Pattern Identification in Patients with Functional Dyspepsia Using Brain–Body Bio-Signals: Protocol of a Clinical Trial for AI Algorithm Development
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Setting
2.2. Ethical Considerations
2.3. Sample Size Calculation
2.4. Eligibility Criteria
2.4.1. Inclusion Criteria
2.4.2. Exclusion Criteria
2.5. Participant Recruitment
2.6. Study Procedures
2.7. Data Collection
2.8. Statistical Analysis
2.9. Participant Safety
3. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, M.; Lu, C.; Zhang, C.; Yang, J.; Tan, Y.; Lu, A.; Chan, K. Syndrome differentiation in modern research of traditional Chinese medicine. J. Ethnopharmacol. 2012, 140, 634–642. [Google Scholar] [CrossRef]
- Ha, N.-Y.; Ko, S.-J.; Park, J.-W.; Kim, J. Development of a Standard Tool of Pattern Identification for Functional Dyspepsia: A Cross-Sectional Study from Korea. Healthcare 2024, 12, 2331. [Google Scholar] [CrossRef]
- Bilton, K.; Zaslawski, C. Reliability of Manual Pulse Diagnosis Methods in Traditional East Asian Medicine: A Systematic Narrative Literature Review. J. Altern. Complement. Med. 2016, 22, 599–609. [Google Scholar] [CrossRef]
- Jacobson, E.; Conboy, L.; Tsering, D.; Shields, M.; McKnight, P.; Wayne, P.M.; Schnyer, R. Experimental Studies of Inter-Rater Agreement in Traditional Chinese Medicine: A Systematic Review. J. Altern. Complement. Med. 2019, 25, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Meng, K.; Xiao, X.; Wei, W.; Chen, G.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable Pressure Sensors for Pulse Wave Monitoring. Adv. Mater. 2022, 34, e2109357. [Google Scholar] [CrossRef] [PubMed]
- Saugel, B.; Kouz, K.; Scheeren, T.W.L.; Greiwe, G.; Hoppe, P.; Romagnoli, S.; de Backer, D. Cardiac output estimation using pulse wave analysis-physiology, algorithms, and technologies: A narrative review. Br. J. Anaesth. 2021, 126, 67–76. [Google Scholar] [CrossRef]
- Tago, K.; Wang, H.; Jin, Q. Classification of TCM pulse diagnoses based on pulse and periodic features from personal health data. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Guo, C.; Jiang, Z.; He, H.; Liao, Y.; Zhang, D. Wrist pulse signal acquisition and analysis for disease diagnosis: A review. Comput. Biol. Med. 2022, 143, 105312. [Google Scholar] [CrossRef]
- Drossman, D.A.; Hasler, W.L. Rome IV-Functional GI Disorders: Disorders of Gut-Brain Interaction. Gastroenterology 2016, 150, 1257–1261. [Google Scholar] [CrossRef]
- Chae, Y.; Lee, I.S. Central Regulation of Eating Behaviors in Humans: Evidence from Functional Neuroimaging Studies. Nutrients 2023, 15, 3010. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, R.; Hosokawa, T.; Manabe, N.; Mori, H.; Wani, K.; Ishii, K.; Tanikawa, T.; Urata, N.; Ayaki, M.; Nishino, K.; et al. Brain activity in response to food images in patients with irritable bowel syndrome and functional dyspepsia. J. Gastroenterol. 2023, 58, 1178–1187. [Google Scholar] [CrossRef]
- Lee, I.S.; Kullmann, S.; Scheffler, K.; Preissl, H.; Enck, P. Fat label compared with fat content: Gastrointestinal symptoms and brain activity in functional dyspepsia patients and healthy controls. Am. J. Clin. Nutr. 2018, 108, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.K.; Chen, J.D.Z. Roles of Heart Rate Variability in Assessing Autonomic Nervous System in Functional Gastrointestinal Disorders: A Systematic Review. Diagnostics 2023, 13, 293. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M.; Malagelada, J.R.; Kao, P.C.; Zinsmeister, A.R. Gastric and autonomic responses to stress in functional dyspepsia. Dig. Dis. Sci. 1986, 31, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Guo, J.; Xu, L.; Shi, Z.; Xu, F.; Xu, Y.; Yan, G.; Li, J.; Yang, Y.; Duan, Z.; et al. The Overlap Subgroup of Functional Dyspepsia Exhibits More Severely Impaired Gastric and Autonomic Functions. J. Clin. Gastroenterol. 2024, 58, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Mawla, I.; Kim, J.; Loggia, M.L.; Ortiz, A.; Jung, C.; Chan, S.T.; Gerber, J.; Schmithorst, V.J.; Edwards, R.R.; et al. Machine learning-based prediction of clinical pain using multimodal neuroimaging and autonomic metrics. Pain 2019, 160, 550–560. [Google Scholar] [CrossRef]
- Chouchou, F.; Fauchon, C.; Perchet, C.; Garcia-Larrea, L. An approach to the detection of pain from autonomic and cortical correlates. Clin. Neurophysiol. 2024, 166, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.R.; Schreiber, K.L.; Dworkin, R.H.; Turk, D.C.; Baron, R.; Freeman, R.; Jensen, T.S.; Latremoliere, A.; Markman, J.D.; Rice, A.S.C.; et al. Optimizing and Accelerating the Development of Precision Pain Treatments for Chronic Pain: IMMPACT Review and Recommendations. J. Pain 2023, 24, 204–225. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Zheng, H.; Ma, T.; Tian, X.; Xu, J.; Li, Y.; Lan, L.; Liu, M.; Sun, R.; Tang, Y.; et al. Predicting acupuncture efcacy for functional dyspepsia based on routine clinical features: A machine learning study in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022, 13, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; He, Z.; Chen, Y.; Sun, R.; Yin, S.; Lu, J.; Yang, Y.; Liu, X.; Ma, P.; Qu, Y.; et al. Predicting acupuncture efficacy for functional dyspepsia based on functional brain network features: A machine learning study. Cereb.Cortex 2023, 33, 3511–3522. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.E.; Moon, H.; Lee, I.S.; Chae, Y. Discovering the key symptoms for identifying patterns in functional dyspepsia patients: Doctor’s decision and machine learning. Integr. Med. Res. 2025, 14, 101115. [Google Scholar] [CrossRef]
- Alwosheel, A.; van Cranenburgh, S.; Chorus, C.G. Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis. J. Choice Model. 2018, 28, 167–182. [Google Scholar] [CrossRef]
- Chen, L.; Xu, H. Deep neural network for semi-automatic classification of term and preterm uterine recordings. Artif. Intell. Med. 2020, 105, 101861. [Google Scholar] [CrossRef]
- Hao, Z.; Zhai, X.; Cheng, D.; Pan, Y.; Dou, W. EEG Microstate-Specific Functional Connectivity and Stroke-Related Alterations in Brain Dynamics. Front. Neurosci. 2022, 16, 848737. [Google Scholar] [CrossRef]
- Dimitriadis, S.I.; Salis, C.I. Mining Time-Resolved Functional Brain Graphs to an EEG-Based Chronnectomic Brain Aged Index (CBAI). Front. Hum. Neurosci. 2017, 11, 423. [Google Scholar] [CrossRef] [PubMed]
- Yeo, M.; Park, K.; Bae, K.; Jang, E.; Lee, Y. Development on the Questionnaire of Cold-Heat Pattern Identification Based on Usual Symptoms for Health Promotion—Focused on Reliability Study. J. Physiol. Pathol. Korean Med. 2016, 30, 116–123. [Google Scholar] [CrossRef]
- Jang, E.S.; Yoon, J.H.; Baek, Y.H.; Lee, S.W. Evaluation of Reliability and Validity for Deficiency and Excess Pattern Identification Questionnaire. J. Physiol. Pathol. Korean Med. 2018, 32, 171–177. [Google Scholar] [CrossRef]
- Baek, Y.; Jung, K.; Kim, Y.; Jang, E. Evaluation of Validity for Deficiency and Excess Pattern Identification Questionnaire. J. Physiol. Pathol. Korean Med. 2020, 34, 142–148. [Google Scholar] [CrossRef]
- Baek, S.; Ha, N.; Ko, S.; Park, J.; Kim, J. Development of a Phlegm Pattern Questionnaire for Functional Dyspepsia and Analysis of Its Reliability and Validity. J. Int. Korean Med. 2020, 41, 563–582. [Google Scholar] [CrossRef]
- Hwang, M.; Ha, N.; Ko, S.; Park, J.; Kim, J. Development of a Food Retention Questionnaire for Functional Dyspepsia and the Analysis of Its Reliability and Validity. J. Int. Korean Med. 2019, 40, 390–408. [Google Scholar] [CrossRef]
- Oh, H.W.; Lee, J.W.; Kim, J.S.; Song, E.Y.; Shin, S.W.; Han, G.J.; Lu, H.; Lee, J.H.; Oh, H.W.; Lee, J. Study on the Development of a standard instrument of diagnosis and assessment for spleen deficiency pattern. J. Korean Med. 2014, 35, 157–170. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Kim, J.; Kim, K.H. Reliability and Validity Analysis of a Standard Instrument of Diagnosis and Assessment for Spleen Qi Deficiency Pattern in Chronic Dyspepsia Patients. J. Korean Med. 2015, 36, 23–34. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.W.; Ko, S.J.; Kim, J. Development and validation of a new pattern identification scale for Stomach Qi Deficiency. Eur. J. Integr. Med. 2018, 17, 56–63. [Google Scholar] [CrossRef]
- Lee, S.; Choi, S.; Cho, Y.; Choi, M. Validation of the Nepean dyspepsia index-Korean version. Korean J. Neurogastroenterol. Mot. 2003, 9, 48S. [Google Scholar]
- Marteau, T.M.; Bekker, H. The development of a six-item short-form of the state scale of the Spielberger State—Trait Anxiety Inventory (STAI). Br. J. Clin. Psychol. 1992, 31, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Steer, R.A.; Brown, G. Beck depression inventory–II. APA PsycTests 1996. [Google Scholar] [CrossRef]
- Balestroni, G.; Bertolotti, G. EuroQol-5D (EQ-5D): An instrument for measuring quality of life. Monaldi Arch. Chest Dis. 2012, 78, 155–159. [Google Scholar] [CrossRef]
- Makowski, D.; Pham, T.; Lau, Z.J.; Brammer, J.C.; Lespinasse, F.; Pham, H.; Scholzel, C.; Chen, S.H.A. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav. Res. Methods 2021, 53, 1689–1696. [Google Scholar] [CrossRef]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 3, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Cohen, M. Analyzing Neural Time Series Data: Theory and Practice; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Acharya, U.R.; Fujita, H.; Lih, O.S.; Hagiwara, Y.; Tan, J.H.; Adam, M. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf. Sci. 2017, 405, 81–90. [Google Scholar] [CrossRef]
- Ancillon, L.; Elgendi, M.; Menon, C. Machine Learning for Anxiety Detection Using Biosignals: A Review. Diagnostics 2022, 12, 1794. [Google Scholar] [CrossRef]
- Sajino, E.; Bartolotta, S.; Tuena, C.; Cipresso, P.; Pedroli, E.; Riva, G. Machine learning in biosignals processing for mental health: A narrative review. Front. Psychol. 2023, 13, 1066317. [Google Scholar] [CrossRef]
Visit 1 (Screening) | Visit 2 (Bio-Signal Measurements) | |
---|---|---|
Written consent | ● | |
Demographic/medical history survey | ● | |
Vital sign (blood pressure, pulse, temperature) measurements | ● | ● |
Physical measurements (weight, height) | ● | |
Blood test and electrocardiogram | ● | |
Visual Analog Scale for dyspepsia/diagnosis of functional dyspepsia (ROME IV) | ● | |
Confirmation of inclusion/exclusion criteria | ● | |
Medication history/medication intake survey | ● | |
Questionnaires
| ● | |
Korean medicine diagnosis (interview, tongue diagnosis, pulse diagnosis, abdominal diagnosis) | ● | |
Bio-signal measurements (fNIRS, pulse, SCR, ECG) | ● | |
Adverse events assessment | ● | |
Confirmation of clinical study completion | ● |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koh, W.-J.; Kim, J.; Chae, Y.; Lee, I.-S.; Ko, S.-J. Pattern Identification in Patients with Functional Dyspepsia Using Brain–Body Bio-Signals: Protocol of a Clinical Trial for AI Algorithm Development. J. Clin. Med. 2025, 14, 1072. https://doi.org/10.3390/jcm14041072
Koh W-J, Kim J, Chae Y, Lee I-S, Ko S-J. Pattern Identification in Patients with Functional Dyspepsia Using Brain–Body Bio-Signals: Protocol of a Clinical Trial for AI Algorithm Development. Journal of Clinical Medicine. 2025; 14(4):1072. https://doi.org/10.3390/jcm14041072
Chicago/Turabian StyleKoh, Won-Joon, Junsuk Kim, Younbyoung Chae, In-Seon Lee, and Seok-Jae Ko. 2025. "Pattern Identification in Patients with Functional Dyspepsia Using Brain–Body Bio-Signals: Protocol of a Clinical Trial for AI Algorithm Development" Journal of Clinical Medicine 14, no. 4: 1072. https://doi.org/10.3390/jcm14041072
APA StyleKoh, W.-J., Kim, J., Chae, Y., Lee, I.-S., & Ko, S.-J. (2025). Pattern Identification in Patients with Functional Dyspepsia Using Brain–Body Bio-Signals: Protocol of a Clinical Trial for AI Algorithm Development. Journal of Clinical Medicine, 14(4), 1072. https://doi.org/10.3390/jcm14041072