Coronary Microvascular Dysfunction and Vasospastic Angina—Pathophysiology, Diagnosis and Management Strategies
Abstract
:1. Introduction
2. Normal Coronary Vascular Structure and Function
3. Classification and Pathophysiology of ANOCA
3.1. Structural CMD
3.2. Functional CMD
3.3. Vasospastic Angina (VSA)
4. Risk Factors and Associations with Other Cardiovascular and Systemic Conditions
5. Diagnosis of Coronary Microvascular Dysfunction and Vasospastic Angina
5.1. Diagnostic Algorithm for Patients Presenting with ANOCA
5.2. Invasive Methods for Diagnosis of CMD and VSA
5.2.1. Doppler-Based Techniques
5.2.2. Thermodilution Techniques
5.2.3. Vasospasm Provocation
5.2.4. Cardiac Catheter Laboratory Protocol for Invasive Coronary Function Assessment
5.3. Non-Invasive Methods for CMD Diagnosis
Novel Directions in Non-Invasive Assessment
6. Management of Coronary Microvascular Dysfunction and Vasospastic Angina
6.1. Lifestyle Factors Modification
6.2. Risk Factor Reduction
6.3. Pharmacological Therapies
6.3.1. Beta-Blockers
6.3.2. Calcium Channel Blockers
6.3.3. Ranolazine
6.3.4. Other (Trimetazidine, Ivabradine, Nicorandil, Nitrates)
6.4. Non-Pharmacological Therapies
6.4.1. Coronary Sinus Reducer
6.4.2. External Enhanced Counter Pulsation (EECP) Therapy
6.5. Other Therapies
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACh | Acetylcholine |
AChFR | Acetylcholine Flow Reserve |
ACEi | Angiotensin Converting Enzyme inhibitor |
ANOCA | Angina with Non-Obstructed Coronary Arteries |
APV | Averaged Pulsed Velocities |
ARB | Angiotensin II Receptor Blocker |
ATP | Adenosine Triphosphate |
AV | Atrio-ventricular |
BB | Beta-Blocker |
BHF | British Heart Foundation |
CAD | Coronary Artery Disease |
CBF | Coronary Blood Flow |
CCB | Calcium Channel Blocker |
CCS | Chronic Coronary Syndromes |
CFR | Coronary Flow Reserve |
cGMP | Cyclic Guanosine Monophosphate |
CMD | Coronary Microvascular Dysfunction |
CMVO | Coronary Microvascular Obstruction |
COVADIS | Coronary Vascular Disorders International Study Group |
CSR | Coronary Sinus Reducer |
CT | Computed Tomography |
DHP | Dihydropyridine |
EAPCI | European Association of Percutaneous Coronary Intervention |
ECG | Electrocardiogram |
EECP | Enhanced External Counterpulsation |
ESC | European Society of Cardiology |
EST | Exercise Stress Test |
FFR | Fractional Flow Reserve |
GTN | Glyceryl Trinatrate |
HCM | Hypertrophic Cardiomyopathy |
HFpEF | Heart Failure with Preserved Ejection Fraction |
HIIT | High Intensity Interval Training |
hMR | Hyperaemic Microvascular Resistance |
IC | Intra-coronary |
iFR | Instantaneous wave-free ratio |
IMR | Index of Microvascular Resistance |
INOCA | Ischaemia with Non-Obstructed Coronary Arteries |
IV | Intravenous |
MACE | Major Adverse Cardiovascular Events |
MBF | Myocardial Blood Flow |
MINOCA | Myocardial Infarction with Non-Obstructed Coronary Arteries |
MMR | Minimal Microvascular Resistance |
MPR | Myocardial Perfusion Reserve |
MR | Microvascular Resistance |
MRI/CMR | Magnetic Resonance Imaging/Cardiac Magnetic Resonance Imaging |
MSIMI | Mental State Induced Myocardial Ischaemia |
NIHR | National Institute of Health Research |
LAD | Left Anterior Descending |
LCA | Left Coronary Artery |
LDL | Low Density Lipoprotein |
LV | Left Ventricle |
NO | Nitric Oxide |
PCI | Percutaneous Coronary Intervention |
PET | Positron Emission Tomography |
OS-CMR | Oxygenation-Sensitive Cardiac Magnetic Resonance Imaging |
Q | Absolute Coronary Flow |
QCA | Quantitative Coronary Angiography |
RCA | Right Coronary Artery |
RCT | Randomised Controlled Trial |
RFR | Resting full cycle Ratio |
SAQ | Seattle Angina Questionnaire |
SGLT2 | Sodium-Glucose Cotransporter 2 |
SPECT | Single Photon Emission Computed Tomography |
TIMI | Thrombolysis in Myocardial Infarction |
Tmn | Mean transit time |
TTDE | Transthoracic Tissue Doppler Echocardiography |
VSA | Vasospastic Angina |
VSMC | Vascular Smooth Muscle Cells |
References
- Patel, M.R.; Peterson, E.D.; Dai, D.; Brennan, J.M.; Redberg, R.F.; Anderson, H.V.; Brindis, R.G.; Douglas, P.S. Low Diagnostic Yield of Elective Coronary Angiography. N. Engl. J. Med. 2010, 362, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, L.; Hvelplund, A.; Abildstrøm, S.Z.; Pedersen, F.; Galatius, S.; Madsen, J.K.; Jørgensen, E.; Kelbæk, H.; Prescott, E. Stable angina pectoris with no obstructive coronary artery dis-ease is associated with increased risks of major adverse cardiovascular events. Eur. Heart J. 2012, 33, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar]
- Bugiardini, R.; Bairey Merz, C.N. Angina with “Normal” Coronary Arteries. JAMA 2005, 293, 477. [Google Scholar] [CrossRef] [PubMed]
- Gulati, M.; Cooper-DeHoff, R.M.; McClure, C.; Johnson, B.D.; Shaw, L.J.; Handberg, E.M.; Zineh, I.; Kelsey, S.F.; Arnsdorf, M.F.; Black, H.R.; et al. Adverse Cardiovascular Outcomes in Women with Nonobstructive Coronary Artery Disease. Arch. Intern. Med. 2009, 169, 843. [Google Scholar] [CrossRef]
- Lee, S.H.; Shin, D.; Lee, J.M.; van de Hoef, T.P.; Hong, D.; Choi, K.H.; Hwang, D.; Boerhout, C.K.M.; de Waard, G.A.; Jung, J.H.; et al. ILIAS Registry Investigators. Clinical Relevance of Ischemia with Nonobstructive Coronary Arteries According to Coronary Microvascular Dysfunction. J. Am. Heart Assoc. 2022, 11, e025171. [Google Scholar] [CrossRef]
- Boerhout, C.K.M.; de Waard, G.A.; Lee, J.M.; Mejia-Renteria, H.; Lee, S.H.; Jung, J.H.; Hoshino, M.; Echavar-ria-Pinto, M.; Meuwissen, M.; Matsuo, H.; et al. Prognostic value of structural and functional coronary microvascular dysfunction in patients with non-obstructive coronary artery disease; from the multicentre international ILIAS registry. EuroIntervention 2022, 18, 719–728. [Google Scholar] [CrossRef]
- Gdowski, M.A.; Murthy, V.L.; Doering, M.; Monroy-Gonzalez, A.G.; Slart, R.; Brown, D.L. Association of Isolated Coronary Microvascular Dysfunction with Mortality and Major Adverse Cardiac Events: A Systematic Review and Meta-Analysis of Aggregate Data. J. Am. Heart Assoc. 2020, 9, e014954. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.J.; Merz, C.N.B.; Pepine, C.J.; Reis, S.E.; Bittner, V.; Kip, K.E.; Kelsey, S.F.; Olson, M.; Johnson, B.D.; Mankad, S.; et al. The economic burden of angina in women with suspected ischemic heart disease: Results from the National Institutes of Health-National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation. Circulation 2006, 114, 894–904. [Google Scholar] [CrossRef]
- Schumann, C.L.; Mathew, R.C.; Dean, J.H.L.; Yang, Y.; Balfour, P.C.; Shaw, P.W.; Robinson, A.A.; Salerno, M.; Kramer, C.M.; Bourque, J.M. Functional and Economic Impact of INOCA and Influence of Coro-nary Microvascular Dysfunction. JACC Cardiovasc. Imaging 2021, 14, 1369–1379. [Google Scholar] [CrossRef]
- Gulati, M.; Khan, N.; George, M.; Berry, C.; Chieffo, A.; Camici, P.G.; Crea, F.; Kaski, J.C.; Marzilli, M.; Merz, C.N.B. Ischemia with no obstructive coronary artery disease (INOCA): A patient self-report quality of life survey from INOCA international. Int. J. Cardiol. 2023, 371, 28–39. [Google Scholar] [CrossRef]
- Gulati, M.; Levy, P.D.; Mukherjee, D.; Amsterdam, E.; Bhatt, D.L.; Birtcher, K.K.; Blankstein, R.; Boyd, J.; Bull-ock-Palmer, R.P.; Conejo, T.; et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/ SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 144, E368–E454. [Google Scholar] [PubMed]
- Ahmad, A.; Corban, M.T.; Moriarty, J.P.; Kanaji, Y.; Rosedahl, J.K.; Gulati, R.; Rihal, C.S.; Prasad, A.; Sara, J.D.; Toya, T.; et al. Coronary Reactivity Assessment Is Associated with Lower Health Care-Associated Costs in Patients Presenting with Angina and Nonobstructive Coronary Artery Disease. Circ. Cardiovasc. Interv. 2023, 16, e012387. [Google Scholar] [CrossRef] [PubMed]
- Ford, T.J.; Stanley, B.; Good, R.; Rocchiccioli, P.; McEntegart, M.; Watkins, S.; Eteiba, H.; Shaukat, A.; Lindsay, M.; Robertson, K. Stratified Medical Therapy Using Invasive Coronary Function Testing in Angina: The CorMicA Trial. J. Am. Coll. Cardiol. 2018, 72, 2841–2855. [Google Scholar] [CrossRef]
- De Waard, G.A.; Cook, C.M.; Van Royen, N.; Davies, J.E. Coronary autoregulation and assessment of stenosis severity without pharmacological vasodilation. Eur. Heart J. 2018, 39, 4062–4071. [Google Scholar] [CrossRef] [PubMed]
- Kuo, L.; Chilian, W.M.; Davis, M.J. Coronary arteriolar myogenic response is independent of endothelium. Circ. Res. 1990, 66, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Tune, J.D.; Gorman, M.W.; Feigl, E.O. Skeletal and Cardiac Muscle Blood Flow Matching coronary blood flow to myocardial oxygen consumption. J. Appl. Physiol. 2004, 97, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Ryan, M.; Lumley, M.; Modi, B.; Mcconkey, H.; Ellis, H.; Scannell, C.; Clapp, B.; Marber, M.; Webb, A.; et al. Coronary Microvascular Dysfunction Is Associated with Myocardial Ischemia and Abnormal Coronary Perfusion During Exercise. Circulation 2019, 140, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, H.R.; Diaz, A.; Cyr, D.D.; Shaw, L.J.; Mancini, G.B.J.; Leipsic, J.; Budoff, M.J.; Min, J.K.; Hague, C.J.; Ber-man, D.S.; et al. Ischemia with Nonobstructive Coronary Arteries: Insights from the ISCHEMIA Trial. JACC Cardiovasc. Imaging 2023, 16, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.H.E.M.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation endorsed by Coronary Vasomotor Disorders International Study Group. EuroIntervention 2021, 16, 1049–1069. [Google Scholar]
- Mileva, N.; Nagumo, S.; Mizukami, T.; Sonck, J.; Berry, C.; Gallinoro, E.; Monizzi, G.; Candreva, A.; Munhoz, D.; Vassilev, D.; et al. Prevalence of Coronary Microvascular Disease and Coronary Vasospasm in Patients with Nonobstructive Coronary Artery Disease: Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2022, 11, e023207. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Demir, O.M.; Khan, F.; Ryan, M.; Ellis, H.; Mills, M.T.; Chiribiri, A.; Webb, A.; Perera, D. Physiological Stratification of Patients with Angina Due to Coronary Microvascular Dysfunction. J. Am. Coll. Cardiol. 2020, 75, 2538–2549. [Google Scholar] [CrossRef]
- Jenkins, K.; Pompei, G.; Ganzorig, N.; Brown, S.; Beltrame, J.; Kunadian, V. Vasospastic angina: A review on diagnostic approach and management. Ther. Adv. Cardiovasc. Dis. 2024, 18, 17539447241230400. [Google Scholar] [CrossRef] [PubMed]
- Prinzmetal, M.; Kennamer, R.; Merliss, R.; Wada, T.; Bor, N. Angina pectoris I. A variant form of angina pectoris. Am. J. Med. 1959, 27, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Lanza, G.A.; Careri, G.; Crea, F. Mechanisms of coronary artery spasm. Circulation 2011, 124, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- Taqueti, V.R.; Di Carli, M.F. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options. J. Am. Coll. Cardiol. 2018, 72, 2625–2641. [Google Scholar] [CrossRef]
- Rehan, R.; Yong, A.; Ng, M.; Weaver, J.; Puranik, R. Coronary microvascular dysfunction: A review of recent progress and clinical implications. Front. Cardiovasc. Med. 2023, 10, 1111721. [Google Scholar] [CrossRef]
- Shah, S.J.; Lam, C.S.P.; Svedlund, S.; Saraste, A.; Hage, C.; Tan, R.-S.; Beussink-Nelson, L.; Ljung Faxén, U.; Fermer, M.L.; Broberg, M.A.; et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur. Heart J. 2018, 39, 3439–3450. [Google Scholar] [CrossRef] [PubMed]
- Dryer, K.; Gajjar, M.; Narang, N.; Lee, M.; Paul, J.; Shah, A.P.; Nathan, S.; Butler, J.; Davidson, C.J.; Fearon, W.F.; et al. Coronary microvascular dysfunction in patients with heart failure with pre-served ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, 1033–1042. [Google Scholar] [CrossRef]
- Rush, C.J.; Berry, C.; Oldroyd, K.G.; Rocchiccioli, J.P.; Lindsay, M.M.; Touyz, R.M.; Murphy, C.L.; Ford, T.J.; Sidik, N.; McEntegart, M.B.; et al. Prevalence of Coronary Artery Disease and Coronary Microvascular Dys-function in Patients with Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2021, 6, 1130. [Google Scholar] [CrossRef]
- Zuchi, C.; Tritto, I.; Carluccio, E.; Mattei, C.; Cattadori, G.; Ambrosio, G. Role of endothelial dysfunction in heart failure. Heart Fail. Rev. 2020, 25, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Duncker, D.J.; Koller, A.; Merkus, D.; Canty, J.M. Regulation of Coronary Blood Flow in Health and Ischemic Heart Disease. Prog. Cardiovasc. Dis. 2015, 57, 409–422. [Google Scholar] [CrossRef]
- Nishi, T.; Murai, T.; Ciccarelli, G.; Shah, S.V.; Kobayashi, Y.; Derimay, F.; Waseda, K.; Moonen, A.; Hoshino, M.; Hirohata, A.; et al. Prognostic Value of Coronary Microvascular Function Measured Immediately after Percutaneous Coronary Intervention in Stable Coronary Artery Disease: An International Multicenter Study. Circ. Cardiovasc. Interv. 2019, 12, e007889. [Google Scholar] [CrossRef]
- Ndrepepa, G.; Tiroch, K.; Fusaro, M.; Keta, D.; Seyfarth, M.; Byrne, R.A.; Pache, J.; Alger, P.; Mehilli, J.; Schömig, A.; et al. 5-Year Prognostic Value of No-Reflow Phenomenon After Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2010, 55, 2383–2389. [Google Scholar] [CrossRef]
- Henriques, J.P.S.; Zijlstra, F.; van ‘t Hof, A.W.J.; de Boer, M.-J.; Dambrink, J.-H.E.; Gosselink, M.; Hoorntje, J.C.A.; Suryapranata, H. Angiographic Assessment of Reperfusion in Acute Myocardial Infarction by Myocardial Blush Grade. Circulation 2003, 107, 2115–2119. [Google Scholar] [CrossRef]
- Bax, M.; De Winter, R.J.; Schotborgh, C.E.; Koch, K.T.; Meuwissen, M.; Voskuil, M.; Adams, R.; Mulder, K.J.J.; Tijs-sen, J.G.P.; Piek, J.J. Short- and Long-Term recovery of left ventricular function predicted at the time of primary percutaneous coronary intervention in anterior myocardial infarction. J. Am. Coll. Cardiol. 2004, 43, 534–541. [Google Scholar] [CrossRef]
- Vancheri, F.; Longo, G.; Vancheri, S.; Henein, M. Coronary Microvascular Dysfunction. J. Clin. Med. 2020, 9, 2880. [Google Scholar] [CrossRef]
- Mauricio, R.; Srichai, M.B.; Axel, L.; Hochman, J.S.; Reynolds, H.R. Stress Cardiac MRI in Women with Myocardial Infarction and Nonobstructive Coronary Artery Disease. Clin. Cardiol. 2016, 39, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Camici, P.; Chiriatti, G.; Lorenzoni, R.; Bellina, R.C.; Gistri, R.; Italiani, G.; Parodi, O.; Salvadori, P.A.; Nista, N.; Papi, L.; et al. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: A study with nitrogen-13 ammonia and positron emission tomography. J. Am. Coll. Cardiol. 1991, 17, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, F.; Olivotto, I.; Gistri, R.; Lorenzoni, R.; Chiriatti, G.; Camici, P.G. Coronary Microvascular Dysfunction and Prognosis in Hypertrophic Cardiomyopathy. N. Engl. J. Med. 2003, 349, 1027–1035. [Google Scholar] [CrossRef]
- Tomberli, B.; Cecchi, F.; Sciagrà, R.; Berti, V.; Lisi, F.; Torricelli, F.; Morrone, A.; Castelli, G.; Yacoub, M.H.; Olivotto, I. Coronary microvascular dysfunction is an early feature of cardiac involve-ment in patients with Anderson–Fabry disease. Eur. J. Heart Fail. 2013, 15, 1363–1373. [Google Scholar] [CrossRef]
- Kruse, M.J.; Kovell, L.; Kasper, E.K.; Pomper, M.G.; Moller, D.R.; Solnes, L.; Chen, E.S.; Schindler, T.H. Myocardial Blood Flow and Inflammatory Cardiac Sarcoidosis. JACC Cardiovasc. Imaging 2017, 10, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Suwaidi, J.A.; Velianou, J.L.; Gertz, M.A.; Cannon, R.O.; Higano, S.T.; Holmes, D.R.; Lerman, A. Systemic Amyloidosis Presenting with Angina Pectoris. Ann. Intern. Med. 1999, 131, 838. [Google Scholar] [CrossRef] [PubMed]
- Kalliokoski, R.J.; Kalliokoski, K.K.; Sundell, J.; Engblom, E.; Penttinen, M.; Kantola, I.; Raitakari, O.T.; Knuuti, J.; Nuutila, P. Impaired myocardial perfusion reserve but preserved peripheral endothelial function in patients with Fabry disease. J. Inherit. Metab. Dis. 2005, 28, 563–573. [Google Scholar] [CrossRef]
- Kwan, A.C.; Wei, J.; Ouyang, D.; Ebinger, J.E.; Merz, C.N.B.; Berman, D.; Cheng, S. Sex differences in contributors to coronary microvascular dysfunction. Front. Cardiovasc. Med. 2023, 10, 1085914. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.L.; Naya, M.; Taqueti, V.R.; Foster, C.R.; Gaber, M.; Hainer, J.; Dorbala, S.; Blankstein, R.; Rimoldi, O.; Camici, P.G.; et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 2014, 129, 2518–2527. [Google Scholar] [CrossRef] [PubMed]
- Konst, R.E.; Elias-Smale, S.E.; Lier, A.; Bode, C.; Maas, A.H.E.M. Different cardiovascular risk factors and psychosocial burden in symptomatic women with and without obstructive coronary artery disease. Eur. J. Prev. Cardiol. 2019, 26, 657–659. [Google Scholar] [CrossRef]
- Reis, S.E.; Holubkov, R.; Smith, A.J.C.; Kelsey, S.F.; Sharaf, B.L.; Reichek, N.; Rogers, W.J.; Merz, C.N.B.; Sopko, G.; Pepine, C.J. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: Results from the NHLBI WISE study. Am. Heart J. 2001, 141, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Sara, J.D.; Widmer, R.J.; Matsuzawa, Y.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Prevalence of Coronary Microvascular Dysfunction Among Patients with Chest Pain and Nonobstructive Coronary Artery Disease. JACC Cardiovasc. Interv. 2015, 8, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Pepine, C.J.; Anderson, R.D.; Sharaf, B.L.; Reis, S.E.; Smith, K.M.; Handberg, E.M.; Johnson, B.D.; Sopko, G.; Bairey Merz, C.N. Coronary Microvascular Reactivity to Adenosine Predicts Adverse Outcome in Women Evaluated for Suspected Ischemia. Results From the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) Study. J. Am. Coll. Cardiol. 2010, 55, 2825–2832. [Google Scholar] [CrossRef]
- Shaw, L.J.; Bairey Merz, C.N.; Pepine, C.J.; Reis, S.E.; Bittner, V.; Kelsey, S.F.; Olson, M.; Johnson, B.D.; Mankad, S.; Sharaf, B.L.; et al. Insights From the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study. J. Am. Coll. Cardiol. 2006, 47, S4–S20. [Google Scholar] [CrossRef]
- Ong, P.; Camici, P.G.; Beltrame, J.F.; Crea, F.; Shimokawa, H.; Sechtem, U.; Kaski, J.C.; Bairey Merz, C.N. International standardization of diagnostic criteria for microvascular angina. Int. J. Cardiol. 2018, 250, 16–20. [Google Scholar] [CrossRef]
- Beltrame, J.F.; Crea, F.; Kaski, J.C.; Ogawa, H.; Ong, P.; Sechtem, U.; Shimokawa, H.; Bairey Merz, C.N. International standardization of diagnostic criteria for vasospastic angina. Eur. Heart J. 2017, 38, 2565–2568. [Google Scholar] [CrossRef]
- Perera, D.; Berry, C.; Hoole, S.P.; Sinha, A.; Rahman, H.; Morris, P.D.; Kharbanda, R.K.; Petraco, R.; Channon, K. Invasive coronary physiology in patients with angina and non-obstructive coronary artery disease: A consensus document from the coronary microvascular dysfunction workstream of the British Heart Foundation/National Institute for Health Research Partnership. Heart 2022, 109, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Corcoran, D.; Aetesam-Ur-Rahman, M.; Hoole, S.P.; Berry, C.; Perera, D. Diagnosis of patients with angina and non-obstructive coronary disease in the catheter laboratory. Heart 2019, 105, 1536–1542. [Google Scholar] [CrossRef]
- Radico, F.; Zimarino, M.; Fulgenzi, F.; Ricci, F.; Di Nicola, M.; Jespersen, L.; Chang, S.M.; Humphries, K.H.; Mar-zilli, M.; De Caterina, R. Determinants of long-term clinical outcomes in patients with angina but without obstructive coronary artery disease: A systematic review and meta-analysis. Eur. Heart J. 2018, 39, 2135–2146. [Google Scholar] [CrossRef] [PubMed]
- Echavarria-Pinto, M.; Escaned, J.; Macías, E.; Medina, M.; Gonzalo, N.; Petraco, R.; Sen, S.; Jimenez-Quevedo, P.; Hernandez, R.; Mila, R.; et al. Disturbed Coronary Hemodynamics in Vessels with Intermediate Stenoses Evaluated with Fractional Flow Reserve. Circulation 2013, 128, 2557–2566. [Google Scholar] [CrossRef]
- Suwaidi, J.A.; Hamasaki, S.; Higano, S.T.; Nishimura, R.A.; Holmes, D.R.; Lerman, A. Long-Term Follow-Up of Patients with Mild Coronary Artery Disease and Endothelial Dysfunction. Circulation 2000, 101, 948–954. [Google Scholar] [CrossRef]
- Everaars, H.; de Waard, G.A.; Schumacher, S.P.; Zimmermann, F.M.; Bom, M.J.; van de Ven, P.M.; Raijmakers, P.G.; Lammertsma, A.A.; Götte, M.J.; van Rossum, A.C.; et al. Continuous thermodilution to assess absolute flow and micro-vascular resistance: Validation in humans using [15O]H2O positron emission tomography. Eur. Heart J. 2019, 40, 2350–2359. [Google Scholar] [CrossRef]
- Pijls, N.H.J.; De Bruyne, B.; Smith, L.; Aarnoudse, W.; Barbato, E.; Bartunek, J.; Bech, G.J.W.; Van De Vosse, F. Coronary Thermodilution to Assess Flow Reserve. Circulation 2002, 105, 2482–2486. [Google Scholar] [CrossRef]
- Gutiérrez-Barrios, A.; Izaga-Torralba, E.; Rivero Crespo, F.; Gheorghe, L.; Cañadas-Pruaño, D.; Gómez-Lara, J.; Silva, E.; Noval-Morillas, I.; Zayas Rueda, R.; Calle-Pérez, G.; et al. Continuous Thermodilution Method to Assess Coronary Flow Reserve. Am. J. Cardiol. 2021, 141, 31–37. [Google Scholar] [CrossRef]
- Everaars, H.; de Waard, G.A.; Driessen, R.S.; Danad, I.; van de Ven, P.M.; Raijmakers, P.G.; Lammertsma, A.A.; van Rossum, A.C.; Knaapen, P.; van Royen, N. Doppler Flow Velocity and Thermodilution to Assess Coronary Flow Reserve. JACC Cardiovasc. Interv. 2018, 11, 2044–2054. [Google Scholar] [CrossRef] [PubMed]
- Gallinoro, E.; Bertolone, D.T.; Fernandez-Peregrina, E.; Paolisso, P.; Bermpeis, K.; Esposito, G.; Gomez-Lopez, A.; Candreva, A.; Mileva, N.; Belmonte, M.; et al. Reproducibility of bolus versus continuous thermodilution for assessment of coronary microvascular function in patients with ANOCA. EuroIntervention 2023, 19, E155–E166. [Google Scholar] [CrossRef]
- De Bruyne, B.; Adjedj, J.; Xaplanteris, P.; Ferrara, A.; Mo, Y.; Penicka, M.; Floré, V.; Pellicano, M.; Toth, G.; Barbato, E.; et al. Saline-Induced Coronary Hyperemia: Mechanisms and Effects on Left Ventricular Function. Circ. Cardiovasc. Interv. 2017, 10, e004719. [Google Scholar] [CrossRef]
- Ibrahim, A.; Fawaza, S.; Sajjada, U.; Colletc, C.; De Bruyne, B.; Perera, D.; Davies, J.R.; Keeble, T.R.; Carson, K.; Konstantinou, K. Coronary Endothelial Function: A Novel Acetylcholine Infusion Protocol with Continuous Thermodilution. JACC, 2025; in press. [Google Scholar]
- Schindler, T.H.; Schelbert, H.R.; Quercioli, A.; Dilsizian, V. Cardiac PET Imaging for the Detection and Monitoring of Coronary Artery Disease and Microvascular Health. JACC Cardiovasc. Imaging 2010, 3, 623–640. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Scannell, C.M.; Demir, O.M.; Ryan, M.; McConkey, H.; Ellis, H.; Masci, P.G.; Perera, D.; Chiribiri, A. High-Resolution Cardiac Magnetic Resonance Imaging Techniques for the Identification of Coronary Microvascular Dysfunction. JACC Cardiovasc. Imaging 2021, 14, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 1352–1371. [Google Scholar] [CrossRef]
- Thomson, L.E.J.; Wei, J.; Agarwal, M.; Haft-Baradaran, A.; Shufelt, C.; Mehta, P.K.; Gill, E.B.; Johnson, B.D.; Kenkre, T.; Handberg, E.M.; et al. Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction: A National Heart, Lung, and Blood Institute-sponsored study from the Women’s Ischemia Syndrome Evaluation. Circ. Cardiovasc. Imaging 2015, 8, e002481. [Google Scholar] [CrossRef]
- Sharrack, N.; Chiribiri, A.; Schwitter, J.; Plein, S. How to do quantitative myocardial perfusion cardiovascular magnetic resonance. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 315–318. [Google Scholar] [CrossRef]
- Kotecha, T.; Martinez-Naharro, A.; Boldrini, M.; Knight, D.; Hawkins, P.; Kalra, S.; Patel, D.; Coghlan, G.; Moon, J.; Plein, S.; et al. Automated Pixel-Wise Quantitative Myocardial Perfusion Mapping by CMR to Detect Obstructive Coronary Artery Disease and Coronary Microvascular Dysfunction. JACC Cardiovasc. Imaging 2019, 12, 1958–1969. [Google Scholar] [CrossRef]
- Galiuto, L.; Sestito, A.; Barchetta, S.; Sgueglia, G.A.; Infusino, F.; La Rosa, C.; Lanza, G.; Crea, F. Noninvasive Evaluation of Flow Reserve in the Left Anterior Descending Coronary Artery in Patients with Cardiac Syndrome X. Am. J. Cardiol. 2007, 99, 1378–1383. [Google Scholar] [CrossRef]
- Sinha, A.; Dutta, U.; Demir, O.M.; De Silva, K.; Ellis, H.; Belford, S.; Ogden, M.; Li Kam Wa, M.; Morgan, H.P.; Shah, A.M.; et al. Rethinking False Positive Exercise Electrocardiographic Stress Tests by Assessing Coronary Microvascular Function. J. Am. Coll. Cardiol. 2024, 83, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Cassar, A.; Chareonthaitawee, P.; Rihal, C.S.; Prasad, A.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Lack of Correlation Between Noninvasive Stress Tests and Invasive Coronary Vasomotor Dysfunction in Patients with Nonobstructive Coronary Artery Disease. Circ. Cardiovasc. Interv. 2009, 2, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Hillier, E.; Friedrich, M.G. The Potential of Oxygenation-Sensitive CMR in Heart Failure. Curr. Heart Fail. Rep. 2021, 18, 304–314. [Google Scholar] [CrossRef]
- Hillier, E.; Elharram, M.; White, J.A.; Anderson, T.; Luu, J.; Labib, D.; Alhussein, M.; Friedrich, M.G.; Pilote, L. Heterogeneity of coronary vascular function and myocardial oxygenation in women with angina and non-obstructive coronary artery disease. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Hammond-Haley, M.; Chiew, K.; Ahmed-Jushuf, F.; Rajkumar, C.A.; Foley, M.J.; Simader, F.A.; Chotai, S.; Shun-Shin, M.J.; Al-Lamee, R. A systematic review of enrolment criteria and treatment efficacy for microvascular angina. EuroIntervention 2025, 21, 46–57. [Google Scholar] [CrossRef]
- Sidik, N.P.; Stanley, B.; Sykes, R.; Morrow, A.J.; Bradley, C.P.; McDermott, M.; Ford, T.J.; Roditi, G.; Hargreaves, A.; Stobo, D.; et al. Invasive Endotyping in Patients with Angina and No Obstructive Coronary Artery Disease: A Randomized Controlled Trial. Circulation 2024, 149, 7–23. [Google Scholar] [CrossRef]
- Sinha, A.; Rahman, H.; Douiri, A.; Demir, O.M.; De Silva, K.; Clapp, B.; Webb, I.; Gulati, A.; Pinho, P.; Dutta, U.; et al. ChaMP-CMD: A Phenotype-Blinded, Randomized Controlled, Cross-Over Trial. Circulation 2024, 149, 36–47. [Google Scholar] [CrossRef]
- Heggie, R.; Briggs, A.; Stanley, B.; Good, R.; Rocchiccioli, P.; McEntegart, M.; Watkins, S.; Eteiba, H.; Shaukat, A.; Lindsay, M.; et al. Stratified medicine using invasive coronary function testing in angina: A cost-effectiveness analysis of the British Heart Foundation CorMicA trial. Int. J. Cardiol. 2021, 337, 44–51. [Google Scholar] [CrossRef]
- Humphreys, H.; Paddock, D.; Brown, S.; Berry, C.; Cowie, A.; Dawkes, S.; Nichols, S. Living with myocardial ischaemia and no obstructive coronary arteries: A qualitative study. Open Heart 2024, 11, e002569. [Google Scholar] [CrossRef] [PubMed]
- Silagy, C.; Muir, J.; Coulter, A.; Thorogood, M.; Yudkin, P.; Roe, L. Lifestyle advice in general practice: Rates recalled by patients. BMJ 1992, 305, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Arber, S.; McKinlay, J.; Adams, A.; Marceau, L.; Link, C.; O’Donnell, A. Influence of patient characteristics on doctors’ questioning and lifestyle advice for coronary heart disease: A UK/US video experiment. Br. J. Gen. Pract. 2004, 54, 673–678. [Google Scholar]
- Hivert, M.-F.; Arena, R.; Forman, D.E.; Kris-Etherton, P.M.; McBride, P.E.; Pate, R.R.; Spring, B.; Trilk, J.; Van Horn, L.V.; Kraus, W.E. Medical Training to Achieve Competency in Lifestyle Counselling: An Essential Foundation for Prevention and Treatment of Cardiovascular Diseases and Other Chronic Medical Conditions: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e308–e327. [Google Scholar] [CrossRef] [PubMed]
- Marques-Vidal, P.; Jankowski, P.; De Bacquer, D.; Kotseva, K. Dietary measures among patients with coronary heart disease in Europe. ESC EORP Euroaspire V. Int. J. Cardiol. 2020, 302, 5–14. [Google Scholar] [CrossRef]
- Larsen, A.I.; Sæland, C.; Vegsundvåg, J.; Skadberg, M.S.; Nilsen, J.; Butt, N.; Ushakova, A.; Valborgland, T.; Munk, P.S.; Isaksen, K. Aerobic high-intensity interval exercise training in patients with angina and no obstructive coronary artery disease: Feasibility and physiological effects. Eur. Heart J. Open 2023, 3, oead030. [Google Scholar] [CrossRef]
- Carvalho, E.E.; Crescêncio, J.C.; Santi, G.L.; Oliveira, L.F.; Schwartzmann, P.V.; Gallo-Junior, L.; Marin-Neto, J.A.; Simões, M.V. Physical training improves myocardial perfusion but not left ventricular function response to exercise in patients with microvascular angina. Q. J. Nucl. Med. Mol. Imaging 2019, 63, 302–310. [Google Scholar] [CrossRef]
- Kissel, C.K.; Nikoletou, D. Cardiac Rehabilitation and Exercise Prescription in Symptomatic Patients with Non-Obstructive Coronary Artery Disease—A Systematic Review. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 78. [Google Scholar] [CrossRef]
- Long, L.; Anderson, L.; He, J.; Gandhi, M.; Dewhirst, A.; Bridges, C.; Taylor, R. Exercise-based cardiac rehabilitation for stable angina: Systematic review and meta-analysis. Open Heart 2019, 6, e000989. [Google Scholar] [CrossRef] [PubMed]
- Hannan, A.; Hing, W.; Simas, V.; Climstein, M.; Coombes, J.; Jayasinghe, R.; Byrnes, J.; Furness, J. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: A systematic review and meta-analysis. Open Access J. Sports Med. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Shannon, O.M.; Mendes, I.; KÖchl, C.; Mazidi, M.; Ashor, A.W.; Rubele, S.; Minihane, A.-M.; Mathers, J.C.; Siervo, M. Mediterranean Diet Increases Endothelial Function in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Nutr. 2020, 150, 1151–1159. [Google Scholar] [CrossRef]
- Schumann, C.L.; Nealy, Z.B.; Mathew, R.C.; Yang, Y.; Balfour, P.C.; Shaw, P.W.; Salerno, M.; Kramer, C.M.; Bour-que, J.M. Pilot Study of Supervised Exercise and Intensive Medical Therapy in Patients with Ischemia with No Evidence of Obstructive Coronary Artery Disease and Coronary Microvascular Dysfunction. Am. J. Cardiol. 2024, 214, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, T.; Kenkre, T.S.; Bittner, V.; Krantz, D.S.; Thompson, D.V.; Linke, S.E.; Eastwood, J.A.; Eteiba, W.; Cornell, C.E.; Vaccarino, V.; et al. Anxiety associations with cardiac symptoms, angiographic disease sever-ity, and healthcare utilization: The NHLBI-sponsored Women’s Ischemia Syndrome Evaluation. Int. J. Cardiol. 2013, 168, 2335–2340. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.; Guo, L. Anxiety is associated with coronary microvascular dysfunction: Results from the CAMADA study. Microcirculation 2023, 30, e12798. [Google Scholar] [CrossRef]
- Handberg, E.M.; Eastwood, J.A.; Eteiba, W.; Johnson, B.D.; Krantz, D.S.; Thompson, D.V.; Vaccarino, V.; Bittner, V.; Sopko, G.; Pepine, C.J.; et al. Clinical implications of the Women’s Ischemia Syndrome Evaluation: Inter-relationships between symptoms, psychosocial factors and cardiovascular outcomes. Women’s Health 2013, 9, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Bravo, P.E.; Cappola, T.P. Mental Stress-Induced Myocardial Ischemia: When the Mind Controls the Fate of the Heart. JAMA 2021, 326, 1803–1804. [Google Scholar] [CrossRef] [PubMed]
- Hammadah, M.; Kim, J.H.; Al Mheid, I.; Samman Tahhan, A.; Wilmot, K.; Ramadan, R.; Alkhoder, A.; Khayata, M.; Mekonnen, G.; Levantsevych, O.; et al. Coronary and Peripheral Vasomotor Responses to Mental Stress. J. Am. Heart Assoc. 2018, 7, e008532. [Google Scholar] [CrossRef]
- Vaccarino, V.; Almuwaqqat, Z.; Kim, J.H.; Hammadah, M.; Shah, A.J.; Ko, Y.-A.; Elon, L.; Sullivan, S.; Shah, A.; Alkhoder, A.; et al. Association of Mental Stress-Induced Myocardial Ischemia with Cardiovascular Events in Patients with Coronary Heart Disease. JAMA 2021, 326, 1818–1828. [Google Scholar] [CrossRef]
- Kim, B.J.; Cho, I.S.; Cho, K.I. Impact of Mindfulness Based Stress Reduction Therapy on Myocardial Function and Endothelial Dysfunction in Female Patients with Microvascular Angina. J. Cardiovasc. Ultrasound 2017, 25, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Kisely, S.R.; Campbell, L.A.; Yelland, M.J.; Paydar, A. Psychological interventions for symptomatic management of non-specific chest pain in patients with normal coronary anatomy. Cochrane Database Syst. Rev. 2012, 13, CD004101. [Google Scholar]
- McGillion, M.; Arthur, H.; Victor, J.; Watt-Watson, J.; Cosman, T. Effectiveness of Psychoeducational Interventions for Improving Symptoms, Health-Related Quality of Life, and Psychological well Being in Patients with Stable Angina. Curr. Cardiol. Rev. 2008, 4, 1–11. [Google Scholar] [CrossRef]
- Khan, M.; Thappar, S.; Taylor, S.; Scally, A.; Sainsbury, P. The impact of a short psychological intervention on quality of life and angina control in patients with chronic refractory angina. Eur. Heart J. 2013, 34, 2265. [Google Scholar] [CrossRef]
- Chen, J.-W.; Hsu, N.-W.; Wu, T.-C.; Lin, S.-J.; Chang, M.-S. Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am. J. Cardiol. 2002, 90, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Kaski, J.C.; Rosano, G.; Gavrielides, S.; Chen, L. Effects of angiotensin-converting enzyme inhibition on exercise-induced angina and ST segment depression in patients with microvascular angina. J. Am. Coll. Cardiol. 1994, 23, 652–657. [Google Scholar] [CrossRef]
- Pauly, D.F.; Johnson, B.D.; Anderson, R.D.; Handberg, E.M.; Smith, K.M.; Cooper-DeHoff, R.M.; Sopko, G.; Sharaf, B.M.; Kelsey, S.F.; Merz, C.N.B.; et al. In women with symptoms of cardiac ischemia, nonobstructive coro-nary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with im-proved microvascular function: A double-blind randomized study from the National Heart, Lung and Blood In-stitute Women’s Ischemia Syndrome Evaluation (WISE). Am. Heart. J. 2011, 162, 678–684. [Google Scholar]
- Ong, P.; Athanasiadis, A.; Sechtem, U. Pharmacotherapy for coronary microvascular dysfunction. Eur. Heart J. Cardiovasc. Pharmacother. 2015, 1, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.-C.; Jeon, J.-Y.; Kim, Y.; Kim, H.M.; Yoon, Y.E.; Lee, S.-P.; Kim, H.-K.; Sohn, D.-W.; Sung, J.; Kim, Y.-J. Statin therapy is associated with lower all-cause mortality in patients with non-obstructive coronary artery disease. Atherosclerosis 2015, 239, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Eshtehardi, P.; McDaniel, M.C.; Dhawan, S.S.; Binongo, J.N.G.; Krishnan, S.K.; Golub, L.; Corban, M.T.; Raggi, P.; Quyyumi, A.A.; Samady, H. Effect of intensive atorvastatin therapy on coronary atherosclerosis progression, composition, arterial remodeling, and microvascular function. J. Invasive Cardiol. 2012, 24, 522–529. [Google Scholar]
- Zhang, X.; Li, Q.; Zhao, J.; Li, X.; Sun, X.; Yang, H.; Wu, Z.; Yang, J. Effects of combination of statin and calcium channel blocker in patients with cardiac syndrome X. Coron. Artery Dis. 2014, 25, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Yong, J.; Tian, J.; Yang, X.; Xing, H.; He, Y.; Song, X. Effects of Oral Drugs on Coronary Microvascular Function in Patients Without Significant Stenosis of Epicardial Coronary Arteries: A Systematic Review and Meta-Analysis of Coronary Flow Reserve. Front. Cardiovasc. Med. 2020, 7, 580419. [Google Scholar] [CrossRef] [PubMed]
- Ishii, M.; Kaikita, K.; Sato, K.; Yamanaga, K.; Miyazaki, T.; Akasaka, T.; Tabata, N.; Arima, Y.; Sueta, D.; Sakamoto, K.; et al. Impact of Statin Therapy on Clinical Outcome in Patients with Coronary Spasm. J. Am. Heart Assoc. 2016, 5, e003426. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.G.; Jeon, S.Y.; Rha, S.; Park, S.; Shim, M.S.; Choi, S.Y.; Byun, J.K.; Li, H.; Choi, J.Y.; Park, E.J.; et al. Impact of Renin-Angiotensin System Inhibitors on Long-Term Clinical Outcomes of Patients with Coronary Artery Spasm. J. Am. Heart Assoc. 2016, 5, e003217. [Google Scholar] [CrossRef]
- Handberg, E.M.; Merz, C.N.B.; Cooper-Dehoff, R.M.; Wei, J.; Conlon, M.; Lo, M.C.; Boden, W.; Frayne, S.M.; Villines, T.; Spertus, J.A.; et al. Rationale and design of the Women’s Ischemia Trial to Reduce Events in Nonobstructive CAD (WARRIOR) trial. Am. Heart J. 2021, 237, 90–103. [Google Scholar] [CrossRef]
- Gallinoro, E.; Paolisso, P.; Bertolone, D.T.; Belmonte, M.; Esposito, G.; Munhoz, D.; Sakai, K.; Bermpeis, K.; Ohashi, H.; Storozhenko, T.; et al. Endotypes of coronary microvascular dysfunction in patients with and without Diabetes Mellitus. Eur. Heart J. 2023, 44, 2. [Google Scholar] [CrossRef]
- Sara, J.D.; Taher, R.; Kolluri, N.; Vella, A.; Lerman, L.O.; Lerman, A. Coronary microvascular dysfunction is associated with poor glycemic control amongst female diabetics with chest pain and non-obstructive coronary artery disease. Cardiovasc. Diabetol. 2019, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, S.; Ferrell, W.; Greer, I.A.; Petrie, J.R.; Cobbe, S.M.; Sattar, N. Effects of metformin on microvascular function and exercise tolerance in women with angina and normal coronary arteries: A randomized, double-blind, placebo-controlled study. J. Am. Coll. Cardiol. 2006, 48, 956–963. [Google Scholar] [CrossRef]
- Yasue, H.; Omote, S.; Takizawa, A.; Nagao, M. Coronary arterial spasm in ischemic heart disease and its pathogenesis. A review. Circ. Res. 1983, 52, I147–I152. [Google Scholar] [PubMed]
- Galderisi, M.; D’Errico, A. Beta-blockers and coronary flow reserve: The importance of a vasodilatory action. Drugs 2008, 68, 579–590. [Google Scholar] [CrossRef]
- Kalinowski, L.; Dobrucki, L.W.; Szczepanska-Konkel, M.; Jankowski, M.; Martyniec, L.; Angielski, S.; Malinski, T. Third-generation beta-blockers stimulate nitric oxide release from endothelial cells through ATP efflux: A novel mechanism for antihypertensive action. Circulation 2003, 107, 2747–2752. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, M.; D’Errico, A.; Sidiropulos, M.; Innelli, P.; de Divitiis, O.; de Simone, G. Nebivolol induces parallel improvement of left ventricular filling pressure and coronary flow reserve in uncomplicated arterial hypertension. J. Hypertens. 2009, 27, 2108–2115. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, M.; Cicala, S.; D’Errico, A.; de Divitiis, O.; de Simone, G. Nebivolol improves coronary flow reserve in hypertensive patients with-out coronary heart disease. J. Hypertens. 2004, 22, 2201–2208. [Google Scholar] [CrossRef]
- Kook, H.; Hong, S.J.; Yang, K.-S.; Lee, S.; Kim, J.-S.; Park, C.G. Comparison of nebivolol versus diltiazem in improving coronary artery spasm and quality of life in patients with hypertension and vasospastic angina: A prospective, randomized, double-blind pilot study. PLoS ONE 2020, 15, e0239039. [Google Scholar] [CrossRef]
- Lanza, G.A.; Colonna, G.; Pasceri, V.; Maseri, A. Atenolol versus amlodipine versus isosorbide-5-mononitrate on anginal symptoms in syndrome X. Am. J. Cardiol. 1999, 84, 854–856, A8. [Google Scholar] [CrossRef] [PubMed]
- Di Franco, A.; Villano, A.; Di Monaco, A.; Lamendola, P.; Russo, G.; Stazi, A.; Scavone, G.; Nerla, R.; Sestito, A.; Lanza, G.A.; et al. Correlation between coronary microvascular function and angina status in patients with stable microvascular angina. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 374–379. [Google Scholar] [PubMed]
- Sütsch, G.; Oechslin, E.; Mayer, I.; Hess, O.M. Effect of diltiazem on coronary flow reserve in patients with microvascular angina. Int. J. Cardiol. 1995, 52, 135–143. [Google Scholar] [CrossRef]
- Jansen, T.P.J.; Konst, R.E.; de Vos, A.; Paradies, V.; Teerenstra, S.; van den Oord, S.C.H.; Dimitriu-Leen, A.; Maas, A.H.E.M.; Smits, P.C.; Damman, P.; et al. Efficacy of Diltiazem to Improve Coronary Vasomotor Dysfunction in ANOCA. JACC Cardiovasc. Imaging 2022, 15, 1473–1484. [Google Scholar] [CrossRef]
- Lanza, G.A.; Shimokawa, H. Management of Coronary Artery Spasm. Eur. Cardiol. 2023, 18, e38. [Google Scholar] [CrossRef]
- Yasue, H.; Takizawa, A.; Nagao, M.; Nishida, S.; Horie, M.; Kubota, J.; Omote, S.; Takaoka, K.; Okumura, K. Long-term prognosis for patients with variant angina and influential factors. Circulation 1988, 78, 1–9. [Google Scholar] [CrossRef]
- Waters, D.D.; Miller, D.D.; Szlachcic, J.; Bouchard, A.; Méthé, M.; Kreeft, J.; Théroux, P. Factors influencing the long-term prognosis of treated patients with variant angina. Circulation 1983, 68, 258–265. [Google Scholar] [CrossRef]
- Nishigaki, K.; Inoue, Y.; Yamanouchi, Y.; Fukumoto, Y.; Yasuda, S.; Sueda, S.; Urata, H.; Shimokawa, H.; Mina-toguchi, S. Prognostic Effects of Calcium Channel Blockers in Patients with Vasospastic Angina—A Meta-Analysis. Circ. J. 2010, 74, 1943–1950. [Google Scholar] [CrossRef]
- Bairey Merz, C.N.; Handberg, E.M.; Shufelt, C.L.; Mehta, P.K.; Minissian, M.B.; Wei, J.; Thomson, L.E.J.; Berman, D.S.; Shaw, L.J.; Petersen, J.W.; et al. A randomized, placebo-controlled trial of late Na current inhibition (ranolazine) in coronary microvascular dysfunction (CMD): Impact on angina and myocardial perfusion reserve. Eur. Heart J. 2016, 37, 1504–1513. [Google Scholar] [CrossRef]
- Koh, J.-S.; Hung, O.Y.; Eshtehardi, P.; Kumar, A.; Rabah, R.; Raad, M.; Kumar, S.; Chaudhry, S.; Gupta, S.; Hosseini, H.; et al. Microvascular Assessment of Ranolazine in Non-Obstructive Atherosclerosis: The MARINA Randomized, Double-Blinded, Controlled Pilot Trial. Circ. Cardiovasc. Interv. 2020, 13, e008204. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Fu, S.; Xu, M.; Wang, B.; Li, B.; Li, Y.; Liu, X.; Zhang, X.; Wang, Q.; Li, A.; et al. Ranolazine for improving coronary microvascular function in patients with nonobstructive coronary artery disease: A systematic review and meta-analysis with a trial sequential analysis of randomized controlled trials. Quant. Imaging Med. Surg. 2024, 14, 1451–1465. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulos, A.A.; Giannoglou, G.D.; Chatzizisis, Y.S. Pharmacological approaches of refractory angina. Pharmacol. Ther. 2016, 163, 118–131. [Google Scholar] [CrossRef]
- Rogacka, D.; Guzik, P.; Wykretowicz, A.; Rzeźniczak, J.; Dziarmaga, M.; Wysocki, H. Effects of trimetazidine on clinical symptoms and tolerance of exercise of patients with syndrome X: A preliminary study. Coron. Artery Dis. 2000, 11, 171–177. [Google Scholar] [CrossRef]
- Nalbantgil, S.; Altintigbreve, A.; Yilmaz, H.; Nalbantgil, I.; Önder, R. The The Effect of Trimetazidine in the Treatment of Microvascular Angina. Int. J. Angiol. 1999, 8, 40–43. [Google Scholar] [CrossRef]
- Villano, A.; Di Franco, A.; Nerla, R.; Sestito, A.; Tarzia, P.; Lamendola, P.; Di Monaco, A.; Sarullo, F.M.; Lanza, G.A.; Crea, F. Effects of Ivabradine and Ranolazine in Patients with Microvascular An-gina Pectoris. Am. J. Cardiol. 2013, 112, 8–13. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, X.; Fang, X.; Zheng, J.; Zhao, Q.; Chen, T.; Huang, J. Effects of the Antianginal Drugs Ranolazine, Nicorandil, and Ivabradine on Coronary Microvascular Function in Patients with Nonobstructive Coronary Artery Disease: A Meta-analysis of Randomized Controlled Trials. Clin. Ther. 2019, 41, 2137–2152.e12. [Google Scholar] [CrossRef] [PubMed]
- Nakae, I.; Matsumoto, T.; Horie, H.; Yokohama, H.; Omura, T.; Minai, K.; Matsui, T.; Nozawa, M.; Takahashi, M.; Sugimoto, Y.; et al. Effects of intravenous nicorandil on coronary circulation in humans: Plasma concentration and action mechanism. J. Cardiovasc. Pharmacol. 2000, 35, 919–925. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Takahashi, N.; Tokumaru, A.; Karino, K.; Sugamori, T.; Sakane, T.; Yoshitomi, H.; Sato, H.; Oyake, N.; Murakami, Y.; et al. Effects of Long-term Nicorandil Administration on Endothelial Function, Inflammation, and Oxidative Stress in Patients Without Coronary Artery Disease. J. Cardiovasc. Pharma-Col. 2008, 51, 311–316. [Google Scholar] [CrossRef]
- Jia, Q.; Shi, S.; Yuan, G.; Shi, J.; Shi, S.; Wei, Y.; Hu, Y. The effect of nicorandil in patients with cardiac syndrome X. Medicine 2020, 99, e22167. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Villano, A.; Russo, G.; Di Franco, A.; Stazi, A.; Lauria, C.; Sestito, A.; Lanza, G.A.; Crea, F. Poor tolerance and limited effects of isosorbide-5-mononitrate in microvascular angina. Cardiology 2015, 130, 201–206. [Google Scholar] [CrossRef]
- Russo, G.; Di Franco, A.; Lamendola, P.; Tarzia, P.; Nerla, R.; Stazi, A.; Villano, A.; Sestito, A.; Lanza, G.A.; Crea, F. Lack of Effect of Nitrates on Exercise Stress Test Results in Patients with Microvascular Angina. Cardiovasc. Drugs Ther. 2013, 27, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Seitz, A.; Feenstra, R.; Konst, R.E.; Martínez Pereyra, V.; Beck, S.; Beijk, M.; van de Hoef, T.; van Royen, N.; Bekere-djian, R.; Sechtem, U.; et al. Acetylcholine Rechallenge: A First Step Toward Tailored Treatment in Patients with Coronary Artery Spasm. JACC Cardiovasc. Interv. 2022, 15, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.; Nihei, T.; Takagi, Y.; Miyata, S.; Odaka, Y.; Tsunoda, R.; Seki, A.; Sumiyoshi, T.; Matsui, M.; Goto, T.; et al. Prognostic impact of chronic nitrate therapy in patients with vasospastic angina: Multicentre registry study of the Japanese coronary spasm association. Eur. Heart J. 2015, 36, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, N.R.; Prasad, M.; Widmer, R.J.; Toleva, O.; Quesada, O.; Sutton, N.R.; Lerman, A.; Reynolds, H.R.; Kesarwani, M.; Savage, M.P.; et al. Comprehensive Management of ANOCA, Part 2—Program Development, Treatment, and Research Initiatives. J. Am. Coll. Cardiol. 2023, 82, 1264–1279. [Google Scholar] [CrossRef]
- Giannini, F.; Tzanis, G.; Ponticelli, F.; Baldetti, L.; Demir, O.M.; Mitomo, S.; Gallone, G.; Banai, S.; Colombo, A. Technical aspects in coronary sinus Reducer implantation. EuroIntervention 2020, 15, 1269–1277. [Google Scholar] [CrossRef]
- Servoz, C.; Verheye, S.; Giannini, F.; Banai, S.; Fradi, M.; Cuenin, L.; Bellemain-Appaix, A.; Gilard, M.; Benamer, H.; Adjedj, J. Impact of coronary sinus reducer on absolute coronary blood flow and microvascular resistance. Catheter. Cardiovasc. Interv. 2024, 104, 58–60. [Google Scholar] [CrossRef]
- Verheye, S.; Jolicœur, E.M.; Behan, M.W.; Pettersson, T.; Sainsbury, P.; Hill, J.; Vrolix, M.; Agostoni, P.; Engstrom, T.; Labinaz, M.; et al. Efficacy of a Device to Narrow the Coronary Sinus in Refractory Angina. N. Engl. J. Med. 2015, 372, 519–527. [Google Scholar] [PubMed]
- Foley, M.J.; Rajkumar, C.A.; Ahmed-Jushuf, F.; Simader, F.A.; Chotai, S.; Pathimagaraj, R.H.; Mohsin, M.; Salih, A.; Wang, D.; Dixit, P.; et al. Coronary sinus reducer for the treatment of refractory angina (ORBITA-COSMIC): A randomised, placebo-controlled trial. Lancet 2024, 403, 1543–1553. [Google Scholar] [CrossRef] [PubMed]
- Konigstein, M.; Ponticelli, F.; Zivelonghi, C.; Merdler, I.; Revivo, M.; Verheye, S.; Giannini, F.; Banai, S. Long. Long-term outcomes of patients undergoing coronary sinus reducer implantation—A multicenter study. Clin. Cardiol. 2021, 44, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Keramida, G.; Baksi, A.J.; de Silva, R. Implantation of the coronary sinus reducer for refractory angina due to coronary microvascular dysfunction in the context of apical hypertrophic cardiomyopathy—A case report. Eur. Heart J. Case Rep. 2022, 6, ytac440. [Google Scholar] [CrossRef]
- Ullrich, H.; Hammer, P.; Olschewski, M.; Münzel, T.; Escaned, J.; Gori, T. Coronary Venous Pressure and Microvascular Hemodynamics in Patients with Microvascular Angina. JAMA Cardiol. 2023, 8, 979. [Google Scholar] [CrossRef] [PubMed]
- Giannini, F.; Baldetti, L.; Ielasi, A.; Ruparelia, N.; Ponticelli, F.; Latib, A.; Mitomo, S.; Esposito, A.; Palmisano, A.; Chieffo, A.; et al. First Experience with the Coronary Sinus Reducer System for the Management of Refractory Angina in Patients Without Obstructive Coronary Artery Disease. JACC Cardiovasc. Interv. 2017, 10, 1901–1903. [Google Scholar] [CrossRef] [PubMed]
- Caceres, J.; Atal, P.; Arora, R.; Yee, D. Enhanced external counterpulsation: A unique treatment for the “No-Option” refractory angina patient. J. Clin. Pharm. Ther. 2021, 46, 295–303. [Google Scholar] [CrossRef]
- Lee, J.; Oh, J.; Kim, I.-C.; Lee, S.; Kim, S.-E.; Lee, C.J.; Kim, H.; Kang, S.-M. Prospective Cohort Study for Evaluating the Safety and Efficacy of Mobile, Motorized Enhanced Extracorporeal Counterpulsation in Patients with Refractory Angina. Am. J. Cardiol. 2024, 213, 106–109. [Google Scholar] [CrossRef]
- Wang, Q.; Hao, J.; Jiang, W.; Tan, Q. Enhanced external counterpulsation increases coronary flow reserve in coronary microvascular disease. Saudi Med. J. 2023, 44, 1277–1282. [Google Scholar] [CrossRef]
- Cox, I. Low dose imipramine improves chest pain but not quality of life in patients with angina and normal coronary angiograms. Eur. Heart J. 1998, 19, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Jessurun, G.A.J.; Hautvast, R.W.M.; Tio, R.A.; DeJongste, M.J.L. Electrical neuromodulation improves myocardial perfusion and ameliorates refractory angina pectoris in patients with syndrome X: Fad or future? Eur. J. Pain 2003, 7, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Lanza, G.A.; Sestito, A.; Sgueglia, G.A.; Infusino, F.; Papacci, F.; Visocchi, M.; Ierardi, C.; Meglio, M.; Bellocci, F.; Crea, F. Effect of spinal cord stimulation on spontaneous and stress-induced angina and ‘ischemia-like’ ST-segment depression in patients with cardiac syndrome X. Eur. Heart J. 2005, 26, 983–989. [Google Scholar] [CrossRef]
- Eliasson, T.; Albertsson, P.; Hårdhammar, P.; Emanuelsson, H.; Augustinsson, L.E.; Mannheimer, C. Spinal cord stimulation in angina pectoris with normal coronary arteriograms. Coron. Artery Dis. 1993, 4, 819–827. [Google Scholar] [PubMed]
- Masumoto, A.; Mohri, M.; Shimokawa, H.; Urakami, L.; Usui, M.; Takeshita, A. Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 2002, 105, 1545–1547. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, T.; Ibuki, C.; Suzuki, T.; Ishii, K.; Yoshida, H.; Kodani, E.; Kusama, Y.; Atarashi, H.; Kishida, H.; Takano, T.; et al. Administration of the Rho-kinase inhibitor, fasudil, following nitroglycerin additionally dilates the site of coronary spasm in patients with vasospastic angina. Coron. Artery Dis. 2008, 19, 105–110. [Google Scholar] [CrossRef]
- English, K.M.; Steeds, R.P.; Jones, T.H.; Diver, M.J.; Channer, K.S. Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: A randomized, double-blind, placebo-controlled study. Circulation 2000, 102, 1906–1911. [Google Scholar] [CrossRef]
- Merz, C.N.B.; Olson, M.B.; McClure, C.; Yang, Y.-C.; Symons, J.; Sopko, G.; Kelsey, S.F.; Handberg, E.; Johnson, B.D.; Cooper-DeHoff, R.M.; et al. A randomized controlled trial of low-dose hormone therapy on myocardial ischemia in postmenopausal women with no obstructive coronary artery disease: Results from the National Institutes of Health/National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation (WISE). Am. Heart J. 2010, 159, 987.e1–987.e7. [Google Scholar] [PubMed]
- Morrow, A.; Young, R.; Abraham, G.R.; Hoole, S.; Greenwood, J.P.; Arnold, J.R.; El Shibly, M.; Shanmuganathan, M.; Ferreira, V.; Rakhit, R.; et al. Zibotentan in Microvascular Angina: A Randomized, Placebo-Controlled, Crossover Trial. Circulation. 2024, 150, 1671–1683. [Google Scholar] [CrossRef]
- Henry, T.D.; Bairey Merz, C.N.; Wei, J.; Corban, M.T.; Quesada, O.; Joung, S.; Kotynski, C.L.; Wang, J.; Lewis, M.; Schumacher, A.M.; et al. Autologous CD34+ Stem Cell Therapy Increases Coronary Flow Reserve and Reduces Angina in Patients with Coronary Microvascular Dysfunction. Circ. Cardiovasc. Interv. 2022, 15, e010802. [Google Scholar] [CrossRef]
- Corban, M.T.; Toya, T.; Albers, D.; Sebaali, F.; Lewis, B.R.; Bois, J.; Gulati, R.; Prasad, A.; Best, P.J.M.; Bell, M.R.; et al. IMPROvE-CED Trial: Intracoronary Autologous CD34+ Cell Therapy for Treatment of Coronary Endothelial Dysfunction in Patients with Angina and Nonobstructive Coronary Arteries. Circ. Res. 2022, 130, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Denardo, S.J.; Wen, X.; Handberg, E.M.; Bairey Merz, C.N.; Sopko, G.S.; Cooper-DeHoff, R.M.; Pepine, C.J. Effect of Phosphodiesterase Type 5 Inhibition on Microvascular Coronary Dysfunction in Women: A Women’s Ischemia Syndrome Evaluation (WISE) Ancillary Study. Clin. Cardiol. 2011, 34, 483–487. [Google Scholar] [CrossRef]
Standardised Diagnostic Criteria for Microvascular and Vasospastic Angina | |
---|---|
Microvascular Angina a | Vasospastic Angina b |
1. Symptoms of myocardial ischaemia Effort and/or rest angina or angina equivalents (i.e., breathlessness) | 1. Nitrate-responsive angina in addition to at least one of the following: (a) Rest angina—especially between night and early morning (b) Marked diurnal variation in exercise tolerance (c) Angina precipitated by hyperventilation (d) Response to calcium channel blockers (but not beta-blockers) |
2. Absence of obstructive epicardial CAD (<50% stenosis or FFR < 0.80) assessed on either CT coronary angiogram or invasive coronary angiography | 2. Transient ischaemic ECG changes during a spontaneous episode in at least two contiguous leads (ST segment elevation or depression ≥ 0.1 mV, new negative U waves) |
3. Objective evidence of myocardial ischaemia e.g., ischemic ECG changes during an episode of chest pain, stress-induced chest pain and/or ischemic ECG changes in the presence or absence of transient/reversible abnormal myocardial perfusion and/or wall motion abnormality | 3. Coronary artery spasm—defined as >90% coronary lumen constriction with angina and ischaemic ECG changes (spontaneous or in response to a provocative agent, e.g., acetylcholine, ergonovine or hyperventilation). |
4. Evidence of impaired coronary microvascular function e.g., impaired coronary flow reserve (cut-off values between ≤2.0 and ≤2.5), microvascular spasm (reproduction of symptoms, ischemic ECG shifts but no epicardial spasm during Ach testing), abnormal coronary microvascular resistance indices (e.g., IMR > 25), coronary slow flow (TIMI frame count > 25) |
Method | Technique | Hyperaemic/Vasoactive Agent | Advantages | Disadvantages |
---|---|---|---|---|
Invasive methods | ||||
Intracoronary Doppler flow-pressure wire | Measurement of averaged coronary peak flow velocity | Adenosine Acetylcholine | Gold standard invasive method of CMD assessment Ability to assess endothelium-independent and endothelium-dependent function Ability to assess FFR to rule out obstructive CAD | Currently commercially unavailable Requires adenosine infusion which may be contraindicated in severe lung disease Endothelium-dependent CMD assessment relies on QCA measurements of coronary artery diameter, potentially introducing error |
Bolus thermodilution method | Estimation of coronary blood flow through measurement of mean transit time in response to boluses of saline at rest and hyperaemia | Adenosine | Simple and quick Ability to measure FFR to rule out obstructive CAD | Significant intrinsic variability and inter- and intraoperator variability Worse correlation with PET (non-invasive gold standard) than Doppler method Endothelium-independent CMD assessment only |
Continuous thermodilution method | Quantification of absolute flow through infusion of saline at variable rates through a dedicated microcatheter | Saline | Reproducible assessment of endothelium-independent CMD as there is minimal operator interference No need for adenosine infusion to induce hyperaemia Method for assessing endothelium dependent CMD is in development Ability to assess obstructive CAD with FFR | Requires use of a dedicated infusion microcatheter Longer procedure than bolus thermodilution method |
Vasospasm provocation testing | Assessment of coronary artery diameter, symptoms and ECG changes in response to intracoronary acetylcholine or ergonovine infusion | Acetylcholine Ergonovine | The only method available to assess epicardial coronary spasm Easy to assess No additional equipment required | Risk of complications (arrhythmias/persistent spasm leading to myocardial infarction or death) Drug availability |
Non-invasive methods | ||||
Cardiac PET | Dynamic rest and stress myocardial perfusion imaging | Adenosine, regadenoson, dipyridamole | Gold standard for non-invasive CMD assessment Ability to quantitatively assess global myocardial perfusion | Ability to assess endothelium-independent CMD only Radiation burden Limited spatial resolution Limited availability and high cost Contraindicated in specific patient populations, e.g., severe asthma or heart block |
Cardiac MRI | Quantitative or semiquantitative rest and stress assessment of myocardial perfusion | Adenosine, regadenoson | No radiation exposure Ability to assess global myocardial perfusion Spatial resolution allows assessment of specific layers of myocardium increasing specificity for CMD | Incomplete validation of quantitative stress perfusion MRI Contraindicated in specific patient populations (metallic implants, renal dysfunction, asthma, heart block) Ability to assess endothelium independent CMD only Presence of artefacts Limited availability and high cost |
Echocardiography | Transthoracic Doppler echocardiography assessment of flow in left anterior descending artery at rest and hyperaemia | Adenosine, dipyridamole, regadenoson | Widely available and inexpensive method No radiation exposure | Highly operator and patient factor dependent Ability to assess endothelium-independent CMD only Hyperaemic agents contraindicated in specific patient populations (e.g., severe asthma/heart block) Assessment limited to the LAD territory. |
General management principles ab | ||
Improved nutrition Exercise rehabilitation Weight management Smoking cessation Mental wellbeing management | ||
Risk factor modification ab | ||
Hyperlipidaemia management Blood pressure control Glycaemic control | ||
Endotype specific antianginal management | ||
Endotype | Treatment | Class/level of evidence |
Coronary Microvascular Dysfunction | Betablockers (nebivolol) | Class IIa, Level of Evidence B ab |
Calcium channel blockers (DHP and non-DHP) | Class IIa, Level of Evidence B ab | |
Ranolazine | Class IIa, Level of Evidence B ab | |
Trimetazidine | Class IIa, Level of Evidence B ab | |
Vasospastic angina | Calcium channel blocker | Class I, Level of Evidence A ab |
2nd Calcium channel blocker | ||
Long-acting nitrate | Class IIa, Level of Evidence B ab | |
Nicorandil | Expert opinion b | |
Endothelial dysfunction | Angiotensin-converting enzyme inhibitors | Class IIa, Level of Evidence B a |
Mixed endotypes | Nitrates Calcium Channel blockers Other vasodilators | Class IIb, Level of Evidence B ab |
Advanced non-pharmacological therapies | ||
Consider Enhanced Extracorporeal Counterpulsation therapy b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramik, J.; Mariathas, M.; Felekos, I. Coronary Microvascular Dysfunction and Vasospastic Angina—Pathophysiology, Diagnosis and Management Strategies. J. Clin. Med. 2025, 14, 1128. https://doi.org/10.3390/jcm14041128
Abramik J, Mariathas M, Felekos I. Coronary Microvascular Dysfunction and Vasospastic Angina—Pathophysiology, Diagnosis and Management Strategies. Journal of Clinical Medicine. 2025; 14(4):1128. https://doi.org/10.3390/jcm14041128
Chicago/Turabian StyleAbramik, Joanna, Mark Mariathas, and Ioannis Felekos. 2025. "Coronary Microvascular Dysfunction and Vasospastic Angina—Pathophysiology, Diagnosis and Management Strategies" Journal of Clinical Medicine 14, no. 4: 1128. https://doi.org/10.3390/jcm14041128
APA StyleAbramik, J., Mariathas, M., & Felekos, I. (2025). Coronary Microvascular Dysfunction and Vasospastic Angina—Pathophysiology, Diagnosis and Management Strategies. Journal of Clinical Medicine, 14(4), 1128. https://doi.org/10.3390/jcm14041128