Amlodipine-Associated Angioedema: An Integrated Pharmacovigilance Assessment Using Disproportionality and Interaction Analysis and Case Reviews
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Data Processing
2.3. Data Mining Algorithms
2.4. Interaction Signal Scores
2.5. Outcomes Assessed
2.6. Compliance with Reporting Standards
2.7. Case Review
2.8. Statistical Analysis
3. Results
3.1. Search Results
3.2. Signal Detection Measures
3.3. Interaction Analysis
3.4. Reported Outcomes for the Risk of Angioedema with Amlodipine
3.5. Case Reviews
4. Discussion
4.1. Statement of Key Findings
4.2. Comparison with Existing Literature
4.3. Strengths, Limitations, and Way Forward
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohn, D.M.; Arruda, L.K. Preventing Deaths from Angioedema: It’s Time to Look Ahead. J. Allergy Clin. Immunol. Pract. 2020, 8, 1775–1776. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Niu, K.; Wu, X.; Shi, H. Risk of drug-induced angioedema: A pharmacovigilance study of FDA adverse event reporting system database. Front. Pharmacol. 2024, 15, 1417596. [Google Scholar] [CrossRef] [PubMed]
- Inomata, N. Recent advances in drug-induced angioedema. Allergol. Int. 2012, 61, 545–557. [Google Scholar] [CrossRef]
- Kalambay, J.; Ghazanfar, H.; Martes Pena, K.A.; Munshi, R.A.; Zhang, G.; Patel, J.Y. Pathogenesis of Drug Induced Non-Allergic Angioedema: A Review of Unusual Etiologies. Cureus 2017, 9, e1598. [Google Scholar] [CrossRef]
- Hahn, J.; Greve, J.; Bas, M.; Kojda, G. Bradykinin-Mediated Angioedema Induced by Commonly Used Cardiovascular Drugs. Drugs Drug Candidates 2023, 2, 708–727. [Google Scholar] [CrossRef]
- Fares, H.; DiNicolantonio, J.J.; O’Keefe, J.H.; Lavie, C.J. Amlodipine in hypertension: A first-line agent with efficacy for improving blood pressure and patient outcomes. Open Heart 2016, 3, e000473. [Google Scholar] [CrossRef]
- Wang, J.; Palmer, B.F.; Anderson, K.V.; Sever, P. Amlodipine in the current management of hypertension. J. Clin. Hypertens. 2023, 25, 801–807. [Google Scholar] [CrossRef]
- Bloch, M. Major Side Effects and Safety of Calcium Channel Blockers. Available online: https://www.uptodate.com/contents/major-side-effects-and-safety-of-calcium-channel-blockers (accessed on 18 December 2024).
- Manzano, J.M.M.; Lo, K.B.; Jarrett, S.A.; Chiang, B.; Azmaiparashvili, Z. Angioedema associated with the use of dihydropyridine calcium channel blockers—A case series. Ann. Allergy Asthma Immunol. 2021, 128, 228–229. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Zou, Z.; Chen, G.-M.; Jia, H.-X.; Zhong, J.; Fang, W.-W. Amlodipine and angiotensin-converting enzyme inhibitor combination versus amlodipine monotherapy in hypertension: A meta-analysis of randomized controlled trials. Blood Press. Monit. 2010, 15, 195–204. [Google Scholar] [CrossRef]
- Brook, R.D.; Kaciroti, N.; Bakris, G.; Dahlöf, B.; Pitt, B.; Velazquez, E.; Weber, M.; Zappe, D.H.; Hau, T.; Jamerson, K.A. Prior Medications and the Cardiovascular Benefits From Combination Angiotensin-Converting Enzyme Inhibition Plus Calcium Channel Blockade Among High-Risk Hypertensive Patients. J. Am. Heart Assoc. 2018, 7, e006940. [Google Scholar] [CrossRef] [PubMed]
- Bakris, G.L. Combined Therapy with a Calcium Channel Blocker and an Angiotensin II Type 1 Receptor Blocker. J. Clin. Hypertens. 2008, 10, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Pirmohamed, M.; Orme, M. Drug interactions of clinical importance. In Davies’s Textbook of Adverse Drug Reactions; Davies, D., Ferner, R., de Glanville, H., Eds.; Chapman & Hall Medical: London, UK, 1998; pp. 888–912. [Google Scholar]
- Sridharan, K.; Sivaramakrishnan, G. A pharmacovigilance study assessing risk of angioedema with angiotensin receptor blockers using the US FDA Adverse Event Reporting System. Expert. Opin. Drug Saf. 2024, 1–8. [Google Scholar] [CrossRef]
- Hochberg, A.M.; Pearson, R.K.; O’Hara, D.J.; Reisinger, S.J. Drug-versus-drug adverse event rate comparisons: A pilot study based on data from the US FDA Adverse Event Reporting System. Drug Saf. 2009, 32, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Montastruc, J.; Sommet, A.; Bagheri, H.; Lapeyre-Mestre, M. Benefits and strengths of the disproportionality analysis for identification of adverse drug reactions in a pharmacovigilance database. Br. J. Clin. Pharmacol. 2011, 72, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.G.; Wood, L.; Wood, S. The Medical Dictionary for Regulatory Activities (MedDRA). Drug Saf. 1999, 20, 109–117. [Google Scholar] [CrossRef]
- FDA; Adverse Event Reporting System (FAERS). Public Dashboard. Available online: https://www.fda.gov/drugs/fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard (accessed on 18 December 2024).
- Faillie, J.L. Case-non-case studies: Principle, methods, bias and interpretation. Therapie 2019, 74, 225–232. [Google Scholar] [CrossRef]
- Evans, S.J.W.; Waller, P.C.; Davis, S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol. Drug Saf. 2001, 10, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Poluzzi, E.; Raschi, E.; Piccinni, C.; De Ponti, F. Data Mining Techniques in Pharmacovigilance: Analysis of the Publicly Accessible FDA Adverse Event Reporting System (AERS). In Data Mining Applications in Engineering and Medicine; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Caster, O.; Juhlin, K.; Watson, S.; Norén, G.N. Improved Statistical Signal Detection in Pharmacovigilance by Combining Multiple Strength-of-Evidence Aspects in vigiRank. Drug Saf. 2014, 37, 617–628. [Google Scholar] [CrossRef]
- Noguchi, Y.; Tachi, T.; Teramachi, H. Detection algorithms and attentive points of safety signal using spontaneous reporting systems as a clinical data source. Brief. Bioinform. 2021, 22, bbab347. [Google Scholar]
- Fusaroli, M.; Salvo, F.; Begaud, B.; AlShammari, T.M.; Bate, A.; Battini, V.; Brueckner, A.; Candore, G.; Carnovale, C.; Crisafulli, S.; et al. The REporting of A Disproportionality Analysis for DrUg Safety Signal Detection Using Individual Case Safety Reports in PharmacoVigilance (READUS-PV): Explanation and Elaboration. Drug Saf. 2024, 47, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, C.A.; Busto, U.; Sellers, E.M.; Sandor, P.; Ruiz, I.; Roberts, E.A.; Janecek, E.; Domecq, C.; Greenblatt, D.J. A method for estimating the probability of adverse drug reactions. Clin. Pharmacol. Ther. 1981, 30, 239–245. [Google Scholar] [CrossRef]
- Hom, K.A.; Hirsch, R.; Elluru, R.G. Antihypertensive drug-induced angioedema causing upper airway obstruction in children. Int. J. Pediatr. Otorhinolaryngol. 2012, 76, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, M.E.; Sanan, N. Amlodipine-induced angioedema: An unusual complication of a common medication. Allergy Rhinol. 2018, 9, 2152656718764139. [Google Scholar] [CrossRef] [PubMed]
- Morgenthau, A.; Kim, E. Angioedema secondary to amlodipine and lisinopril: A documented progression. BMJ Case Rep. 2019, 12, e232019. [Google Scholar] [CrossRef] [PubMed]
- Pierce, W.A.; Hederman, A.D.; Gordon, C.J.; Ostrenga, A.R.; Herrington, B. Angioedema associated with dihydropyridine calcium-channel blockers in a child with Burkitt lymphoma. Am. J. Health Pharm. 2011, 68, 402–406. [Google Scholar] [CrossRef]
- Russo, T.; Kouyoumjian, S.; Fargaly, H. Angioedema: A Possible Complication of Amlodipine Use. Cureus 2023, 15, e42202. [Google Scholar] [CrossRef]
- Southward, J.; Irvine, E.; Rabinovich, M. Probable Amlodipine-Induced Angioedema. Ann. Pharmacother. 2009, 43, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Turcu, A.F.; White, J.A.; Kulaga, M.E.; Skluth, M.; Gruss, C.B. Calcium Channel Blocker-associated Small Bowel Angioedema. J. Clin. Gastroenterol. 2009, 43, 338–341. [Google Scholar] [CrossRef]
- Grumach, A.S.; Veronez, C.L.; Csuka, D.; Farkas, H. Angioedema Without Wheals: Challenges in Laboratorial Diagnosis. Front. Immunol. 2021, 12, 785736. [Google Scholar] [CrossRef] [PubMed]
- Bas, M.; Adams, V.; Suvorava, T.; Niehues, T.; Hoffmann, T.K.; Kojda, G. Nonallergic angioedema: Role of bradykinin. Allergy 2007, 62, 842–856. [Google Scholar] [CrossRef]
- Lenasi, H.; Kohlstedt, K.; Fichtlscherer, B.; Mülsch, A.; Busse, R.; Fleming, I. Amlodipine activates the endothelial nitric oxide synthase by altering phosphorylation on Ser1177 and Thr495. Cardiovasc. Res. 2003, 59, 844–853. [Google Scholar] [CrossRef]
- Demirtürk, M.; Gelincik, A.; Çınar, S.; Kilercik, M.; Onay-Ucar, E.; Çolakoğlu, B.; Arda, N.; Büyüköztürk, S.; Deniz, G. Increased eNOS levels in hereditary angioedema. Int. Immunopharmacol. 2014, 20, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.P.; Loke, K.E.; Mital, S.; Chahwala, S.; Hintze, T.H. Paradoxical release of nitric oxide by an L-type calcium channel antagonist, the R+ enantiomer of amlodipine. J. Cardiovasc. Pharmacol. 2002, 39, 208–214. [Google Scholar] [CrossRef]
- Batova, S.; DeWever, J.; Godfraind, T.; Balligand, J.L.; Dessy, C.; Feron, O. The calcium channel blocker amlodipine promotes the unclamping of eNOS from caveolin in endothelial cells. Cardiovasc. Res. 2006, 71, 478–485. [Google Scholar] [CrossRef]
- Sharma, A.; Trane, A.; Yu, C.; Jasmin, J.F.; Bernatchez, P. Amlodipine increases endothelial nitric oxide release by modulating binding of native eNOS protein complex to caveolin-1. Eur. J. Pharmacol. 2011, 659, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Moos, Ł.; Zajac, M.; Brzoza, Z. Exhaled Nitric Oxide Level in Pharynx Angioedema. J. Clin. Med. 2022, 11, 637. [Google Scholar] [CrossRef] [PubMed]
- Angeletti, C.; Angeletti, P.; Mastrobuono, F.; Pilotti, L.; Ciccozzi, A.; Guetti, C. Bradykinin B2 Receptor Antagonist off Label Use in Short-Term Prophylaxis in Hereditary Angioedema. Int. J. Immunopathol. Pharmacol. 2014, 27, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Douillard, M.; Deheb, Z.; Bozon, A.; Raison-Peyron, N.; Dereure, O.; Moulis, L.; Soria, A.; Du-Thanh, A. Over diagnosis of bradykinin angioedema in patients treated with angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers. World Allergy Organ J. 2023, 16, 100809. [Google Scholar] [CrossRef]
Angioedema | All Adverse Events Except Angioedema | Total | |
---|---|---|---|
Amlodipine with RAAS-i drug | n111 | n110 | n11+ |
Amlodipine without RAAS-i drug | n101 | n100 | n10+ |
RAAS-i drug without amlodipine | n011 | n010 | n01+ |
Neither amlodipine nor RAAS-i drug | n001 | n000 | n00+ |
Total | n++1 | n++0 | n+++ |
Signal detection for drug–drug interaction | |||
Amlodipine | RAAS-i drugs | ||
Amlodipine | p11 (=n111/n11+) | p10 (=n101/n10+) | |
RAAS-i drugs | p01 (=n011/n01+) | p00 (=n001/n00+) | |
Log-linear regression for the risk of angioedema (eβ12): (p11 × p00)/ (p10 × p01) | |||
Logistic regression for the risk of angioedema (eγ12): [p11/(1 − p11) × p00/(1 − p00)]/[p10/(1 − p10) × p01/(1 − p01)] |
Characteristics | Amlodipine Without RAAS-i Drugs (n = 1067) | Amlodipine in Combination with RAAS-i Drugs | ||
---|---|---|---|---|
ACEIs (n = 616) | ARBs (n = 393) | |||
Age Groups [n (%)] | <18 | 22 (2.1) | 3 (0.5) | 2 (0.8) |
>18 to <40 | 51 (4.8) | 28 (4.5) | 5 (2) | |
>40 to <65 | 340 (31.9) | 261 (42.4) | 148 (37.7) | |
>65 | 332 (31.1) | 147 (23.8) | 110 (28) | |
Not specified | 322 (30.2) | 177 (28.7) | 128 (32.6) | |
Quantitative age (years) | Mean (SD) | 61.2 (17.5) | 60.1 (13.4) | 63 (13.5) |
Median (range) | 63 (0–96) | 59 (3–95) | 62 (3–96) | |
Gender [n (%)] | Male | 280 (26.2) | 247 (40.1) | 149 (37.9) |
Female | 654 (61.3) | 302 (49.3) | 202 (51.4) | |
Unknown | 133 (12.5) | 67 (10.6) | 42 (10.7) | |
Reporting year [n (%)] | 2004–2008 | 79 (7.4) | 164 (26.6) | 33 (8.4) |
2009–2012 | 196 (18.4) | 53 (8.6) | 75 (19.1) | |
2013–2016 | 181 (17) | 103 (16.7) | 83 (21.1) | |
2017–2020 | 308 (28.9) | 124 (20.1) | 68 (17.3) | |
2021–2024 (September) | 303 (28.4) | 172 (27.9) | 134 (34.1) | |
Reporting countries | USA | 492 (46.1) | 280 (45.5) | 93 (23.7) |
Other countries and not reported | 575 (53.9) | 336 (54.5) | 300 (72.3) |
Drug/s | RRR | PRR | Lower Limit of 95% CI of PRR | Upper Limit of 95% CI of PRR | χ2 | Number of Reports | IC025 | EBGM05 |
---|---|---|---|---|---|---|---|---|
Amlodipine | 2.2 | 2.2 | 2.1 | 2.4 | 747.6 | 1067 | 1.1 | 2.1 * |
Combination with direct renin inhibitor | ||||||||
Aliskiren | 3.8 | 3.8 | 2.1 | 7 | 18.56 | 10 | 1 | 2.2 * |
Combination with angiotensin-converting enzyme inhibitors | ||||||||
Benazepril | 11.2 | 11.2 | 10.1 | 12.4 | 2545.7 | 271 | 3.1 | 9.8 * |
Captopril | 1.2 | 1.2 | 0.4 | 3.7 | 0 | 3 | 0.1 | 0.4 |
Enalapril | 2.5 | 2.5 | 1.7 | 3.7 | 20.4 | 24 | 0.9 | 1.7 |
Fosinopril | 10.1 | 10.1 | 5.4 | 18.9 | 57.8 | 8 | 1.6 | 4.7 * |
Lisinopril | 2.3 | 2.3 | 1.9 | 2.9 | 55.1 | 73 | 1 | 1.8 |
Perindopril | 4.4 | 4.4 | 3.6 | 5.4 | 211.4 | 81 | 1.7 | 3.5 * |
Quinapril | 5.9 | 5.9 | 3 | 8.1 | 40.1 | 14 | 1.3 | 2.8 * |
Trandolapril | 19.3 | 19.3 | 13 | 28.8 | 264.8 | 16 | 2.3 | 10.6 * |
Combination with angiotensin receptor blockers | ||||||||
Candesartan | 3.2 | 3.2 | 2.4 | 4.3 | 65.5 | 44 | 1.2 | 2.4 * |
Irbesartan | 1.7 | 1.7 | 1.1 | 2.7 | 4.8 | 18 | 0.5 | 1.1 |
Losartan | 2.9 | 2.9 | 2.3 | 3.7 | 87.5 | 69 | 1.2 | 2.3 * |
Olmesartan | 1.8 | 1.8 | 1.4 | 2.3 | 18 | 57 | 0.6 | 1.3 |
Telmisartan | 2.7 | 2.7 | 1.9 | 3.7 | 33.6 | 33 | 1 | 1.9 |
Valsartan | 1.3 | 1.3 | 1.2 | 1.6 | 14.7 | 172 | 0.4 | 1.2 |
RAAS-i Drug Combination with Amlodipine | eβ12 | eγ12 |
---|---|---|
Combination with direct renin inhibitor | ||
Aliskiren | 0.4 | 0.4 |
Combination with angiotensin-converting enzyme inhibitors | ||
Benazepril | 0.4 | 0.3 |
Captopril | 0.1 | 0.1 |
Enalapril | 0.1 | 0.1 |
Fosinopril | 0.2 | 0.2 |
Lisinopril | 0.1 | 0.03 |
Perindopril | 0.2 | 0.2 |
Quinapril | 0.4 | 0.4 |
Ramipril | 0.2 | 0.2 |
Trandolapril | 1.8 * | 2.5 * |
Combination with angiotensin receptor blockers | ||
Candesartan | 0.7 | 0.7 |
Irbesartan | 0.3 | 0.3 |
Losartan | 0.3 | 0.3 |
Olmesartan | 0.7 | 0.7 |
Telmisartan | 0.5 | 0.5 |
Valsartan | 0.5 | 0.5 |
Report ID | Age (Years) | Gender | Amlodipine: Dose and Duration | Clinical Presentation | Concomitant Medications | Concomitant Diseases | Outcome of Angioedema Episode | Treatment of Angioedema | Causality Assessment |
---|---|---|---|---|---|---|---|---|---|
Hom 2012 [26] | 2.5 | Male | Not mentioned; 1.25 years | Stridor, swelling of arytenoids and glottis | Immunosuppressive drugs (exact details were not specified) | Stage 4 hepatoblastoma | Recovery | Amlodipine discontinuation; dexamethasone and epinephrine were administered | Possible |
Kuruvila 2018 [27] | 67 | Female | 5 mg once daily; 2 weeks | Periorbital and lip edema | Hydralazine, metoprolol, atorvastatin, and furosemide | Congestive heart failure; past history of ACEI-associated angioedema | Amlodipine discontinuation; corticosteroids and antihistamines were administered | Definite (patient developed angioedema following rechallenge with amlodipine) | |
Morgenthau 2019 [28] | 50 | Male | Not mentioned; 4–6 months | Swelling of jaws, tongue and lips | Lisinopril, allopurinol, venlafaxine, and tolvaptan | Polycystic kidney disease | Amlodipine and lisinopril discontinuation; corticosteroids, epinephrine, ranitidine, and diphenhydramine were administered | Possible | |
Pierce 2011 [29] | 8 | Male | 5 mg once daily; 18 days | Tongue swelling | Nicardipine intravenously for 3 days prior to oral amlodipine; chemotherapeutic drugs for lymphoma | Burkitt lymphoma | Amlodipine discontinued | Possible | |
Russo 2023 [30] | 38 | Male | Not mentioned; 6–8 weeks | Lip swelling | Multivitamin | None | Amlodipine discontinued; dexamethasone, diphenhydramine, famotidine, tranexamic acid were administered. Considering no improvement, the patient received additional dose of famotidine and started on methylprednisolone. | Possible | |
Southward 2009 [31] | 50 | Female | 10 mg; 1 day | Face and tongue swelling | Clonidine, valsartan, verapamil, metoprolol, ranitidine, cinacalcet, nicardipine, fosphenytoin, fentanyl, propofol, famotidine and vancomycin | Bronchial asthma, chronic kidney disease, left hemiplegia | Amlodipine discontinued; diphenhydramine, hydrocortisone, and ranitidine were administered | Possible | |
Turcu 2009 [32] | 56 | Female | Not mentioned | Abdominal pain. Radiological examination revealed multiple prominent mural thickening of different intestinal segments, from the duodenum to the colon, but always involving the terminal ileum. | Atorvastatin, furosemide, metoprolol, irbesartan, clonidine, aspirin, fenofibrate, pioglitazone, glimepiride, insulin, iron, bupropion, epoetin alpha, and multivitamins | Type II diabetes, hypercholesterolemia, lactose intolerance, breast cancer, and depression | Amlodipine and irbesartan were discontinued | Definite (rechallenge was positive) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sridharan, K.; Sivaramakrishnan, G. Amlodipine-Associated Angioedema: An Integrated Pharmacovigilance Assessment Using Disproportionality and Interaction Analysis and Case Reviews. J. Clin. Med. 2025, 14, 1097. https://doi.org/10.3390/jcm14041097
Sridharan K, Sivaramakrishnan G. Amlodipine-Associated Angioedema: An Integrated Pharmacovigilance Assessment Using Disproportionality and Interaction Analysis and Case Reviews. Journal of Clinical Medicine. 2025; 14(4):1097. https://doi.org/10.3390/jcm14041097
Chicago/Turabian StyleSridharan, Kannan, and Gowri Sivaramakrishnan. 2025. "Amlodipine-Associated Angioedema: An Integrated Pharmacovigilance Assessment Using Disproportionality and Interaction Analysis and Case Reviews" Journal of Clinical Medicine 14, no. 4: 1097. https://doi.org/10.3390/jcm14041097
APA StyleSridharan, K., & Sivaramakrishnan, G. (2025). Amlodipine-Associated Angioedema: An Integrated Pharmacovigilance Assessment Using Disproportionality and Interaction Analysis and Case Reviews. Journal of Clinical Medicine, 14(4), 1097. https://doi.org/10.3390/jcm14041097