; Abass, R.; Alanazi, R.; Towler, J.; Davies, J.; et al. Can AI Predict the Magnitude and Direction of Ortho-K Contact Lens Decentration to Limit Induced HOAs and Astigmatism? J. Clin. Med. 2024, 13, 5420. https://doi.org/10.3390/jcm13185420
Lin W-P, Wu L-Y, Li W-K, Lin W-R, Wu R, White L, Abass R, Alanazi R, Towler J, Davies J, et al. Can AI Predict the Magnitude and Direction of Ortho-K Contact Lens Decentration to Limit Induced HOAs and Astigmatism? Journal of Clinical Medicine. 2024; 13(18):5420. https://doi.org/10.3390/jcm13185420
Chicago/Turabian StyleLin, Wen-Pin, Lo-Yu Wu, Wen-Kai Li, Wei-Ren Lin, Richard Wu, Lynn White, Rowan Abass, Rami Alanazi, Joseph Towler, Jay Davies, and et al. 2024. "Can AI Predict the Magnitude and Direction of Ortho-K Contact Lens Decentration to Limit Induced HOAs and Astigmatism?" Journal of Clinical Medicine 13, no. 18: 5420. https://doi.org/10.3390/jcm13185420
APA StyleLin, W.-P., Wu, L.-Y., Li, W.-K., Lin, W.-R., Wu, R., White, L., Abass, R., Alanazi, R., Towler, J., Davies, J., & Abass, A. (2024). Can AI Predict the Magnitude and Direction of Ortho-K Contact Lens Decentration to Limit Induced HOAs and Astigmatism? Journal of Clinical Medicine, 13(18), 5420. https://doi.org/10.3390/jcm13185420