Potential MRI Biomarkers for Predicting Kidney Function and Histological Damage in Transplanted Deceased Donor Kidney Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Evaluation of Graft Function
- eGFR ≥ 60 mL/min/1.73 m2 (n = 17) vs. < 60 mL/min/1.73 m2 (n = 17).
- eGFR ≥ 60 mL/min/1.73 m2 (n = 11) vs. < 60 mL/min/1.73 m2 (n = 19).
2.4. MRI Biomarkers
2.5. Imaging Protocol
2.6. Imaging Analysis
2.7. Kidney Transplant Biopsy Evaluation
- No or minimal IF/TA (n = 28).
- Mild IF/TA (n = 5).
- No or minimal IF/TA (n = 11).
- Mild-to-moderate IF/TA (n = 11).
2.8. Statistical Analyses
3. Results
3.1. Patient Characteristics and Clinical Findings in the Early Post-Transplant Period
3.2. Kidney Function and Structural MRI Values in the Early and Intermediate Post-Transplant Period
3.3. Histological Parameters and MRI Structural Changes: At Time-Zero Biopsy
3.4. Predictive Performance of MRI Biomarkers for Early Graft Function
3.5. The Prognostic Performance of T1 CMD in Predicting IF/TA Condition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
kTx | Kidney transplantation |
CKD | Chronic kidney disease |
IF/TA | Interstitial fibrosis and tubular atrophy |
MRI | Magnetic resonance imaging |
ADC | The apparent diffusion coefficient |
eGFR | Estimated glomerular filtration rate |
PNF | Primary non-function |
DGF | Delayed graft function |
HD | Hemodialysis |
IGF | Immediate graft function |
SGF | Slow graft function |
Scr | Serum creatinine |
MRR | Magnetic resonance relaxometry |
MOLLI | A modified Look–Locker inversion recovery |
SSFP | A single-shot balanced steady-state free precession |
DWI | Diffusion-weighted imaging |
CMD | Corticomedullary differentiation |
SD | Standard deviation |
IQR | Interquartile range |
B | Regression coefficients |
95% CI | 95% confidence intervals |
OR | odds ratios |
ROC | Receiver operating characteristic |
ICC | The intraclass correlation coefficient |
Appendix A
T1 MAP | T2 MAP | DWI | |
---|---|---|---|
Sequence t. | GRE/separate | GRE/separate | EPI/separate |
Orientation | Coronal | Coronal | Transversal |
Res. control | Breath-hold | Breath-hold | - |
RT (ms) | 357.73 | 294.63 | 5800 |
ET (ms) | 1.01 | 1.22 | 61 |
IT (ms) | 211 | - | - |
Voxel (mm3) | 2.0 × 2.0 × 8.0 | 2.6 × 2.6 × 8.0 | 1.0 × 1.0 × 5.0 |
FOV (mm2) | 500 × 500 | 500 × 500 | 380 × 380 |
Flip ang. (deg) | 35 | 12 | - |
Slices | 3 | 3 | 35 |
EPI fac. | - | - | 113 |
Fat suppression | Off | Off | SPAIR |
Acceleration fac. | 2 (GRAPPA) | 2 (GRAPPA) | 2 (GRAPPA) |
Scan time (min) | 0:45 | 0:39 | 3:40 |
Appendix B
Imagine Analyses
- T1 map, cortical: 0.889 (95% CI 0.778–0.945); medulla: 0.906 (95% CI 0.814–0.953) (p < 0.001)
- T2 map, cortical: 0.976 (95% CI 0.949–0.989); medulla: 0.910 (95% CI 0.806–0.958) (p < 0.001)
- ADC, cortical: 0.921 (95% CI 0.826–0.962); medulla: 0.829 (95% CI 0.659–0.914) (p < 0.001)
- T1 map, cortical: 0.880 (95% CI 0.748–0.943); medulla: 0.855 (95% CI 0.696–0.931) (p < 0.001)
- T2 map, cortical: 0.954 (95% CI 0.904–0.978); medulla: 0.916 (95% CI 0.824–0.960) (p < 0.001)
- ADC, cortical: 0.860 (95% CI 0.706–0.933); medulla: 0.822 (95% CI 0.626–0.915) (p < 0.001)
Appendix C
KTx Biopsy Evaluation
Time-Zero kTx Biopsy | 3 Months Post-kTx Biopsy | |||
---|---|---|---|---|
Mean (SD) | N (Total/Pathology) | Mean (SD) | N (Total/Pathology) | |
Glomerular count | 13.15 (8.47) | 33/33 | 24.64 (11.93) | 22/22 |
Glomerular sclerosis, score | 0.56 (0.94) | 33/12 | 1.14 (1.91) | 22/11 |
Glomerulitis, score | 0.09 (0.29) | 33/3 | 0.23 (0.53) | 22/4 |
Inflamantory infiltrates | 0.0 (0.0) | 33/0 | 0.0 (0.0) | 22/0 |
Peritubulat capillaritis, score | 0.0 (0.0) | 33/0 | 0.05 (0.21) | 22/1 |
Interstitial fibrosis, score | 0.12 (0.33) | 33/4 | 0.36 (0.58) | 22/7 |
Tubular atrophy, score | 0.03 (0.17) | 33/1 | 0.5 (0.51) | 22/11 |
Arteriolar hyalinosis, score | 0.0 (0.0) | 33/0 | 0.18 (0.39) | 22/4 |
IF/TA* score | 1.15 (0.364) | 33/5 | 1.82 (0.91) | 22/11 |
Appendix D
eGFR ≥ 60 mL/min/1.73 m2 | eGFR < 60 mL/min/1.73 m2 | p | |
---|---|---|---|
Recipients | n = 17 | n = 17 | |
Strucural MRI data 10–15 days after kTx | |||
T1 map of cortex (ms) | 1594.28 (139.47) | 1545.62 (268.38) | 0.512 |
T1 map of medulla (ms) | 1758.37 (149.10) | 1662.62 (288.27) | 0.236 |
T1 map of CMD 1 (ms) | −164.09 (62.44) | −117.00 (66.23) | 0.041 |
T2 map of cortex (ms) | 81.95 (8.42) | 76.07 (13.82) | 0.160 |
T2 map of the medulla (ms) | 80.66 (8.26) | 76.82 (11.59) | 0.295 |
T2 map of CMD 1 (ms) | 1.29 (1.76) | −0.75 (6.82) | 0.278 |
ADC value of cortex (×10−6 mm2/s) | 1980.5 (108.62) | 1874.56 (312.67) | 0.196 |
ADC value of medulla (×10−6 mm2/s) | 1926.24 (99.76) | 1843.08 (196.54) | 0.130 |
ADC CMD 1 (×10−6 mm2/s) | 54.26 (66.44) | 31.47 (128.43) | 0.520 |
Structural MRI 3 months after kTx | |||
eGFR ≥ 60 mL/min/1.73 m2 | eGFR < 60 mL/min/1.73 m2 | ||
Recipients | n = 11 | n = 19 | |
T1 map of cortex (ms) | 1569.44 (98.76) | 1542.23 (146.27) | 0.589 |
T1 map of medulla (ms) | 1760.91 (101.02) | 1680.91 (152.38) | 0.132 |
T1 map of CMD 1 (ms) | −191.47 (47.60) | −138.68 (35.70) | 0.002 |
T2 map of cortex (ms) | 79.38 (5.83) | 79.39 (8.31) | 0.997 |
T2 map of the medulla (ms) | 76.04 (5.87) | 76.07 (6.67) | 0.989 |
T2 map of CMD 1 (ms) | 3.35 (1.96) | 3.33 (2.89) | 0.981 |
ADC value of cortex (×10−6 mm2/s) | 2034.59 (94.61) | 1947.08 (122.74) | 0.051 |
ADC value of medulla (×10−6 mm2/s) | 1928.05 (78.43) | 1885.55 (98.15) | 0.231 |
ADC CMD 1 (×10−6 mm2/s) | 106.55 (38.65) | 61.52 (62.46) | 0.040 |
Appendix E
Recipients | No or Minimal Fibrosis/Tubular Atrophy | Mild Fibrosis/Tubular Atrophy | p |
---|---|---|---|
n = 28 | n = 5 | ||
Strucural MRI data 10–15 days after kTx | |||
T1 map of cortex (ms) | 1596.21 (1504.39–1662.33) | 1731.59 (1618.40–1803.55) | 0.247 |
T1 map of medulla (ms) | 1756.48 (1588.75–1830.30) | 1881.54 (1723.73–1953.02) | 0.364 |
T1 map of CMD 1 (ms) | −142.44 (−181.92–(−)82.37) | −149.47 (−149.95–(−)105.34) | 0.942 |
T2 map of cortex (ms) | 79.02 (74.58–82.48) | 82.43 (80.78–86.30) | 0.123 |
T2 map of the medulla (ms) | 77.72 (73.25–83.58) | 82.99 (81.89–85.29) | 0.157 |
T2 map of CMD 1 (ms) | 0.67 (−0.934–3.04) | 1.25 (0.10–1.61) | 0.976 |
ADC value of cortex (×10−6 mm2/s) | 1971.75 (1920–2036.88) | 1990.5 (1931–1996) | 0.782 |
ADC value of medulla (×10−6 mm2/s) | 1907.5 (1862.38–1979.25) | 1888.5 (1854–1919) | 0.609 |
ADC CMD 1 (×10−6 mm2/s) | 54.5 (24.75–83) | 102 (77–117) | 0.060 |
Structural MRI 3 months after kTx | |||
T1 map of cortex (ms) | 1564.73 (1464.34–1609.65) | 1621.20 (1618.54–1678.91) | 0.101 |
T1 map of medulla (ms) | 1726.45 (1644.41–1751.37) | 1753.16 (1749.11–1792.94) | 0.201 |
T1 map of CMD 1 (ms) | −168.52 (−191.01–(−)138.48) | −129.25 (−134.62–(−)127.92) | 0.114 |
T2 map of cortex (ms) | 77.01 (74.64–82.75) | 78.95 (78.83–80.74) | 0.323 |
T2 map of the medulla (ms) | 75.09 (72.88–80.23) | 74.83 (72.90–76.09) | 0.978 |
T2 map of CMD 1 (ms) | 2.94 (1.73–3.69) | 5.94 (5.91–7.31) | 0.053 |
ADC value of cortex (×10−6 mm2/s) | 1951.50 (1900.13–2047.13) | 2004 (1958–2031.5) | 0.436 |
ADC value of medulla (×10−6 mm2/s) | 1895.50 (1837.5–1943.38) | 1876 (1874.5–1923.5) | 0.758 |
ADC CMD 1 (×10−6 mm2/s) | 81.75 (47–115.25) | 108 (83.5–114.5) | 0.544 |
Appendix F
Recipients | No or Minmal Fibrosis/Tubular Atrophy | Mild Fibrosis/Tubular Atrophy | p |
---|---|---|---|
n = 11 | n = 11 | ||
Strucural MRI data 10–15 days after kTx | |||
T1 map of cortex (ms) | 1624.84 (49.33) | 1552.44 (213.29) | 0.478 |
T1 map of medulla (ms) | 1804.40 (85.95) | 1660.78 (251.33) | 0.171 |
T1 map of CMD 1 (ms) | −179.56 (64.59) | −108.34 (54.88) | 0.016 |
T2 map of cortex (ms) | 80.36 (7.65) | 81.97 (9.52) | 0.492 |
T2 map of the medulla (ms) | 79.83 (8.13) | 80.19 (7.72) | 0.545 |
T2 map of CMD 1 (ms) | 0.53 (3.53) | 1.77 (5.41) | 0.717 |
ADC value of cortex (×10−6 mm2/s) | 1997.73 (70.46) | 1928.86 (27.64) | 0.200 |
ADC value of medulla (×10−6 mm2/s) | 1932.23 (55.77) | 1869.64 (137.4) | 0.151 |
ADC CMD 1 (×10−6 mm2/s) | 65.50 (49.54) | 59.23 (61.87) | 0.844 |
Structural MRI 3 months after kTx | |||
T1 map of cortex (ms) | 1533.71 (139.90) | 1568.08 (126.07) | 0.365 |
T1 map of medulla (ms) | 1687.76 (170.38) | 1721.02 (126.67) | 0.217 |
T1 map of CMD 1 (ms) | −154.05 (54.21) | −152.94 (35.46) | 0.797 |
T2 map of cortex (ms) | 78.75 (6.89) | 82.78 (8.20) | 0.217 |
T2 map of the medulla (ms) | 75.34 (5.52) | 78.88 (7.03) | 0.217 |
T2 map of CMD 1 (ms) | 3.4 (3.38) | 3.9 (2.37) | 0.797 |
ADC value of cortex (×10−6 mm2/s) | 1993.86 (105.86) | 1987.05 (134.76) | 0.898 |
ADC value of medulla (×10−6 mm2/s) | 1908.05 (90.63) | 1919.36 (103.03) | 0.699 |
ADC CMD 1 (×10−6 mm2/s) | 85.82 (40.62) | 67.68 (73.41) | 0.694 |
Appendix G
IF/TA Score | Interstitial Fibrosis (ci) | Tubular Atrophy (ct) | |
---|---|---|---|
Strucural MRI data 10–15 days after kTx | |||
T1 map of cortex (ms) | 0.213 (p = 0.234) | 0.146 (p = 0.417) | 0.167 (p = 0.353) |
T1 map of medulla (ms) | 0.169 (p = 0.348) | 0.098 (p = 0.589) | 0.167 (p = 0.353) |
T1 map of CMD 1 (ms) | 0.018 (p = 0.922) | 0.059 (p = 0.746) | −0.074 (p = 0.681) |
T2 map of cortex (ms) | 0.295 (p = 0.114) | 0.302 (p = 0.105) | 0.054 (p = 0.778) |
T2 map of the medulla (ms) | 0.272 (p = 0.146) | 0.302 (p = 0.105) | 0.011 (p = 0.955) |
T2 map of CMD 1 (ms) | −0.011 (p = 0.953) | −0.019 (p = 0.920) | 0.011 (p = 0.955) |
ADC value of cortex (×10−6 mm2/s) | 0.053 (p = 0.768) | 0.029 (p = 0.872) | 0.056 (p = 0.758) |
ADC value of medulla (×10−6 mm2/s) | −0.098 (p = 0.589) | −0.088 (p = 0.627) | −0.037 (p = 0.837) |
ADC CMD 1 (×10−6 mm2/s) | 0.417 (p = 0.056) | 0.341 (p = 0.052) | 0.223 (p = 0.213) |
Structural MRI 3 months after kTx | |||
T1 map of cortex (ms) | 0.316 (p = 0.094) | 0.215 (p = 0.262) | 0.248 (p = 0.194) |
T1 map of medulla (ms) | 0.251 (p = 0.189) | 0.143 (p = 0.458) | 0.248 (p = 0.194) |
T1 map of CMD 1 (ms) | 0.306 (p = 0.107) | 0.239 (p = 0.212) | 0.181 (p = 0.348) |
T2 map of cortex (ms) | 0.196 (p = 0.307) | 0.215 (p = 0.262) | 0 (p = 1) |
T2 map of the medulla (ms) | −0.011 (p = 0.955) | 0.072 (p = 0.712) | −0.158 (p = 0.413) |
T2 map of CMD 1 (ms) | 0.426 (p = 0.051) | 0.335 (p = 0.076) | 0.248 (p = 0.194) |
ADC value of cortex (×10−6 mm2/s) | 0.153 (p = 0.429) | 0.275 (p = 0.149) | −0.203 (p = 0.290) |
ADC value of medulla (×10−6 mm2/s) | 0.065 (p = 0.736) | 0.084 (p = 0.666) | −0.203 (p = 0.907) |
ADC CMD 1 (×10−6 mm2/s) | 0.120 (p = 0.535) | 0.263 (p = 0.168) | −0.248 (p = 0.194) |
Appendix H
IF/TA Score | Interstitial Fibrosis (ci) | Tubular Atrophy (ct) | |
---|---|---|---|
Structural MRI 3 Months After kTx | |||
T1 map of cortex (ms) | 0.219 (p = 0.328) | 0.131 (p = 0.561) | 0.208 (p = 0.353) |
T1 map of medulla (ms) | 0.313 (p = 0.157) | 0.238 (p = 0.287) | 0.279 (p = 0.208) |
T1 map of CMD 1 (ms) | 0.052 (p = 0.819) | 0.029 (p = 0.898) | 0.064 (p = 0.776) |
T2 map of cortex (ms) | 0.224 (p = 0.315) | 0.058 (p = 0.797) | 0.279 (p = 0.208) |
T2 map of the medulla (ms) | 0.218 (p = 0.330) | 0.073 (p = 0.748) | 0.279 (p = 0.208) |
T2 map of CMD 1 (ms) | 0.092 (p = 0.682) | 0.063 (p = 0.780) | 0.064 (p = 0.776) |
ADC value of cortex (×10−6 mm2/s) | 0.115 (p = 0.611) | 0.146 (p = 0.518) | 0.036 (p = 0.874) |
ADC value of medulla (×10−6 mm2/s) | 0.084 (p = 0.711) | 0.0 (p = 0.1) | 0.093 (p = 0.680) |
ADC CMD 1 (×10−6 mm2/s) | −0.023 (p = 0.920) | 0.034 (p = 0.881) | −0.093 (p = 0.680) |
References
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease (CKD). Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Copur, S.; Tanriover, C.; Yavuz, F.; Soler, M.J.; Ortiz, A.; Covic, A.; Kanbay, M. Novel Strategies in Nephrology: What to Expect from the Future? Clin. Kidney J. 2023, 16, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, M.; Rotundo, S.; Chiodini, P.; Gagliardi, I.; Michael, A.; Angotti, E.; Borrelli, S.; Serra, R.; Foti, D.; De Sarro, G.; et al. Contribution of Predictive and Prognostic Biomarkers to Clinical Research on Chronic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 5846. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.S.; Schaubel, D.E.; Guidinger, M.K.; Andreoni, K.A.; Wolfe, R.A.; Merion, R.M.; Port, F.K.; Sung, R.S. A Comprehensive Risk Quantification Score for Deceased Donor Kidneys: The Kidney Donor Risk Index. Transplantation 2009, 88, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Serón, D.; Moreso, F. Protocol Biopsies in Renal Transplantation: Prognostic Value of Structural Monitoring. Kidney Int. 2007, 72, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Naesens, M.; Roufosse, C.; Haas, M.; Lefaucheur, C.; Mannon, R.B.; Adam, B.A.; Aubert, O.; Böhmig, G.A.; Callemeyn, J.; Clahsen-van Groningen, M.; et al. The Banff 2022 Kidney Meeting Report: Reappraisal of Microvascular Inflammation and the Role of Biopsy-Based Transcript Diagnostics. Am. J. Transplant. 2024, 24, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Loupy, A.; Haas, M.; Roufosse, C.; Naesens, M.; Adam, B.; Afrouzian, M.; Akalin, E.; Alachkar, N.; Bagnasco, S.; Becker, J.U.; et al. The Banff 2019 Kidney Meeting Report (I): Updates on and Clarification of Criteria for T Cell– and Antibody-Mediated Rejection. Am. J. Transplant. 2020, 20, 2318–2331. [Google Scholar] [CrossRef]
- Ho, Q.Y.; Lim, C.C.; Tan, H.Z.; Sultana, R.; Kee, T.; Htay, H. Complications of Percutaneous Kidney Allograft Biopsy: Systematic Review and Meta-Analysis. Transplantation 2022, 106, 1497–1506. [Google Scholar] [CrossRef]
- Caroli, A.; Pruijm, M.; Burnier, M.; Selby, N.M. Functional Magnetic Resonance Imaging of the Kidneys: Where Do We Stand? The Perspective of the European COST Action PARENCHIMA. Nephrol. Dial. Transplant. 2018, 33, ii1–ii3. [Google Scholar] [CrossRef]
- Francis, S.T.; Selby, N.M.; Taal, M.W. Magnetic Resonance Imaging to Evaluate Kidney Structure, Function, and Pathology: Moving Toward Clinical Application. Am. J. Kidney Dis. 2023, 82, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Berchtold, L.; Crowe, L.A.; Friedli, I.; Legouis, D.; Moll, S.; De Perrot, T.; Martin, P.-Y.; Vallée, J.-P.; De Seigneux, S. Diffusion Magnetic Resonance Imaging Detects an Increase in Interstitial Fibrosis Earlier than the Decline of Renal Function. Nephrol. Dial. Transplant. 2020, 35, 1274–1276. [Google Scholar] [CrossRef]
- Friedli, I.; Crowe, L.A.; Berchtold, L.; Moll, S.; Hadaya, K.; De Perrot, T.; Vesin, C.; Martin, P.-Y.; De Seigneux, S.; Vallée, J.-P. New Magnetic Resonance Imaging Index for Renal Fibrosis Assessment: A Comparison between Diffusion-Weighted Imaging and T1 Mapping with Histological Validation. Sci. Rep. 2016, 6, 30088. [Google Scholar] [CrossRef] [PubMed]
- Berchtold, L.; Crowe, L.A.; Combescure, C.; Kassaï, M.; Aslam, I.; Legouis, D.; Moll, S.; Martin, P.-Y.; De Seigneux, S.; Vallée, J.-P. Diffusion-Magnetic Resonance Imaging Predicts Decline of Kidney Function in Chronic Kidney Disease and in Patients with a Kidney Allograft. Kidney Int. 2022, 101, 804–813. [Google Scholar] [CrossRef]
- Echeverria-Chasco, R.; Martin-Moreno, P.L.; Aramendía-Vidaurreta, V.; Garcia-Ruiz, L.; Mora-Gutiérrez, J.M.; Vidorreta, M.; Villanueva, A.; Cano, D.; Bastarrika, G.; Garcia-Fernandez, N.; et al. Diagnostic and Prognostic Potential of Multiparametric Renal MRI in Kidney Transplant Patients. Magn. Reson. Imaging 2024, 60, 1650–1663. [Google Scholar] [CrossRef] [PubMed]
- Hudson, D.M.; Heales, C.; Meertens, R. Review of Claustrophobia Incidence in MRI: A Service Evaluation of Current Rates across a Multi-Centre Service. Radiography 2022, 28, 780–787. [Google Scholar] [CrossRef]
- Pham, P.-T.T.; Nast, C.C.; Pham, P.-C.T.; Danovitch, G. Diagnosis and Therapy of Graft Dysfunction. In Chronic Kidney Disease, Dialysis, and Transplantation; Elsevier: Amsterdam, The Netherlands, 2010; pp. 526–552. ISBN 978-1-4377-0987-2. [Google Scholar]
- Rodrigo, E.; Ruiz, J.C.; Piñera, C.; Fernández-Fresnedo, G.; Escallada, R.; Palomar, R.; Cotorruelo, J.G.; Zubimendi, J.A.; Martín De Francisco, A.L.; Arias, M. Creatinine Reduction Ratio on Post-Transplant Day Two as Criterion in Defining Delayed Graft Function. Am. J. Transplant. 2004, 4, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Hall, I.E.; Yarlagadda, S.G.; Coca, S.G.; Wang, Z.; Doshi, M.; Devarajan, P.; Han, W.K.; Marcus, R.J.; Parikh, C.R. IL-18 and Urinary NGAL Predict Dialysis and Graft Recovery after Kidney Transplantation. J. Am. Soc. Nephrol. 2010, 21, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.; Qiu, L.; Zhou, L.; Zhuang, Y.; Cai, T.; Xu, B.; Hao, S.; Fang, X.; Wang, L.; Jiang, H. Value of Multiparametric Magnetic Resonance Imaging for Evaluating Chronic Kidney Disease and Renal Fibrosis. Eur. Radiol. 2023, 33, 5211–5221. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Ding, X.; Ding, Y.; Cao, B.; Fu, C.; Kuehn, B.; Benkert, T.; Grimm, R.; Nickel, D.; Zhou, J.; et al. Evaluation of Interstitial Fibrosis in Chronic Kidney Disease by Multiparametric Functional MRI and Histopathologic Analysis. Eur. Radiol. 2022, 33, 4138–4147. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, I.A.; De Boer, A.; Sharma, K.; Cox, E.F.; Lamb, H.J.; Buckley, D.L.; Bane, O.; Morris, D.M.; Prasad, P.V.; Semple, S.I.K.; et al. Consensus-Based Technical Recommendations for Clinical Translation of Renal T1 and T2 Mapping MRI. Magn. Reson. Mater. Phys. 2020, 33, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Ljimani, A.; Caroli, A.; Laustsen, C.; Francis, S.; Mendichovszky, I.A.; Bane, O.; Nery, F.; Sharma, K.; Pohlmann, A.; Dekkers, I.A.; et al. Consensus-Based Technical Recommendations for Clinical Translation of Renal Diffusion-Weighted MRI. Magn. Reson. Mater. Phys. 2020, 33, 177–195. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; De Boer, A.; Sharma, K.; Boor, P.; Leiner, T.; Sunder-Plassmann, G.; Moser, E.; Caroli, A.; Jerome, N.P. Magnetic Resonance Imaging T1- and T2-Mapping to Assess Renal Structure and Function: A Systematic Review and Statement Paper. Nephrol. Dial. Transplant. 2018, 33, ii41–ii50. [Google Scholar] [CrossRef] [PubMed]
- Hueper, K.; Khalifa, A.A.; Bräsen, J.H.; Vo Chieu, V.D.; Gutberlet, M.; Wintterle, S.; Lehner, F.; Richter, N.; Peperhove, M.; Tewes, S.; et al. Diffusion-Weighted Imaging and Diffusion Tensor Imaging Detect Delayed Graft Function and Correlate with Allograft Fibrosis in Patients Early after Kidney Transplantation. Magn. Reson. Imaging 2016, 44, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Geisinger, M.; Risius, B.; Jordan, M.; Zelch, M.; Novick, A.; George, C. Magnetic Resonance Imaging of Renal Transplants. Am. J. Roentgenol. 1984, 143, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Hricak, H.; Terrier, F.; Demas, B.E. Renal Allografts: Evaluation by MR Imaging. Radiology 1986, 159, 435–441. [Google Scholar] [CrossRef]
- Baumgartner, B.; Nelson, R.; Ball, T.; Wyly, J.; Bourke, E.; Delaney, V.; Bernardino, M. MR Imaging of Renal Transplants. Am. J. Roentgenol. 1986, 147, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.-G.; Zeng, Y.; Zhang, R.; Zhu, Y.; Tu, J.; Pan, P.; Ma, Q.; Wei, L.-Y.; Zhao, W.-L.; Shen, J.-K. Native T1 Mapping for Non-Invasive Quantitative Evaluation of Renal Function and Renal Fibrosis in Patients with Chronic Kidney Disease. Quant. Imaging Med. Surg. 2023, 13, 5058–5071. [Google Scholar] [CrossRef]
- Eisenberger, U.; Thoeny, H.C.; Binser, T.; Gugger, M.; Frey, F.J.; Boesch, C.; Vermathen, P. Evaluation of Renal Allograft Function Early after Transplantation with Diffusion-Weighted MR Imaging. Eur. Radiol. 2010, 20, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Ren, T.; Li, Q.; Zuo, P.; Long, M.; Mo, C.; Chen, L.; Huang, L.; Shen, W. Assessment of Renal Allograft Function Early after Transplantation with Isotropic Resolution Diffusion Tensor Imaging. Eur. Radiol. 2016, 26, 567–575. [Google Scholar] [CrossRef]
- Lanzman, R.S.; Ljimani, A.; Pentang, G.; Zgoura, P.; Zenginli, H.; Kröpil, P.; Heusch, P.; Schek, J.; Miese, F.R.; Blondin, D.; et al. Kidney Transplant: Functional Assessment with Diffusion-Tensor MR Imaging at 3T. Radiology 2013, 266, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.C.; Bressem, K.K.; Scheibl, S.; Nunninger, M.; Gentsch, A.; Fahlenkamp, U.L.; Eckardt, K.-U.; Hamm, B.; Makowski, M.R. Multiparametric Assessment of Changes in Renal Tissue after Kidney Transplantation with Quantitative MR Relaxometry and Diffusion-Tensor Imaging at 3 T. J. Clin. Med. 2020, 9, 1551. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Li, J.; Wan, J.; Tian, Y.; Wu, P.; Xu, R.; Yu, Y.; Wang, X.; Hu, L.; Zhu, M. Arterial Spin Labeling Combined with T1 Mapping for Assessment of Kidney Function and Histopathology in Patients with Long-Term Renal Transplant Survival After Kidney Transplantation. Quant. Imaging Med. Surg. 2024, 14, 2415–2425. [Google Scholar] [CrossRef]
- El-Ksas, M.; EL-Metwally, D.; Fahmy, D.; Shebel, H. Early and Late Assessment of Renal Allograft Dysfunction Using Intravoxel Incoherent Motion (IVIM) and Diffusion-Weighted Imaging (DWI): A Prospective Study. Abdom. Radiol. 2024, 49, 3902–3912. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Tsai, Y.-H.; Chung, M.-C.; Pan, K.-J.; Ho, H.-C.; Chen, H.-M.; Ouyang, Y.-C.; Shu, K.-H.; Chen, J.-H.; Chai, J.-W. Intravoxel Incoherent Motion-Diffusion-Weighted MRI for Investigation of Delayed Graft Function Immediately after Kidney Transplantation. BioMed Res. Int. 2022, 2022, 2832996. [Google Scholar] [CrossRef] [PubMed]
- Sułkowska, K.; Palczewski, P.; Furmańczyk-Zawiska, A.; Perkowska-Ptasińska, A.; Wójcik, D.; Szeszkowski, W.; Durlik, M.; Gołębiowski, M.; Małkowski, P. Diffusion Weighted Magnetic Resonance Imaging in the Assessment of Renal Function and Parenchymal Changes in Chronic Kidney Disease: A Preliminary Study. Ann. Transplant. 2020, 25, e920232. [Google Scholar] [CrossRef] [PubMed]
- Mathys, C.; Blondin, D.; Wittsack, H.-J.; Miese, F.; Rybacki, K.; Walther, C.; Holstein, A.; Lanzman, R. T2’ Imaging of Native Kidneys and Renal Allografts—A Feasibility Study. Rofo 2011, 183, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Friedli, I.; Crowe, L.A.; De Perrot, T.; Berchtold, L.; Martin, P.; De Seigneux, S.; Vallée, J. Comparison of Readout-segmented and Conventional Single-shot for Echo-planar Diffusion-weighted Imaging in the Assessment of Kidney Interstitial Fibrosis. Magn. Reson. Imaging 2017, 46, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Shi, Z.; Zhang, Y.; Yan, J.; Shang, F.; Wang, Y.; Lu, H.; Gu, H.; Dou, W.; Wang, X.; et al. Native T1 Mapping in Assessing Kidney Fibrosis for Patients with Chronic Glomerulonephritis. Front. Med. 2021, 8, 772326. [Google Scholar] [CrossRef] [PubMed]
- Selby, N.M.; Blankestijn, P.J.; Boor, P.; Combe, C.; Eckardt, K.-U.; Eikefjord, E.; Garcia-Fernandez, N.; Golay, X.; Gordon, I.; Grenier, N.; et al. Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease: A Position Paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol. Dial. Transplant. 2018, 33, ii4–ii14. [Google Scholar] [CrossRef]
- Beck-Tölly, A.; Eder, M.; Beitzke, D.; Eskandary, F.; Agibetov, A.; Lampichler, K.; Hamböck, M.; Regele, H.; Kläger, J.; Nackenhorst, M.; et al. Magnetic Resonance Imaging for Evaluation of Interstitial Fibrosis in Kidney Allografts. Transplant. Direct 2020, 6, e577. [Google Scholar] [CrossRef] [PubMed]
Recipients | IGF 1 | SGF + DGF 1 | p |
---|---|---|---|
n = 20 | n = 14 | ||
Gender male (%) | 15 (44.1) | 10 (29.4) | 0.816 |
Age (years) | 45.2(15.22) | 44.64 (11.09) | 0.279 |
Duration of kidney replacement therapy (months) | 28.5 (5–51.75) | 13 (13–50.75) | 0.148 |
HLA mismatch | 3 (1–3) | 3 (1–3) | 0.457 |
Kidney disease (%) | Chronic glomerulonephritis: 5 cases (25%) Diabetic nephropathy: 1 case (5%) Autosomal dominant polycystic kidney disease: 4 cases (20%) Hypertensive nephropathy: 1 case (5%) Other: 9 cases (45%) | Chronic glomerulonephritis: 1 case (7.1%) Diabetic nephropathy: 1 case (7.1%) Autosomal dominant polycystic kidney disease: 2 cases (14.3%) Hypertensive nephropathy: 2 cases (14.3%) Other: 8 cases (57.1%) | |
Immunossuppressive regimen | Methylprednisolone: 100% Mycophenolate mofetil: 100% Tacrolimus: 100% Induction therapy: Anti-thymocyte globulin: 1 case (5%) INN-basiliximab: 19 cases (95%) | Methylprednisolone: 100% Mycophenolate mofetil: 100% Tacrolimus: 100% Induction therapy: Anti-thymocyte globulin: 2 cases (14.3%) INN-basiliximab: 12 cases (85.7%) | |
Creatinine before kTx (μmol/L) | 756 (606.25–1100) | 678 (420.5–923.5) | 0.416 |
eGFR 3 days after kTx (mL/min/1.73 m2) | 72.6 (31.55) | 19.5 (18.25) | <0.001 |
eGFR 7 days after kTx (mL/min/1.73 m2) | 63.5 (31.99) | 31.43 (23.89) | 0.003 |
eGFR at discharge day (mL/min/1.73 m2) | 67.35 (21.65) | 52.07 (26.62) | 0.08 |
eGFR at 3 months post kTx (mL/min/1.73 m2) | 61.36 (18.35) | 53.04 (23.28) | 0.260 |
Donors | |||
Age (years) | 47.65 (15.93) | 54.36 (10.43) | 0.178 |
Expanded criteria donor 2 (%) | 7 (35) | 7 (50) | 0.382 |
Cold ischemic time of transplanted kidney (min) | 717.85 (193.68) | 919.14 (240.28) | 0.011 |
IGF | SGF + DGF | p | |
---|---|---|---|
Recipients | n = 20 | n = 14 | |
Strucural MRI data 10–15 days after kTx | |||
T1 map of cortex (ms) | 1619.95 (119.72) | 1498.52 (289.57) | 0.157 |
T1 map of medulla (ms) | 1767.35 (118.23) | 1629.28 (321.13) | 0.144 |
T1 map of CMD 1 (ms) | −147.40 (70.44) | −130.76 (64.97) | 0.489 |
T2 map of cortex (ms) | 78.71 (6.31) | 79.72 (17.27) | 0.818 |
T2 map of the medulla (ms) | 78.95 (7.06) | 78.57 (13.88) | 0.921 |
T2 map of CMD 1 (ms) | 0.23 (4.40) | 1.15 (5.78) | 0.456 |
ADC value of cortex (×10−6 mm2/s) | 1970.10 (98.85) | 1866.71 (348.04) | 0.297 |
ADC value of medulla (×10−6 mm2/s) | 1925.10 (81.30) | 1826.89 (220.32) | 0.131 |
ADC CMD 1 (×10−6 mm2/s) | 45.00 (60.08) | 39.82 (144.15) | 0.886 |
Structural MRI 3 months after kTx | |||
Recipients | n = 18 | n = 12 | |
T1 map of cortex (ms) | 1536.57 (129.72) | 1575.66 (131.68) | 0.428 |
T1 map of medulla (ms) | 1706.17 (156.15) | 1716.35 (116.53) | 0.849 |
T1 map of CMD 1 (ms) | −169.60 (46.62) | −140.69 (44.76) | 0.102 |
T2 map of cortex (ms) | 78.62 (6.42) | 80.56 (8.82) | 0.490 |
T2 map of the medulla (ms) | 75.31 (5.28) | 77.18 (7.66) | 0.434 |
T2 map of CMD 1 (ms) | 3.38 (2.46) | 3.31 (2.68) | 0.941 |
ADC value of cortex (×10−6 mm2/s) | 2003.04 (132.30) | 1963.25 (111.17) | 0.381 |
ADC value of medulla (×10−6 mm2/s) | 1905.45 (105.03) | 1898.25 (86.01) | 0.838 |
ADC CMD 1 (×10−6 mm2/s) | 97.58 (54.69) | 65.00 (58.79) | 0.138 |
Model | β Coefficient, 95% Confidence Interval (CI) | p |
---|---|---|
1 unadjusted analysis | ||
T1 CMD 1 10–15 days after kTx | −0.126 (−0.240 to −0.013) | 0.030 |
2 unadjusted analysis | ||
ADC CMD 1 10–15 days after kTx | 0.095 (0.015 to 0.176) | 0.022 |
3 adjusted analysis | ||
T1 CMD 1 10–15 days after kTx | −0.132 (−0.242 to −0.022) | 0.021 |
ADC CMD 1 10–15 days after kTx | 0.087 (0.013 to 0.162) | 0.023 |
Cold ischemic time (minutes) | −0.028 (−0.060 to 0.005) | 0.091 |
Model | Odds Ratio, 95% Confidence Interval (CI) | p |
---|---|---|
T1 CMD 1 10–15 days after kTx | −0.016 (0.970 to 0.999) | 0.032 |
ADC CMD 1 10–15 days after kTx | 0.003 (0.989 to 1.017) | 0.646 |
Cold ischemic time (minutes) | −0.005 (0.991 to 1.000) | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bura, A.; Stonciute-Balniene, G.; Banisauskaite, A.; Velickiene, L.; Bumblyte, I.A.; Jankauskas, A.; Vaiciuniene, R. Potential MRI Biomarkers for Predicting Kidney Function and Histological Damage in Transplanted Deceased Donor Kidney Recipients. J. Clin. Med. 2025, 14, 1349. https://doi.org/10.3390/jcm14041349
Bura A, Stonciute-Balniene G, Banisauskaite A, Velickiene L, Bumblyte IA, Jankauskas A, Vaiciuniene R. Potential MRI Biomarkers for Predicting Kidney Function and Histological Damage in Transplanted Deceased Donor Kidney Recipients. Journal of Clinical Medicine. 2025; 14(4):1349. https://doi.org/10.3390/jcm14041349
Chicago/Turabian StyleBura, Andrejus, Gintare Stonciute-Balniene, Audra Banisauskaite, Laura Velickiene, Inga Arune Bumblyte, Antanas Jankauskas, and Ruta Vaiciuniene. 2025. "Potential MRI Biomarkers for Predicting Kidney Function and Histological Damage in Transplanted Deceased Donor Kidney Recipients" Journal of Clinical Medicine 14, no. 4: 1349. https://doi.org/10.3390/jcm14041349
APA StyleBura, A., Stonciute-Balniene, G., Banisauskaite, A., Velickiene, L., Bumblyte, I. A., Jankauskas, A., & Vaiciuniene, R. (2025). Potential MRI Biomarkers for Predicting Kidney Function and Histological Damage in Transplanted Deceased Donor Kidney Recipients. Journal of Clinical Medicine, 14(4), 1349. https://doi.org/10.3390/jcm14041349