Chat Generative Pre-Trained Transformer (ChatGPT) in Oral and Maxillofacial Surgery: A Narrative Review on Its Research Applications and Limitations
Abstract
:1. Introduction
2. Methods
2.1. Inclusion and Exclusion Criteria
- Non-original research (e.g., review articles, short communications, editorial papers, and scientific briefings);
- Non-English language publications;
- Case reports;
- In vitro and in vivo studies.
2.2. Literature Screening and Selection
3. Results
3.1. Overview of Included Studies
3.2. Clinical Decision Support
3.3. Guidance and Information to Patients
3.4. General Knowledge and Exams for OMS
3.5. Scientific Publication Enhancement
4. Discussion
4.1. Discussion of Findings
4.2. Limitations of AI in Scientific Research and Clinical Practice
4.3. Ethical Concerns and Privacy Risks
4.4. Cost and Accessibility Challenges
4.5. Future Research Directions and Areas for Improvement
4.6. Limitations of This Review
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pinaya, W.H.; Graham, M.S.; Kerfoot, E.; Tudosiu, P.-D.; Dafflon, J.; Fernandez, V.; Sanchez, P.; Wolleb, J.; Da Costa, P.F.; Patel, A. Generative ai for medical imaging: Extending the monai framework. arXiv 2023, arXiv:2307.15208. [Google Scholar]
- Cao, Y.; Li, S.; Liu, Y.; Yan, Z.; Dai, Y.; Yu, P.S.; Sun, L. A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt. arXiv 2023, arXiv:2303.04226. [Google Scholar]
- Fletcher, R.; Nielsen, R. What Does the Public in Six Countries Think of Generative AI in News? Reuters Institute for the Study of Journalism: Oxford, UK, 2024. [Google Scholar]
- Singh, O.P. Artificial intelligence in the era of ChatGPT—Opportunities and challenges in mental health care. Indian J. Psychiatry 2023, 65, 297–298. [Google Scholar] [CrossRef]
- OpenAI. Introducing ChatGPT. Available online: https://openai.com/ (accessed on 27 November 2024).
- Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S. Gpt-4 technical report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Nyst, A. History of ChatGPT: A Timeline of the Meteoric Rise of Generative AI Chatbots. Available online: https://www.searchenginejournal.com/history-of-chatgpt-timeline/488370/ (accessed on 27 November 2024).
- Sallam, M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare 2023, 11, 887. [Google Scholar] [CrossRef]
- Sallam, M.; Salim, N.A.; Barakat, M.; Al-Tammemi, A.B. ChatGPT applications in medical, dental, pharmacy, and public health education: A descriptive study highlighting the advantages and limitations. Narra. J. 2023, 3, e103. [Google Scholar] [CrossRef]
- Quah, B.; Yong, C.W.; Lai, C.W.M.; Islam, I. Performance of large language models in oral and maxillofacial surgery examinations. Int. J. Oral Maxillofac. Surg. 2024, 53, 881–886. [Google Scholar] [CrossRef]
- American Board of Oral and Maxillofacial Surgery. Oral Maxillofacial Surgeons: What They Do and Why You Should Choose a Board-Certified Doctor. Available online: https://www.aboms.org/news/what-oral-maxillofacial-surgeons-do-and-why-choose-board-certified (accessed on 29 November 2024).
- Woolley, E.; Laugharne, D. Oral and Maxillofacial Surgery Curriculum 2021. Available online: https://www.iscp.ac.uk/media/1105/oral-maxillofacial-surgery-curriculum-aug-2021-approved-oct-20.pdf (accessed on 29 November 2024).
- Karobari, M.I.; Suryawanshi, H.; Patil, S.R. Revolutionizing oral and maxillofacial surgery: ChatGPT’s impact on decision support, patient communication, and continuing education. Int. J. Surg. 2024, 110, 3143–3145. [Google Scholar] [CrossRef]
- Balel, Y.; Zogo, A.; Yıldız, S.; Tanyeri, H. Can ChatGPT-4o provide new systematic review ideas to oral and maxillofacial surgeons? J. Stomatol. Oral Maxillofac. Surg. 2024, 125, 101979. [Google Scholar] [CrossRef]
- Springer. Types of Journal Articles. Available online: https://www.springer.com/gp/authors-editors/authorandreviewertutorials/writing-a-journal-manuscript/types-of-journal-articles/10285504?srsltid=AfmBOoom50tcyPqtVo8N-aqGaJc8UlwkKy83cai5Kq1F8Bgy4J74ox8m (accessed on 4 December 2024).
- Balel, Y. ScholarGPT’s performance in oral and maxillofacial surgery. J. Stomatol. Oral Maxillofac. Surg. 2024, 126, 102114. [Google Scholar] [CrossRef]
- Rewthamrongsris, P.; Burapacheep, J.; Trachoo, V.; Porntaveetus, T. Accuracy of Large Language Models for Infective Endocarditis Prophylaxis in Dental Procedures. Int. Dent. J. 2024, 75, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, A.; Pugliese, G.; Maniaci, A.; Lechien, J.R.; Allevi, F.; Boscolo-Rizzo, P.; Vaira, L.A.; Saibene, A.M. Reliability of large language models for advanced head and neck malignancies management: A comparison between ChatGPT 4 and Gemini Advanced. Off. J. Eur. Fed. Oto-Rhino-Laryngol. Soc. 2024, 281, 5001–5006. [Google Scholar] [CrossRef] [PubMed]
- Frosolini, A.; Catarzi, L.; Benedetti, S.; Latini, L.; Chisci, G.; Franz, L.; Gennaro, P.; Gabriele, G. The Role of Large Language Models (LLMs) in Providing Triage for Maxillofacial Trauma Cases: A Preliminary Study. Diagnostics 2024, 14, 839. [Google Scholar] [CrossRef]
- Saibene, A.M.; Allevi, F.; Calvo-Henriquez, C.; Maniaci, A.; Mayo-Yanez, M.; Paderno, A.; Vaira, L.A.; Felisati, G.; Craig, J.R. Reliability of large language models in managing odontogenic sinusitis clinical scenarios: A preliminary multidisciplinary evaluation. Off. J. Eur. Fed. Oto-Rhino-Laryngol. Soc. 2024, 281, 1835–1841. [Google Scholar] [CrossRef]
- Isik, G.; Kafadar-Gurbuz, I.A.; Elgun, F.; Kara, R.U.; Berber, B.; Ozgul, S.; Gunbay, T. Is Artificial Intelligence a Useful Tool for Clinical Practice of Oral and Maxillofacial Surgery? J. Craniofacial Surg. 2024. ahead of print. [Google Scholar]
- Suarez, A.; Jimenez, J.; Llorente de Pedro, M.; Andreu-Vazquez, C.; Diaz-Flores Garcia, V.; Gomez Sanchez, M.; Freire, Y. Beyond the Scalpel: Assessing ChatGPT’s potential as an auxiliary intelligent virtual assistant in oral surgery. Comput. Struct. Biotechnol. J. 2024, 24, 46–52. [Google Scholar] [CrossRef]
- Vaira, L.A.; Lechien, J.R.; Abbate, V.; Allevi, F.; Audino, G.; Beltramini, G.A.; Bergonzani, M.; Bolzoni, A.; Committeri, U.; Crimi, S.; et al. Accuracy of ChatGPT-Generated Information on Head and Neck and Oromaxillofacial Surgery: A Multicenter Collaborative Analysis. Off. J. Am. Acad. Otolaryngol. Head Neck Surg. 2024, 170, 1492–1503. [Google Scholar] [CrossRef]
- Peters, M.; Le Clercq, M.; Yanni, A.; Vanden Eynden, X.; Martin, L.; Vanden Haute, N.; Tancredi, S.; De Passe, C.; Boutremans, E.; Lechien, J.; et al. ChatGPT and trainee performances in the management of maxillofacial patients. J. Stomatol. Oral Maxillofac. Surg. 2024, 126, 102090. [Google Scholar] [CrossRef]
- Uranbey, O.; Ozbey, F.; Kaygisiz, O.; Ayranci, F. Assessing ChatGPT’s Diagnostic Accuracy and Therapeutic Strategies in Oral Pathologies: A Cross-Sectional Study. Cureus 2024, 16, e58607. [Google Scholar] [CrossRef]
- Lee, J.; Xu, X.; Kim, D.; Deng, H.H.; Kuang, T.; Lampen, N.; Fang, X.; Gateno, J.; Yan, P. Large Language Models Diagnose Facial Deformity. medRxiv 2024. [Google Scholar] [CrossRef]
- Azadi, A.; Gorjinejad, F.; Mohammad-Rahimi, H.; Tabrizi, R.; Alam, M.; Golkar, M. Evaluation of AI-generated responses by different artificial intelligence chatbots to the clinical decision-making case-based questions in oral and maxillofacial surgery. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2024, 137, 587–593. [Google Scholar] [CrossRef]
- Jacobs, T.; Shaari, A.; Gazonas, C.B.; Ziccardi, V.B. Is ChatGPT an Accurate and Readable Patient Aid for Third Molar Extractions? Off. J. Am. Assoc. Oral Maxillofac. Surg. 2024, 82, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Acar, A.H. Can natural language processing serve as a consultant in oral surgery? J. Stomatol. Oral Maxillofac. Surg. 2024, 125, 101724. [Google Scholar] [CrossRef] [PubMed]
- Coban, E.; Altay, B. Assessing the Potential Role of Artificial Intelligence in Medication-Related Osteonecrosis of the Jaw Information Sharing. Off. J. Am. Assoc. Oral Maxillofac. Surg. 2024, 82, 699–705. [Google Scholar] [CrossRef]
- Manasyan, A.; Lasky, S.; Jolibois, M.; Moshal, T.; Roohani, I.; Munabi, N.; Urata, M.M.; Hammoudeh, J.A. Expanding Accessibility in Cleft Care: The Role of Artificial Intelligence in Improving Literacy of Alveolar Bone Grafting Information. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2024; ahead of print. [Google Scholar] [CrossRef]
- Balel, Y. Can ChatGPT be used in oral and maxillofacial surgery? J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101471. [Google Scholar] [CrossRef]
- Cai, Y.; Zhao, R.; Zhao, H.; Li, Y.; Gou, L. Exploring the use of ChatGPT/GPT-4 for patient follow-up after oral surgeries. Int. J. Oral Maxillofac. Surg. 2024, 53, 867–872. [Google Scholar] [CrossRef]
- Aguiar de Sousa, R.; Costa, S.M.; Almeida Figueiredo, P.H.; Camargos, C.R.; Ribeiro, B.C.; Alves, E.S.M.R.M. Is ChatGPT a reliable source of scientific information regarding third-molar surgery? J. Am. Dent. Assoc. 2024, 155, 227–232.e226. [Google Scholar] [CrossRef]
- Batool, I.; Naved, N.; Kazmi, S.M.R.; Umer, F. Leveraging Large Language Models in the delivery of post-operative dental care: A comparison between an embedded GPT model and ChatGPT. BDJ Open 2024, 10, 48. [Google Scholar] [CrossRef]
- Morishita, M.; Fukuda, H.; Muraoka, K.; Nakamura, T.; Hayashi, M.; Yoshioka, I.; Ono, K.; Awano, S. Evaluating GPT-4V’s performance in the Japanese national dental examination: A challenge explored. J. Dent. Sci. 2024, 19, 1595–1600. [Google Scholar] [CrossRef]
- Quah, B.; Zheng, L.; Sng, T.J.H.; Yong, C.W.; Islam, I. Reliability of ChatGPT in automated essay scoring for dental undergraduate examinations. BMC Med. Educ. 2024, 24, 962. [Google Scholar] [CrossRef]
- Wu, R.T.; Dang, R.R. ChatGPT in head and neck scientific writing: A precautionary anecdote. Am. J. Otolaryngol. 2023, 44, 103980. [Google Scholar] [CrossRef]
- Dang, R.; Hanba, C. A large language model’s assessment of methodology reporting in head and neck surgery. Am. J. Otolaryngol. 2024, 45, 104145. [Google Scholar] [CrossRef] [PubMed]
- Alkaissi, H.; McFarlane, S.I. Artificial Hallucinations in ChatGPT: Implications in Scientific Writing. Cureus 2023, 15, e35179. [Google Scholar] [CrossRef] [PubMed]
- Walters, W.H.; Wilder, E.I. Fabrication and errors in the bibliographic citations generated by ChatGPT. Sci. Rep. 2023, 13, 14045. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Cui, L.; Cai, D.; Liu, L.; Fu, T.; Huang, X.; Zhao, E.; Zhang, Y.; Chen, Y. Siren’s song in the AI ocean: A survey on hallucination in large language models. arXiv 2023, arXiv:2309.01219. [Google Scholar]
- Jeyaraman, M.; Ramasubramanian, S.; Balaji, S.; Jeyaraman, N.; Nallakumarasamy, A.; Sharma, S. ChatGPT in action: Harnessing artificial intelligence potential and addressing ethical challenges in medicine, education, and scientific research. World J. Methodol. 2023, 13, 170–178. [Google Scholar] [CrossRef]
- Schmidt, P.; Biessmann, F.; Teubner, T. Transparency and trust in artificial intelligence systems. J. Decis. Syst. 2020, 29, 260–278. [Google Scholar] [CrossRef]
- Dong, Y.; Hou, J.; Zhang, N.; Zhang, M. Research on how human intelligence, consciousness, and cognitive computing affect the development of artificial intelligence. Complexity 2020, 2020, 1680845. [Google Scholar] [CrossRef]
- Naik, N.; Hameed, B.M.Z.; Shetty, D.K.; Swain, D.; Shah, M.; Paul, R.; Aggarwal, K.; Ibrahim, S.; Patil, V.; Smriti, K.; et al. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Front. Surg. 2022, 9, 862322. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Yang, H.; Guo, J.; Wu, Y.; Liu, J. Ethical Considerations of Using ChatGPT in Health Care. J. Med. Internet Res. 2023, 25, e48009. [Google Scholar] [CrossRef]
- El Emam, K.; Jonker, E.; Arbuckle, L.; Malin, B. A systematic review of re-identification attacks on health data. PLoS ONE 2011, 6, e28071. [Google Scholar] [CrossRef]
- OpenAI. Introducing ChatGPT Plus. Available online: https://openai.com/index/chatgpt-plus/ (accessed on 12 January 2025).
- Alsadhan, A.; Al-Anezi, F.; Almohanna, A.; Alnaim, N.; Alzahrani, H.; Shinawi, R.; AboAlsamh, H.; Bakhshwain, A.; Alenazy, M.; Arif, W.; et al. The opportunities and challenges of adopting ChatGPT in medical research. Front. Med. 2023, 10, 1259640. [Google Scholar] [CrossRef] [PubMed]
- Bishop, P.A.; Herron, R.L. Use and Misuse of the Likert Item Responses and Other Ordinal Measures. Int. J. Exerc. Sci. 2015, 8, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Lechien, J.R.; Rameau, A. Applications of ChatGPT in Otolaryngology-Head Neck Surgery: A State of the Art Review. Off. J. Am. Acad. Otolaryngol. Head Neck Surg. 2024, 171, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S. ChatGPT and the Future of Medical Writing. Radiology 2023, 307, e223312. [Google Scholar] [CrossRef]
Author (Year) | Application Field | Item | GPT | Related Subspecialty | Assessment Tool | Results |
---|---|---|---|---|---|---|
Balel (2024) [16] | Clinical decision support | 60 questions | Scholar GPT (built on the GPT-4 architecture) | Impacted teeth, dental implants, TMD, and orthognathic surgery | Modified GQS | Scholar GPT > ChatGPT 3.5 |
Rewthamrongsris et al. (2024) [17] | Clinical decision support | 28 questions | ChatGPT ver. 4o | Infection (endocarditis) | The percentage of average accuracy | ChatGPT > Gemini > Claude |
Lorenzi et al. (2024) [18] | Clinical decision support | 5 questions (cases) | ChatGPT ver. 4 | Malignancy | AIPI score | ChatGPT > Gemini advanced |
Frosolini et al. (2024) [19] | Clinical decision support | 10 cases | ChatGPT ver. 4 | Trauma | QAMAI and AIPI scores | ChatGPT > Gemini |
Saibene et al. (2024) [20] | Clinical decision support | 5 cases (clinical scenario) | ChatGPT ver. 3.5 and 4 | Pathology (odontogenic sinusitis) | Total disagreement score | ChatGPT 4 > ChatGPT 3.5 |
Işik et al. (2024) [21] | Clinical decision support | 66 questions | ChatGPT ver. 4 plus | Dental anesthesia, tooth extraction, preoperative and postoperative complications, suturing, writing prescriptions, and temporomandibular joint examination | Likert scale and the modified GQS | The median accuracy score was 5, and the median scores of hard-level questions were found to be lower. |
Suarez et al. (2024) [22] | Clinical decision support | 30 questions | ChatGPT ver. 4 | Pathology, oncology, third-molar extraction, and periapical surgery | Likert scale | The overall accuracy: 71.7% |
Vaira et al. (2024) [23] | Clinical decision support | 72 open-ended questions, 72 closed-ended questions, and 15 clinical scenarios | ChatGPT ver. 4 | Pathology, oncology, reconstruction, orthognathic surgery, TMD, and trauma | Likert scale | AI’s ability to resolve complex clinical scenarios is promising, but it still falls short of being considered a reliable support for the decision-making process. |
Peters et al. (2024) [24] | Clinical decision support | 4 questions associated with clinical cases | ChatGPT ver. 3.5 | Infection, trauma, pathology, TMD, and oncology | AIPI score | ChatGPT < trainee |
Uranbey et al. (2024) [25] | Clinical decision support | 2 questions (diagnosis and treatment) | ChatGPT ver. 3.5 | Pathology and oncology | Likert scale | ChatGPT exhibited high accuracy in providing differential diagnoses and acceptable treatment plans. |
Lee et al. (2024) [26] | Clinical decision support | Mandibular anteroposterior position | ChatGPT ver. 3.5 and 4 | Dentofacial deformity | Balanced accuracy and F1-score | By converting cephalometric measurements into intuitive text formats, LLMs significantly enhanced the accessibility and clinical interpretability of diagnostic processes. |
Azadi et al. (2024) [27] | Clinical decision support | 50 questions (open ended and multiple choice) | ChatGPT ver. 3.5 and 4 | Trauma, pathology, orthognathic surgery, and implants | GQS | No significant differences among different chatbots |
Jacobs et al. (2024) [28] | Patient information | 25 questions | ChatGPT ver. 3.5 | Third-molar extraction | Likert scale | Most responses were accurate, with minor inaccuracies or missing information. |
Acar (2023) [29] | Patient information | 20 questions | ChatGPT ver. 3.5 | Dental implant and tooth extraction | Likert scale and GQS | ChatGPT > Bing > Bard |
Coban and Altay (2024) [30] | Patient information | 120 questions | ChatGPT ver. 3 | Pathology (MRONJ) | GQS | ChatGPT showed moderate quality to questions about MRONJ. |
Manasyan et al. (2024) [31] | Patient information | 34 patient education materials | ChatGPT ver. 3.5 | Clefts | Flesch Reading Ease, Flesch–Kincaid Grade Level, and Gunning Fog Index | AI rewriting significantly improved the readability among all assessed metrics. |
Balel (2023) [32] | Patient information | 60 patient questions and 60 technical questions | Not indicated | Impacted teeth, dental implants, TMD, and orthognathic surgery | Modified GQS | ChatGPT has significant potential as a tool for patient information in oral and maxillofacial surgery. However, its use in training may not be completely safe at present. |
Cai et al. (2024) [33] | Patient information | 30 questions | ChatGPT ver. 4 | Tooth extraction and pathology | Score evaluated by experts | ChatGPT/GPT-4 could be used for patient follow-up after oral surgeries with careful consideration of limitations and under the guidance of healthcare professionals. |
Aguiar de Sousa et al. (2024) [34] | Patient information | 10 questions | Not indicated | Third-molar surgery | CUQ | ChatGPT offers accurate and scientifically backed answers (CUQ: 90.63%). |
Batool et al. (2024) [35] | Patient information | 10 questions | ChatGPT ver. 3.5 turbo | Tooth extraction | Likert scale | Embedded ChatGPT > ChatGPT |
Quah et al. (2024) [10] | Knowledge and exam | 259 questions (multiple choice) | ChatGPT ver. 3.5 and 4 | General oral surgery | The mean overall score | GPT-4 > Copilot > GPT-3.5 > Gemini > Llama 2 |
Morishita et al. (2024) [36] | Knowledge and exam | 160 questions (the number of OMS questions were not indicated) | ChatGPT ver. 4 with vision | General oral surgery | The percentage of correct answers | Overall rate of 35.0% (OMS: 38.2%) |
Quah et al. (2024) [37] | Knowledge and exam | 2 questions (essay) | ChatGPT ver. 4 | Infection and trauma | Automated essay scoring | Positive correlations between ChatGPT and manual essay scoring |
Balel et al. (2024) [14] | Scientific publication enhancement | 16 unpublished systematic review ideas | ChatGPT ver. 4o | Impacted teeth, dental implants, TMD, and orthognathic surgery | Percentage of ideas not searched on PubMed | 56.25% (9/16) of ideas were not found in the PubMed database. |
Wu and Dang (2023) [38] | Scientific publication enhancement | 50 references from 5 commonly researched keywords | Not indicated | Oncology and reconstruction | A numerical score | Only 10% of the articles provided by ChatGPT were correct regarding head and neck surgery. |
Dang and Hanba (2024) [39] | Scientific publication enhancement | 20 articles | ChatGPT ver. 3.5 | Malignancy | A scoring system generated by ChatGPT | The preliminary feasibility of ChatGPT in assessing the methods sections was demonstrated. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
On, S.-W.; Cho, S.-W.; Park, S.-Y.; Ha, J.-W.; Yi, S.-M.; Park, I.-Y.; Byun, S.-H.; Yang, B.-E. Chat Generative Pre-Trained Transformer (ChatGPT) in Oral and Maxillofacial Surgery: A Narrative Review on Its Research Applications and Limitations. J. Clin. Med. 2025, 14, 1363. https://doi.org/10.3390/jcm14041363
On S-W, Cho S-W, Park S-Y, Ha J-W, Yi S-M, Park I-Y, Byun S-H, Yang B-E. Chat Generative Pre-Trained Transformer (ChatGPT) in Oral and Maxillofacial Surgery: A Narrative Review on Its Research Applications and Limitations. Journal of Clinical Medicine. 2025; 14(4):1363. https://doi.org/10.3390/jcm14041363
Chicago/Turabian StyleOn, Sung-Woon, Seoung-Won Cho, Sang-Yoon Park, Ji-Won Ha, Sang-Min Yi, In-Young Park, Soo-Hwan Byun, and Byoung-Eun Yang. 2025. "Chat Generative Pre-Trained Transformer (ChatGPT) in Oral and Maxillofacial Surgery: A Narrative Review on Its Research Applications and Limitations" Journal of Clinical Medicine 14, no. 4: 1363. https://doi.org/10.3390/jcm14041363
APA StyleOn, S.-W., Cho, S.-W., Park, S.-Y., Ha, J.-W., Yi, S.-M., Park, I.-Y., Byun, S.-H., & Yang, B.-E. (2025). Chat Generative Pre-Trained Transformer (ChatGPT) in Oral and Maxillofacial Surgery: A Narrative Review on Its Research Applications and Limitations. Journal of Clinical Medicine, 14(4), 1363. https://doi.org/10.3390/jcm14041363