Multifaceted Pathophysiology and Secondary Complications of Chronic Spinal Cord Injury: Focus on Pressure Injury
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Nervous System and the Biomechanical Implications of Immobility in PIs Development
3.2. Vascular System
3.3. Adipose Tissue
3.4. Muscle Tissue
3.5. Bone Tissue
3.6. The Immune System and Skin Microbiome
3.7. Endocrine System and Metabolism
3.8. Preventive and Therapeutic Strategies for Pressure Ulcers in Patients with Spinal Cord Injury
3.8.1. Nutrition
3.8.2. Mobilization and Repositioning
3.8.3. Moisture Management and Infection Control
3.9. Cell-Based Therapeutic Strategies in Regenerative Medicine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wirz, M.; van Hedel, H.J.A. Balance, gait, and falls in spinal cord injury. Handb. Clin. Neurol. 2018, 159, 367–384. [Google Scholar] [CrossRef] [PubMed]
- Budd, M.A.; Gater, D.R.; Channell, I. Psychosocial Consequences of Spinal Cord Injury: A Narrative Review. J. Pers. Med. 2022, 12, 1178. [Google Scholar] [CrossRef]
- Wulf, M.J.; Tom, V.J. Consequences of spinal cord injury on the sympathetic nervous system. Front. Cell. Neurosci. 2023, 17, 999253. [Google Scholar] [CrossRef]
- McMillan, D.W.; Nash, M.S.; Gater, D.R.; Valderrábano, R.J. Neurogenic Obesity and Skeletal Pathology in Spinal Cord Injury. Top. Spinal Cord Inj. Rehabil. 2021, 27, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Raguindin, P.F.; Bertolo, A.; Zeh, R.M.; Fränkl, G.; Itodo, O.A.; Capossela, S.; Bally, L.; Minder, B.; Brach, M.; Eriks-Hoogland, I.; et al. Body Composition According to Spinal Cord Injury Level: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 3911. [Google Scholar] [CrossRef] [PubMed]
- Zakrasek, E.C.; Creasey, G.; Crew, J.D. Pressure ulcers in people with spinal cord injury in developing nations. Spinal Cord 2015, 53, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-L.; Cai, J.-Y.; Du, L.; Shen, H.-W.; Yu, H.-R.; Song, Y.-P.; Zha, M.-L. Incidence of Pressure Injury in Individuals with Spinal Cord Injury. J. Wound Ostomy Cont. Nurs. 2020, 47, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Liang, H.; Clarke, E.; Jackson, C.; Xue, M. Inflammation in Chronic Wounds. Int. J. Mol. Sci. 2016, 17, 2085. [Google Scholar] [CrossRef] [PubMed]
- EPUAP; NPIAP; PPPIA. Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline. Emily Haes. 2019. Available online: https://gneaupp.info/prevention-and-treatment-of-pressure-ulcers-injuriesclinical-practice-guideline/ (accessed on 8 September 2023).
- Hajhosseini, B.; Longaker, M.T.; Gurtner, G.C. Pressure Injury. Ann. Surg. 2020, 271, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Gélis, A.; Dupeyron, A.; Legros, P.; Benam, C.; Pelissier, J.; Fattal, C. Pressure ulcer risk factors in persons with spinal cord injury Part 2: The chronic stage. Spinal Cord 2009, 47, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Kreutzträger, M.; Voss, H.; Scheel-Sailer, A.; Liebscher, T. Outcome analyses of a multimodal treatment approach for deep pressure ulcers in spinal cord injuries: A retrospective cohort study. Spinal Cord 2018, 56, 582–590. [Google Scholar] [CrossRef]
- Heinonen, S.; Jokinen, R.; Rissanen, A.; Pietiläinen, K.H. White adipose tissue mitochondrial metabolism in health and in obesity. Obes. Rev. 2020, 21, e12958. [Google Scholar] [CrossRef] [PubMed]
- Zuk, P.A.; Zhu, M.; Ashjian, P.; De Ugarte, D.A.; Huang, J.I.; Mizuno, H.; Alfonso, Z.C.; Fraser, J.K.; Benhaim, P.; Hedrick, M.H. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol. Biol. Cell 2002, 13, 4279–4295. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.Z.; Moreno-Luna, R.; Muñoz-Hernandez, R.; Li, D.; Jaminet, S.C.S.; Greene, A.K.; Melero-Martin, J.M. Human white adipose tissue vasculature contains endothelial colony-forming cells with robust in vivo vasculogenic potential. Angiogenesis 2013, 16, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Henke, A.M.; Billington, Z.J.; Gater, D.R. Autonomic Dysfunction and Management after Spinal Cord Injury: A Narrative Review. J. Pers. Med. 2022, 12, 1110. [Google Scholar] [CrossRef]
- Bowlby, A.A. On the Condition of the Reflexes in Cases of Injury to the Spinal Cord; With special reference to the Indications for Operative Interference. Med. Chir. Trans. 1890, 73, 313–325. Available online: https://pubmed.ncbi.nlm.nih.gov/20896770/ (accessed on 31 December 2024). [CrossRef]
- Invernizzi, M.; de Sire, A.; Carda, S.; Venetis, K.; Renò, F.; Cisari, C.; Fusco, N. Bone Muscle Crosstalk in Spinal Cord Injuries: Pathophysiology and Implications for Patients’ Quality of Life. Curr. Osteoporos. Rep. 2020, 18, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Talifu, Z.; Zhang, C.-J.; Gao, F.; Ke, H.; Pan, Y.-Z.; Gong, H.; Du, H.-Y.; Yu, Y.; Jing, Y.-L.; et al. Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Front. Nutr. 2023, 10, 1099143. [Google Scholar] [CrossRef] [PubMed]
- Gabison, S.; Mathur, S.; Nussbaum, E.L.; Popovic, M.R.; Verrier, M.C. The relationship between pressure offloading and ischial tissue health in individuals with spinal cord injury: An exploratory study. J. Spinal Cord Med. 2019, 42, 186–195. [Google Scholar] [CrossRef]
- Balasuberamaniam, P.; Wasim, A.; Shrikumar, M.; Chen, T.; Anthony, T.; Phillips, A.; Nathens, A.; Chapman, M.; Crawford, E.; Schwartz, C.E.; et al. Predictors of hospital-acquired pressure injuries in patients with complete spinal cord injury: A retrospective case–control study. BMC Musculoskelet. Disord. 2023, 24, 329. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Huonker, M.; Stahl, F.; Barturen, J.-M.; König, D.; Heim, M.; Lehmann, M.; Keul, J. Free plasma catecholamines in spinal cord injured persons with different injury levels at rest and during exercise. J. Auton. Nerv. Syst. 1998, 68, 96–100. [Google Scholar] [CrossRef]
- Herrmann, K.H.; Kirchberger, I.; Biering-Sørensen, F.; Cieza, A. Differences in functioning of individuals with tetraplegia and paraplegia according to the International Classification of Functioning, Disability and Health (ICF). Spinal Cord 2010, 49, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Mironets, E.; Osei-Owusu, P.; Bracchi-Ricard, V.; Fischer, R.; Owens, E.A.; Ricard, J.; Wu, D.; Saltos, T.; Collyer, E.; Hou, S.; et al. Soluble TNFα Signaling within the Spinal Cord Contributes to the Development of Autonomic Dysreflexia and Ensuing Vascular and Immune Dysfunction after Spinal Cord Injury. J. Neurosci. 2018, 38, 4146–4162. [Google Scholar] [CrossRef] [PubMed]
- Olive, J.L.; Dudley, G.A.; McCully, K.K. Vascular remodeling after spinal cord injury. Med. Sci. Sport Exerc. 2003, 35, 901–907. [Google Scholar] [CrossRef]
- Boot, C.R.L.; Groothuis, J.T.; Van Langen, H.; Hopman, M.T.E. Shear stress levels in paralyzed legs of spinal cord-injured individuals with and without nerve degeneration. J. Appl. Physiol. 2002, 92, 2335–2340. [Google Scholar] [CrossRef]
- De Groot, P.C.; Bleeker, M.W.; van Kuppevelt, D.H.; van der Woude, L.H.; Hopman, M.T. Rapid and Extensive Arterial Adaptations After Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2006, 87, 688–696. [Google Scholar] [CrossRef]
- Hopman, M.T.E.; Van Asten, W.N.J.C.; Oeseburg, B. Changes in blood flow in the common femoral artery related to inactivity and muscle atrophy in individuals with long-standing paraplegia. In Oxygen Transport to Tissue XVII; Advances in Experimental Medicine and Biology Series; Springer: Boston, MA, USA, 1996; Volume 388, pp. 379–383. [Google Scholar] [CrossRef]
- Olive, J.L.; McCully, K.K.; Dudley, G.A. Blood flow response in individuals with incomplete spinal cord injuries. Spinal Cord 2002, 40, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Theis, T.; Tschang, M.; Nagaraj, V.; Berthiaume, F. Reactive Oxygen Species and Pressure Ulcer Formation after Traumatic Injury to Spinal Cord and Brain. Antioxidants 2021, 10, 1013. [Google Scholar] [CrossRef] [PubMed]
- Gawlitta, D.; Oomens, C.W.J.; Bader, D.L.; Baaijens, F.P.T.; Bouten, C.V.C. Temporal differences in the influence of ischemic factors and deformation on the metabolism of engineered skeletal muscle. J. Appl. Physiol. 2007, 103, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, S.; Ichioka, S.; Sekiya, N.; Nakatsuka, T. Analysis of ischemia-reperfusion injury in a microcirculatory model of pressure ulcers. Wound Repair Regen. 2005, 13, 209–215. [Google Scholar] [CrossRef]
- Lotta, S.; Scelsi, L.; Scelsi, R. Microvascular changes in the lower extremities of paraplegics with heterotopic ossification. Spinal Cord 2001, 39, 595–598. [Google Scholar] [CrossRef]
- Huiming, G.; Yuming, W.; Mingliang, Y.; Changbin, L.; Qiuchen, H.; Jianjun, L. Study on the characteristics of microcirculation in the site of pressure ulcer in patients with spinal cord injury. Sci. Prog. 2021, 104, 003685042110287. [Google Scholar] [CrossRef]
- Benitez-Albiter, A.; Anderson, C.P.; Jones, M.; Park, S.S.; Layec, G.; Park, S.Y. Contributing Factors to Endothelial Dysfunction in Individuals with Spinal Cord Injuries. Pulse 2024, 12, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Scheja, L.; Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 2019, 15, 507–524. [Google Scholar] [CrossRef]
- Favaretto, F.; Bettini, S.; Busetto, L.; Milan, G.; Vettor, R. Adipogenic progenitors in different organs: Pathophysiological implications. Rev. Endocr. Metab. Disord. 2022, 23, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, R.; Rainer, P.; Deplancke, B. Toward a Consensus View of Mammalian Adipocyte Stem and Progenitor Cell Heterogeneity. Trends Cell Biol. 2020, 30, 937–950. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Gater, D.R. A Preliminary Report on the Effects of the Level of Spinal Cord Injury on the Association Between Central Adiposity and Metabolic Profile. PM&R 2011, 3, 440–446. [Google Scholar] [CrossRef]
- Farkas, G.J.; Gorgey, A.S.; Dolbow, D.R.; Berg, A.S.; Gater, D.R. Sex dimorphism in the distribution of adipose tissue and its influence on proinflammatory adipokines and cardiometabolic profiles in motor complete spinal cord injury. J. Spinal Cord Med. 2019, 42, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Cirnigliaro, C.M.; LaFountaine, M.F.; Dengel, D.R.; Bosch, T.A.; Emmons, R.R.; Kirshblum, S.C.; Sauer, S.; Asselin, P.; Spungen, A.M.; Bauman, W.A. Visceral adiposity in persons with chronic spinal cord injury determined by dual energy X-Ray absorptiometry. Obesity 2015, 23, 1811–1817. [Google Scholar] [CrossRef]
- Schwartz, K.; Henzel, M.K.; Richmond, M.A.; Zindle, J.K.; Seton, J.M.; Lemmer, D.P.; Alvarado, N.; Bogie, K.M. Biomarkers for recurrent pressure injury risk in persons with spinal cord injury. J. Spinal Cord Med. 2020, 43, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Dudley, G.A. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord 2007, 45, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Poarch, H.J.; Adler, R.A.; Khalil, R.E.; Gater, D.R. Femoral bone marrow adiposity and cortical bone cross-sectional areas in men with motor complete spinal cord injury. PM&R 2013, 5, 939–948. [Google Scholar] [CrossRef]
- Rosety-Rodriguez, M.; Camacho, A.; Rosety, I.; Fornieles, G.; Rosety, M.A.; Diaz, A.J.; Bernardi, M.; Rosety, M.; Ordonez, F.J. Low-Grade Systemic Inflammation and Leptin Levels Were Improved by Arm Cranking Exercise in Adults With Chronic Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2014, 95, 297–302. [Google Scholar] [CrossRef]
- Bank, M.; Stein, A.; Sison, C.; Glazer, A.; Jassal, N.; McCarthy, D.; Shatzer, M.; Hahn, B.; Chugh, R.; Davies, P.; et al. Elevated circulating levels of the pro-inflammatory cytokine macrophage migration inhibitory factor in individuals with acute spinal cord injury. Arch. Phys. Med. Rehabil. 2015, 96, 633–644. [Google Scholar] [CrossRef]
- Farkas, G.J.; Gorgey, A.S.; Dolbow, D.R.; Berg, A.S.; Gater, D.R. The influence of level of spinal cord injury on adipose tissue and its relationship to inflammatory adipokines and cardiometabolic profiles. J. Spinal Cord Med. 2018, 41, 407–415. [Google Scholar] [CrossRef]
- Farkas, G.J.; Gater, D.R. Neurogenic obesity and systemic inflammation following spinal cord injury: A review. J. Spinal Cord Med. 2018, 41, 378–387. [Google Scholar] [CrossRef]
- Wang, Y.H.; Huang, T.S.; Liang, H.W.; Su, T.C.; Chen, S.Y.; Wang, T.D. Fasting Serum Levels of Adiponectin, Ghrelin, and Leptin in Men with Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2005, 86, 1964–1968. [Google Scholar] [CrossRef] [PubMed]
- Alma, A.; Marconi, G.D.; Rossi, E.; Magnoni, C.; Paganelli, A. Obesity and Wound Healing: Focus on Mesenchymal Stem Cells. Life 2023, 13, 717. [Google Scholar] [CrossRef]
- Tencerova, M.; Frost, M.; Figeac, F.; Nielsen, T.K.; Ali, D.; Lauterlein, J.-J.L.; Andersen, T.L.; Haakonsson, A.K.; Rauch, A.; Madsen, J.S.; et al. Obesity-Associated Hypermetabolism and Accelerated Senescence of Bone Marrow Stromal Stem Cells Suggest a Potential Mechanism for Bone Fragility. Cell Rep. 2019, 27, 2050–2062.e6. [Google Scholar] [CrossRef]
- Klomjit, N.; Conley, S.M.; Zhu, X.Y.; Sadiq, I.M.; Libai, Y.; Krier, J.D.; Ferguson, C.M.; Jordan, K.L.; Tang, H.; Lerman, A.; et al. Effects of Obesity on Reparative Function of Human Adipose Tissue-Derived Mesenchymal Stem Cells on Ischemic Murine Kidneys. Int. J. Obes. 2022, 46, 1222–1233. [Google Scholar] [CrossRef]
- Pierpont, Y.N.; Dinh, T.P.; Salas, R.E.; Johnson, E.L.; Wright, T.G.; Robson, M.C.; Payne, W.G. Obesity and surgical wound healing: A current review. ISRN Obes. 2014, 2014, 638936. [Google Scholar] [CrossRef]
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.R.N.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic spinal cord injury. Nat. Rev. Dis. Prim. 2017, 3, 17018. [Google Scholar] [CrossRef] [PubMed]
- Trolle, C.; Goldberg, E.; Linnman, C. Spinal cord atrophy after spinal cord injury—A systematic review and meta-analysis. NeuroImage Clin. 2023, 38, 103372. [Google Scholar] [CrossRef] [PubMed]
- Lundell, H.; Barthelemy, D.; Skimminge, A.; Dyrby, T.B.; Biering-Sørensen, F.; Nielsen, J.B. Independent spinal cord atrophy measures correlate to motor and sensory deficits in individuals with spinal cord injury. Spinal Cord 2010, 49, 70–75. [Google Scholar] [CrossRef]
- Jutzeler, C.R.; Huber, E.; Callaghan, M.F.; Luechinger, R.; Curt, A.; Kramer, J.L.K.; Freund, P. Association of pain and CNS structural changes after spinal cord injury. Sci. Rep. 2016, 6, 18534. [Google Scholar] [CrossRef]
- Moore, C.D.; Craven, B.C.; Thabane, L.; Papaioannou, A.; Adachi, J.D.; Giangregorio, L.M. Does Muscle Atrophy and Fatty Infiltration Plateau or Persist in Chronic Spinal Cord Injury? J. Clin. Densitom. 2018, 21, 329–337. [Google Scholar] [CrossRef]
- Boehl, G.; Raguindin, P.F.; Valido, E.; Bertolo, A.; Itodo, O.A.; Minder, B.; Lampart, P.; Scheel-Sailer, A.; Leichtle, A.; Glisic, M.; et al. Endocrinological and inflammatory markers in individuals with spinal cord injury: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2022, 23, 1035–1050. [Google Scholar] [CrossRef]
- Thakore, N.P.; Samantaray, S.; Park, S.; Nozaki, K.; Smith, J.A.; Cox, A.; Krause, J.; Banik, N.L. Molecular changes in sub-lesional muscle following acute phase of spinal cord injury. Neurochem. Res. 2016, 41, 44–52. [Google Scholar] [CrossRef]
- Lin, S.; Zhou, Z.; Zhao, H.; Xu, C.; Guo, Y.; Gao, S.; Mei, X.; Tian, H. TNF promotes M1 polarization through mitochondrial metabolism in injured spinal cord. Free Radic. Biol. Med. 2021, 172, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Gensel, J.C.; Zhang, B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015, 1619, 1–11. [Google Scholar] [CrossRef]
- Drasites, K.P.; Shams, R.; Zaman, V.; Matzelle, D.; Shields, D.C.; Garner, D.P.; Sole, C.J.; Haque, A.; Banik, N.L. Pathophysiology, Biomarkers, and Therapeutic Modalities Associated with Skeletal Muscle Loss Following Spinal Cord Injury. Brain Sci. 2020, 10, 933. [Google Scholar] [CrossRef]
- Léger, B.; Senese, R.; Al-Khodairy, A.W.; Dériaz, O.; Gobelet, C.; Giacobino, J.; Russell, A.P. Atrogin-1, MuRF1, and FoXO, as well as phosphorylated GSK-3β and 4E-BP1 are reduced in skeletal muscle of chronic spinal cord–injured patients. Muscle Nerve 2009, 40, 69–78. [Google Scholar] [CrossRef]
- Invernizzi, M.; Carda, S.; Rizzi, M.; Grana, E.; Squarzanti, D.F.; Cisari, C.; Molinari, C.; Renò, F. Evaluation of serum myostatin and sclerostin levels in chronic spinal cord injured patients. Spinal Cord 2015, 53, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.K.; Hogan, E.L.; Banik, N.L. Calpain in the pathophysiology of spinal cord injury: Neuroprotection with calpain inhibitors. Brain Res. Rev. 2003, 42, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.-D.; Ren, W.; Sun, P.; Tian, L.; Zhang, L.; Zhang, J.; Li, J.-B.; Ye, X.-M. Spinal cord injury causes insulin resistance associated with PI3K signaling pathway in hypothalamus. Neurochem. Int. 2020, 140, 104839. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Davis, J.; Bersch, I.; Goldberg, G.; Gorgey, A.S. Electrical stimulation and denervated muscles after spinal cord injury. Neural Regen. Res. 2020, 15, 1397–1407. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.I.; Priego, T.; Moreno-Ruperez, Á.; González-Hedström, D.; Granado, M.; López-Calderón, A. IGF-1 and IGFBP-3 in Inflammatory Cachexia. Int. J. Mol. Sci. 2021, 22, 9469. [Google Scholar] [CrossRef] [PubMed]
- Gefen, A. Reswick and Rogers pressure-time curve for pressure ulcer risk. Part 1. Nurs. Stand. 2009, 23, 64–74. [Google Scholar] [CrossRef]
- Cha, Y.-H.; Song, S.-Y.; Park, K.-S.; Yoo, J.-I. Relationship between pressure ulcer risk and sarcopenia in patients with hip fractures. J. Wound Care 2022, 31, 532–536. [Google Scholar] [CrossRef]
- Morse, L.R.; Biering-Soerensen, F.; Carbone, L.D.; Cervinka, T.; Cirnigliaro, C.M.; Johnston, T.E.; Liu, N.; Troy, K.L.; Weaver, F.M.; Shuhart, C.; et al. Bone Mineral Density Testing in Spinal Cord Injury: 2019 ISCD Official Position. J. Clin. Densitom. 2019, 22, 554–566. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Findlay, D.M. Musculoskeletal Health in the Context of Spinal Cord Injury. Curr. Osteoporos. Rep. 2017, 15, 433–442. [Google Scholar] [CrossRef]
- Abdelrahman, S.; Purcell, M.; Rantalainen, T.; Coupaud, S.; Ireland, A. Regional and temporal variation in bone loss during the first year following spinal cord injury. Bone 2023, 171, 116726. [Google Scholar] [CrossRef] [PubMed]
- Warden, S.J.; Bennell, K.L.; Matthews, B.; Brown, D.J.; McMeeken, J.M.; Wark, J.D. Quantitative ultrasound assessment of acute bone loss following spinal cord injury: A longitudinal pilot study. Osteoporos. Int. 2002, 13, 586–592. [Google Scholar] [CrossRef]
- Edwards, W.B.; Schnitzer, T.J.; Troy, K.L. Reduction in Proximal Femoral Strength in Patients With Acute Spinal Cord Injury. J. Bone Miner. Res. 2014, 29, 2074–2079. [Google Scholar] [CrossRef] [PubMed]
- Abderhalden, L.; Weaver, F.M.; Bethel, M.; Demirtas, H.; Burns, S.; Svircev, J.; Hoenig, H.; Lyles, K.; Miskevics, S.; Carbone, L.D. Dual-energy X-ray absorptiometry and fracture prediction in patients with spinal cord injuries and disorders. Osteoporos. Int. 2016, 28, 925–934. [Google Scholar] [CrossRef]
- Han, S.; Shin, S.; Kim, O.; Hong, N. Characteristics Associated with Bone Loss after Spinal Cord Injury: Implications for Hip Region Vulnerability. Endocrinol. Metab. 2023, 38, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Vlychou, M.; Papadaki, P.; Zavras, G.; Vasiou, K.; Kelekis, N.; Malizos, K.; Fezoulidis, I. Paraplegia-related alterations of bone density in forearm and hip in Greek patients after spinal cord injury. Disabil. Rehabil. 2003, 25, 324–330. [Google Scholar] [CrossRef]
- Eser, P.; Frotzler, A.; Zehnder, Y.; Wick, L.; Knecht, H.; Denoth, J.; Schiessl, H. Relationship between the duration of paralysis and bone structure: A pQCT study of spinal cord injured individuals. Bone 2004, 34, 869–880. [Google Scholar] [CrossRef]
- Javidan, A.N.; Sabour, H.; Latifi, S.; Shidfar, F.; Vafa, M.R.; Heshmat, R.; Razavi, H.E.; Larijani, B.; Meybodi, H.A. Evaluation of bone mineral loss in patients with chronic traumatic spinal cord injury in Iran. J. Spinal Cord Med. 2014, 37, 744–750. [Google Scholar] [CrossRef]
- El-Kotob, R.; Craven, B.C.; Thabane, L.; Papaioannou, A.; Adachi, J.D.; Giangregorio, L.M. Exploring changes in bone mass in individuals with a chronic spinal cord injury. Osteoporos. Int. 2021, 32, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Shou, P.; Zheng, C.; Jiang, M.; Cao, G.; Yang, Q.; Cao, J.; Xie, N.; Velletri, T.; Zhang, X.; et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ. 2016, 23, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, H.; Gu, C.; Huang, W.; Chen, X.; Lu, X.; You, A.; Ye, S.; Zhong, J.; Zhao, Y.; et al. Film-forming polymer solutions containing cholesterol myristate and berberine mediate pressure ulcer repair via the Wnt/β-catenin pathway. Wound Repair Regen. 2024, 32, 279–291. [Google Scholar] [CrossRef]
- Maïmoun, L.; Ben Bouallègue, F.; Gelis, A.; Aouinti, S.; Mura, T.; Philibert, P.; Souberbielle, J.-C.; Piketty, M.; Garnero, P.; Mariano-Goulart, D.; et al. Periostin and sclerostin levels in individuals with spinal cord injury and their relationship with bone mass, bone turnover, fracture and osteoporosis status. Bone 2019, 127, 612–619. [Google Scholar] [CrossRef]
- Bagis, S.; Sahin, G.; Aybay, C.; Karagoz, A. Bone metabolism in patients with spinal cord injury. Turkish J. Reum. 2002, 17, 168–173. Available online: https://archivesofrheumatology.org/abstract/25 (accessed on 18 January 2024).
- Sabour, H.; Javidan, A.N.; Latifi, S.; Larijani, B.; Shidfar, F.; Vafa, M.R.; Heshmat, R.; Razavi, H.E. Bone biomarkers in patients with chronic traumatic spinal cord injury. Spine J. 2014, 14, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Flueck, J.L.; Perret, C. Vitamin D deficiency in individuals with a spinal cord injury: A literature review. Spinal Cord 2016, 55, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Yolcu, Y.U.; Yolcu, Y.U.; Wahood, W.; Wahood, W.; Goyal, A.; Goyal, A.; Alvi, M.A.; Alvi, M.A.; Reeves, R.K.; Reeves, R.K.; et al. Factors Associated with Higher Rates of Heterotopic Ossification after Spinal Cord Injury: A Systematic Review and Meta-Analysis. Clin. Neurol. Neurosurg. 2020, 195, 105821. [Google Scholar] [CrossRef]
- Yang, K.; Graf, A.; Sanger, J. Pressure ulcer reconstruction in patients with heterotopic ossification after spinal cord injury: A case series and review of literature. J. Plast. Reconstr. Aesthetic. Surg. 2017, 70, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Furman, R.; Nicholas, J.; Jivoff, L. Elevation of the Serum Alkaline Phosphatase Coincident with Ectopic-Bone Formation in Paraplegic Patients. J. Bone Jt. Surg. 1970, 6, 1131–1137. Available online: https://journals.lww.com/jbjsjournal/abstract/1970/52060/elevation_of_the_serum_alkaline_phosphatase.5.aspx (accessed on 16 January 2024). [CrossRef]
- Tseng, H.-W.; Kulina, I.; Girard, D.; Gueguen, J.; Vaquette, C.; Salga, M.; Fleming, W.; Jose, B.; Millard, S.M.; Pettit, A.R.; et al. Interleukin-1 Is Overexpressed in Injured Muscles Following Spinal Cord Injury and Promotes Neurogenic Heterotopic Ossification. J. Bone Miner. Res. 2020, 37, 531–546. [Google Scholar] [CrossRef] [PubMed]
- Allison, D.J.; Ditor, D.S. Immune dysfunction and chronic inflammation following spinal cord injury. Spinal Cord 2014, 53, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Schwab, J.M.; Zhang, Y.; Kopp, M.A.; Brommer, B.; Popovich, P.G. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp. Neurol. 2014, 258, 121–129. [Google Scholar] [CrossRef]
- Valido, E.; Boehl, G.; Krebs, J.; Pannek, J.; Stojic, S.; Atanasov, A.G.; Glisic, M.; Stoyanov, J. Immune Status of Individuals with Traumatic Spinal Cord Injury: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 16385. [Google Scholar] [CrossRef]
- Meisel, C.; Schwab, J.M.; Prass, K.; Meisel, A.; Dirnagl, U. Central nervous system injury-induced immune deficiency syndrome. Nat. Rev. Neurosci. 2005, 6, 775–786. [Google Scholar] [CrossRef]
- Grassner, L.; Klein, B.; Garcia-Ovejero, D.; Mach, O.; Scheiblhofer, S.; Weiss, R.; Vargas-Baquero, E.; Kramer, J.L.; Leister, I.; Rohde, E.; et al. Systemic Immune Profile Predicts the Development of Infections in Patients with Spinal Cord Injuries. J. Neurotrauma 2022, 39, 1678–1686. [Google Scholar] [CrossRef]
- Bloom, O.; Herman, P.E.; Spungen, A.M. Systemic inflammation in traumatic spinal cord injury. Exp. Neurol. 2020, 325, 113143. [Google Scholar] [CrossRef] [PubMed]
- Kanyilmaz, S.; Hepguler, S.; Atamaz, F.C.; Gokmen, N.M.; Ardeniz, O.; Sin, A. Phagocytic and oxidative burst activity of neutrophils in patients with spinal cord injury. Arch. Phys. Med. Rehabilit. 2013, 94, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Diaz, D.; Lopez-Dolado, E.; Haro, S.; Monserrat, J.; Martinez-Alonso, C.; Balomeros, D.; Albillos, A.; Alvarez-Mon, M. Systemic Inflammation and the Breakdown of Intestinal Homeostasis Are Key Events in Chronic Spinal Cord Injury Patients. Int. J. Mol. Sci. 2021, 22, 744. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.; Pinpin, C.; Lee, A.; Sison, C.P.; Chory, A.; Gregersen, P.K.; Forrest, G.F.; Kirshblum, S.; Harkema, S.J.; Boakye, M.; et al. Profiling Immunological Phenotypes in Individuals During the First Year After Traumatic Spinal Cord Injury: A Longitudinal Analysis. J. Neurotrauma 2023, 40, 2621–2637. [Google Scholar] [CrossRef] [PubMed]
- Fraussen, J.; Beckers, L.; van Laake-Geelen, C.C.M.; Depreitere, B.; Deckers, J.; Cornips, E.M.J.; Peuskens, D.; Somers, V. Altered Circulating Immune Cell Distribution in Traumatic Spinal Cord Injury Patients in Relation to Clinical Parameters. Front. Immunol. 2022, 13, 873315. [Google Scholar] [CrossRef] [PubMed]
- Iversen, P.O.; Hjeltnes, N.; Holm, B.; Flatebø, T.; Strøm-Gundersen, I.; Rønning, W.; Stanghelle, J.; Benestad, H.B. Depressed immunity and impaired proliferation of hematopoietic progenitor cells in patients with complete spinal cord injury. Blood 2000, 96, 2081–2083. [Google Scholar] [CrossRef]
- Melero-Martin, J.M.; De Obaldia, M.E.; Allen, P.; Dudley, A.C.; Klagsbrun, M.; Bischoff, J. Host Myeloid Cells Are Necessary for Creating Bioengineered Human Vascular Networks In Vivo. Tissue Eng. Part A 2010, 16, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.-Z.; Lee, C.N.; Moreno-Luna, R.; Neumeyer, J.; Piekarski, B.; Zhou, P.; Moses, M.A.; Sachdev, M.; Pu, W.T.; Emani, S.; et al. Host non-inflammatory neutrophils mediate the engraftment of bioengineered vascular networks. Nat. Biomed. Eng. 2017, 1, 81. [Google Scholar] [CrossRef]
- Vair, A.; Keast, D.; LeMesurier, A. The Prevalence of Anemia of Chronic Disease in Patients With Spinal Cord Injuries and Pressure Ulcers and the Impact of Erythropoietin Supplementation on Wound Healing: A Descriptive Pilot Study. Wound Manag. Prev. 2015, 61, 16–26. [Google Scholar]
- Valido, E.; Bertolo, A.; Fränkl, G.P.; Itodo, O.A.; Pinheiro, T.; Pannek, J.; Kopp-Heim, D.; Glisic, M.; Stoyanov, J. Systematic review of the changes in the microbiome following spinal cord injury: Animal and human evidence. Spinal Cord 2022, 60, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Cruse, J.M.; Lewis, R.E.; Dilioglou, S.; Roe, D.L.; Wallace, W.F.; Chen, R.S. Review of Immune Function, Healing of Pressure Ulcers, and Nutritional Status in Patients with Spinal Cord Injury. J. Spinal Cord Med. 2000, 23, 129–135. [Google Scholar] [CrossRef]
- Sun, X.; Jones, Z.B.; Chen, X.-M.; Zhou, L.; So, K.-F.; Ren, Y. Multiple organ dysfunction and systemic inflammation after spinal cord injury: A complex relationship. J. Neuroinflamm. 2016, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.; Aguilar-Cevallos, J.; Silva-Garcia, R.; Ibarra, A. Cytokine and Growth Factor Activation In Vivo and In Vitro after Spinal Cord Injury. Mediators Inflamm. 2016, 2016, 9476020. [Google Scholar] [CrossRef] [PubMed]
- Dana, A.N.; Bauman, W.A. Bacteriology of pressure ulcers in individuals with spinal cord injury: What we know and what we should know. J. Spinal Cord Med. 2013, 38, 147–160. [Google Scholar] [CrossRef]
- Dunyach-Remy, C.; Salipante, F.; Lavigne, J.-P.; Brunaud, M.; Demattei, C.; Yahiaoui-Martinez, A.; Bastide, S.; Palayer, C.; Sotto, A.; Gélis, A. Pressure ulcers microbiota dynamics and wound evolution. Sci. Rep. 2021, 11, 18506. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.C.; Stenberg, B.D.; Heggers, J.P. Wound Healing Alterations Caused by Infection. Clin. Plast. Surg. 1990, 17, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Koskela, M.; Gäddnäs, F.; I Ala-Kokko, T.; Laurila, J.J.; Saarnio, J.; Oikarinen, A.; Koivukangas, V. Epidermal wound healing in severe sepsis and septic shock in humans. Crit. Care 2009, 13, R100. [Google Scholar] [CrossRef] [PubMed]
- Herzmann, N.; Salamon, A.; Fiedler, T.; Peters, K. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation. Exp. Cell Res. 2017, 350, 115–122. [Google Scholar] [CrossRef]
- Fiedler, T.; Salamon, A.; Adam, S.; Herzmann, N.; Taubenheim, J.; Peters, K. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Exp. Cell Res. 2013, 319, 2883–2892. [Google Scholar] [CrossRef]
- Martínez-Torija, M.; Esteban, P.F.; Espino-Rodríguez, F.J.; Paniagua-Torija, B.; Molina-Holgado, E.; Ceruelo, S.; Barroso-Garcia, G.; Arandilla, A.G.; Lopez-Almodovar, L.F.; Arevalo-Martin, A.; et al. Post-COVID Complications after Pressure Ulcer Surgery in Patients with Spinal Cord Injury Associate with Creatine Kinase Upregulation in Adipose Tissue. Cells 2022, 11, 1282. [Google Scholar] [CrossRef] [PubMed]
- Bucholz, A.; Pencharz, P. Energy expenditure in chronic spinal cord injury. Curr. Opin. Clin. Nutr. Metab. Care 2004, 6, 635–659. Available online: https://journals.lww.com/co-clinicalnutrition/abstract/2004/11000/energy_expenditure_in_chronic_spinal_cord_injury.8.aspx (accessed on 8 February 2024). [CrossRef] [PubMed]
- Karlsson, A.K. Insulin resistance and sympathetic function in high spinal cord injury. Spinal Cord 1999, 37, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Bauman, W.A.; Spungen, A.M. Invited Review Carbohydrate and Lipid Metabolism in Chronic Spinal Cord Injury. J. Spinal Cord Med. 2001, 24, 266–277. [Google Scholar] [CrossRef]
- Stillman, M.; Graves, D.; Lenneman, C.; Williams, S. Neurogenic bowel, disordered glycemic control and chronic spinal cord injury: A preliminary investigation. Phys. Med. Rehabil. Int. 2017, 4, 1113. [Google Scholar] [CrossRef]
- Stillman, M.; Babapoor-Farrokhran, S.; Goldberg, R.; Gater, D.R. A Provider’s Guide to Vascular Disease, Dyslipidemia, and Glycemic Dysregulation in Chronic Spinal Cord Injury. Top. Spinal Cord Inj. Rehabil. 2020, 26, 203. [Google Scholar] [CrossRef]
- Raguindin, P.F.; Fränkl, G.; Itodo, O.A.; Bertolo, A.; Zeh, R.M.; Capossela, S.; Minder, B.; Stoyanov, J.; Stucki, G.; Franco, O.H.; et al. The neurological level of spinal cord injury and cardiovascular risk factors: A systematic review and meta-analysis. Spinal Cord 2021, 59, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, L.C.; Gorgey, A.S. Skeletal muscle mitochondrial health and spinal cord injury. World J. Orthop. 2016, 7, 628. [Google Scholar] [CrossRef] [PubMed]
- Farkas, G.J.; Pitot, M.A.; Berg, A.S.; Gater, D.R. Nutritional status in chronic spinal cord injury: A systematic review and meta-analysis. Spinal Cord 2019, 57, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Canchy, L.; Kerob, D.; Demessant, A.; Amici, J.M. Wound healing and microbiome, an unexpected relationship. J. Eur. Acad. Dermatol. Venereol. 2023, 37 (Suppl. S3), 7–15. [Google Scholar] [CrossRef] [PubMed]
- Heinzelmann, M.; Scott, M.; Lam, T. Factors predisposing to bacterial invasion and infection. Am. J. Surg. 2002, 183, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Derry, F.; Jamous, A.; Hirani, S.P.; Grimble, G.; Forbes, A. Validation of the spinal nutrition screening tool (SNST) in patients with spinal cord injuries (SCI): Result from a multicentre study. Eur. J. Clin. Nutr. 2012, 66, 382–387. [Google Scholar] [CrossRef]
- Shin, J.C.; Chang, S.H.; Hwang, S.W.; Lee, J.J. The Nutritional Status and the Clinical Outcomes of Patients With a Spinal Cord Injury Using Nutritional Screening Tools. Ann. Rehabil. Med. 2018, 42, 591–600. [Google Scholar] [CrossRef]
- Wong, S.; Derry, F.; Grimble, G.; Forbes, A. How do spinal cord injury centres manage malnutrition? A cross-sectional survey of 12 regional centres in the United Kingdom and Ireland. Spinal Cord 2012, 50, 132–135. [Google Scholar] [CrossRef]
- Flury, I.; Mueller, G.; Perret, C. The risk of malnutrition in patients with spinal cord injury during inpatient rehabilitation—A longitudinal cohort study. Front. Nutr. 2023, 10, 1085638. [Google Scholar] [CrossRef] [PubMed]
- Janis, J.E.; Harrison, B. Wound Healing: Part I. Basic Science. Plast. Reconstr. Surg. 2016, 138, 9S–17S. [Google Scholar] [CrossRef] [PubMed]
- Saghaleini, S.H.; Dehghan, K.; Shadvar, K.; Sanaie, S.; Mahmoodpoor, A.; Ostadi, Z. Pressure Ulcer and Nutrition. Indian J. Crit. Care Med. 2018, 22, 283–289. [Google Scholar] [CrossRef]
- Bárbara-Bataller, E.; Méndez-Suárez, J.L.; Alemán-Sánchez, C.; Peñaloza-Polo, P.; Sánchez-Enríquez, J.; Saavedra-Santana, P. Predictive factors of destination at discharge after spinal cord injury. Neurologia 2024, 39, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Consortium for Spinal Cord Medicine Clinical Practice Guidelines. Pressure ulcer prevention and treatment following spinal cord injury: A clinical practice guideline for health-care professionals. J. Spinal Cord Med. 2001, 24 (Suppl. S1), S40–S101. [Google Scholar] [CrossRef]
- Falanga, V.; Isseroff, R.R.; Soulika, A.M.; Romanelli, M.; Margolis, D.; Kapp, S.; Granick, M.; Harding , K. Chronic wounds. Nat. Rev. Dis. Prim. 2022, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- García-Fernández, F.P.; Agreda, J.J.S.; Verdú, J.; Pancorbo-Hidalgo, P.L. A new theoretical model for the development of pressure ulcers and other dependence-related lesions. J. Nurs. Sch. 2013, 46, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Baranowska-Tateno, K.; Micek, A.; Gniadek, A.; Wójkowska-Mach, J.; Różańska, A. Healthcare-Associated Infections and Prevention Programs in General Nursing versus Residential Homes-Results of the Point Prevalence Survey in Polish Long-Term Care Facilities. Medicina 2024, 60, 137. [Google Scholar] [CrossRef]
- Kennelly, M.; Thiruchelvam, N.; Averbeck, M.A.; Konstatinidis, C.; Chartier-Kastler, E.; Trøjgaard, P.; Vaabengaard, R.; Krassioukov, A.; Jakobsen, B.P. Adult Neurogenic Lower Urinary Tract Dysfunction and Intermittent Catheterisation in a Community Setting: Risk Factors Model for Urinary Tract Infections. Adv. Urol. 2019, 2019, 2757862. [Google Scholar] [CrossRef] [PubMed]
- Todda, C.L.; E Johnsona, E.; Stewart, F.; A Wallace, S.; Bryant, A.; Woodward, S.; Norton, C. Conservative, physical and surgical interventions for managing faecal incontinence and constipation in adults with central neurological diseases. Cochrane Database Syst. Rev. 2024, 10, CD002115. [Google Scholar] [CrossRef]
- Norton, L.; Parslow, N.; Johnston, D.; Ho, C.; Afalavi, A.; Mark, M.; O’Sullivan-Drombolis, D.; Moffatt, S. Best practice recommendations for the prevention and management of pressure injuries. In Foundations of Best Practice for Skin and Wound Management A Supplement of Wound Care Canada; Wounds Canada: North York, ON, Canada, 2017; p. 64. Available online: https://www.woundscanada.ca/docman/public/health-care-professional/bpr-workshop/172-bpr-prevention-and-management-of-pressure-injuries-2/file (accessed on 15 December 2024).
- Meier, C.; Boes, S.; Gemperli, A.; Gmünder, H.P.; Koligi, K.; Metzger, S.; Schaefer, D.J.; Schmitt, K.; Schwegmann, W.; Wettstein, R.; et al. Treatment and cost of pressure injury stage III or IV in four patients with spinal cord injury: The Basel Decubitus Concept. Spinal Cord Ser. Cases 2019, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Fähndrich, C.; Gemperli, A.; Baumberger, M.; Bechtiger, M.; Roth, B.; Schaefer, D.J.; Wettstein, R.; Scheel-Sailer, A. Treatment approaches of stage III and IV pressure injury in people with spinal cord injury: A scoping review. J. Spinal Cord Med. 2023, 46, 705–715. [Google Scholar] [CrossRef]
- Perez-Lopez, S.; Perez-Basterrechea, M.; Garcia-Gala, J.M.; Martinez-Revuelta, E.; Fernandez-Rodriguez, A.; Alvarez-Viejo, M. Stem cell and tissue engineering approaches in pressure ulcer treatment. J. Spinal Cord Med. 2023, 46, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Torres-Guzman, R.A.; Avila, F.R.; Maita, K.; Garcia, J.P.; De Sario, G.D.; Borna, S.; Eldaly, A.S.; Quinones-Hinojosa, A.; Zubair, A.C.; Ho, O.A.; et al. Mesenchymal Stromal Cell Healing Outcomes in Clinical and Pre-Clinical Models to Treat Pressure Ulcers: A Systematic Review. J. Clin. Med. 2023, 12, 7545. [Google Scholar] [CrossRef] [PubMed]
- Marfia, G.; Navone, S.E.; Di Vito, C.; Ughi, N.; Tabano, S.; Miozzo, M.; Tremolada, C.; Bolla, G.; Crotti, C.; Ingegnoli, F.; et al. Mesenchymal stem cells: Potential for therapy and treatment of chronic non-healing skin wounds. Organogenesis 2015, 11, 183–206. [Google Scholar] [CrossRef]
- Assi, R.; Foster, T.R.; He, H.; Stamati, K.; Bai, H.; Huang, Y.; Hyder, F.; Rothman, D.; Shu, C.; Homer-Vanniasinkam, S.; et al. Delivery of mesenchymal stem cells in biomimetic engineered scaffolds promotes healing of diabetic ulcers. Regen. Med. 2016, 11, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Condé-Green, A.; Marano, A.A.; Lee, E.S.; Reisler, T.; Price, L.A.; Milner, S.M.; Granick, M.S. Fat Grafting and Adipose-Derived Regenerative Cells in Burn Wound Healing and Scarring: A Systematic Review of the Literature. Plast. Reconstr. Surg. 2016, 137, 302–312. [Google Scholar] [CrossRef]
- Zollino, I.; Campioni, D.; Sibilla, M.G.; Tessari, M.; Malagoni, A.M.; Zamboni, P. A phase II randomized clinical trial for the treatment of recalcitrant chronic leg ulcers using centrifuged adipose tissue containing progenitor cells. Cytotherapy 2019, 21, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.; Ibrahim, A.; Bulstrode, N.W.; Ferretti, P. An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing. Int. Wound J. 2017, 14, 450–459. [Google Scholar] [CrossRef]
- Tonnesen, M.G.; Feng, X.; Clark, R.A.F. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc. 2000, 5, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.Z.; Moreno-Luna, R.; Zhou, B.; Pu, W.T.; Melero-Martin, J.M. Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells. Angiogenesis 2012, 15, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.Z.; Moreno-Luna, R.; Li, D.; Jaminet, S.C.; Greene, A.K.; Melero-Martin, J.M. Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proc. Natl. Acad. Sci. USA 2014, 111, 10137–10142. [Google Scholar] [CrossRef]
- Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007, 449, 557–563. [Google Scholar] [CrossRef]
- Swamydas, M.; Ricci, K.; Rego, S.L.; Dréau, D. Mesenchymal stem cell-derived CCL-9 and CCL-5 promote mammary tumor cell invasion and the activation of matrix metalloproteinases. Cell Adhes. Migr. 2013, 7, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Schipper, B.M.; Marra, K.G.; Zhang, W.; Donnenberg, A.D.; Rubin, J.P. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann. Plast. Surg. 2008, 60, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qi, L.; Bao, S.; Yan, F.; Chen, J.; Yu, S.; Dong, C. The acute spinal cord injury microenvironment and its impact on the homing of mesenchymal stem cells. Exp. Neurol. 2024, 373, 114682. [Google Scholar] [CrossRef] [PubMed]
- Thamm, O.C.; Koenen, P.; Bader, N.; Schneider, A.; Wutzler, S.; Neugebauer, E.A.; Spanholtz, T.A. Acute and chronic wound fluids influence keratinocyte function differently. Int. Wound J. 2013, 12, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Koenen, P.; A Spanholtz, T.; Maegele, M.; Stürmer, E.; Brockamp, T.; Neugebauer, E.; Thamm, O.C. Acute and chronic wound fluids inversely influence adipose-derived stem cell function: Molecular insights into impaired wound healing. Int. Wound J. 2013, 12, 10–16. [Google Scholar] [CrossRef]
- Carpenter, R.S.; Marbourg, J.M.; Brennan, F.H.; Mifflin, K.A.; Hall, J.C.E.; Jiang, R.R.; Mo, X.M.; Karunasiri, M.; Burke, M.H.; Dorrance, A.M.; et al. Spinal cord injury causes chronic bone marrow failure. Nat. Commun. 2020, 11, 3702. [Google Scholar] [CrossRef] [PubMed]
- Fahy, N.; de Vries-van Melle, M.; Lehmann, J.; Wei, W.; Grotenhuis, N.; Farrell, E.; van der Kraan, P.M.; Murphy, J.M.; Bastiaansen-Jenniskens, Y.M.; van Osch, G.J. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthr. Cartil. 2014, 22, 1167–1175. [Google Scholar] [CrossRef]
- Funes, S.C.; Rios, M.; Escobar-Vera, J.; Kalergis, A.M. Implications of macrophage polarization in autoimmunity. Immunology 2018, 154, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.; Akhavan, N.S.; Mullins, A.P.; Arjmandi, B.H. Macrophage Polarization and Osteoporosis: A Review. Nutrients 2020, 12, 2999. [Google Scholar] [CrossRef]
- Yamashita, Y.; Nagasaka, S.; Mineda, K.; Abe, Y.; Hashimoto, I. Risk factors for early wound dehiscence by surgical site infection after pressure ulcer surgery. J. Med. Investig. 2023, 70, 101–104. [Google Scholar] [CrossRef]
- Percival, S.L. Importance of biofilm formation in surgical infection. Br. J. Surg. 2017, 104, e85–e94. [Google Scholar] [CrossRef] [PubMed]
- Schreml, S.; Szeimies, R.M.; Prantl, L.; Karrer, S.; Landthaler, M.; Babilas, P. Oxygen in acute and chronic wound healing. Br. J. Dermatol. 2010, 163, 257–268. [Google Scholar] [CrossRef]
System/Tissue | Pathophysiological Changes | Consequences in Pressure Injuries |
---|---|---|
Vascular | ↓ Vascular caliber and blood flow. Microcirculation alterations and endothelial dysfunction. Generation of reactive oxygen species (ROS) and soluble tumor necrosis factor-alpha (sTNFα). | Tissue ischemia and necrosis. Chronic hypoxia impairing cell regeneration. Cellular damage due to oxidative stress. |
Adipose Tissue | ↑ Total adiposity, especially visceral fat. Elevated TNF and IL-6 production. Tissue hypoxia due to low capillary density. ↑ Fatty acid-binding protein (FABP). | Decreased mesenchymal stem cell functionality. Ischemia and increased susceptibility to tissue necrosis. Chronic inflammatory response interfering with healing. |
Muscle Tissue | ↓ Muscle mass and ↑ intramuscular fat. Conversion of type I fibers to type IIb. ↓ IGF-1 and ↑ inflammatory mediators. | Reduced protection over bony prominences. Greater tissue deformation under pressure. Increased risk of deep ulcers and poor healing. |
Bone Tissue | ↓ Bone mineral density (osteoporosis). Formation of heterotopic ossification. ↓ Vitamin D and osteocalcin. | Increased risk of fractures and additional pressure points. Reduced bone resistance and structural support. Greater susceptibility to pressure ulcers over bony prominences. |
Immune System and Microbiota | Chronic inflammatory state (↑ IL-6, TNF-α). Immune suppression (↓ neutrophils, monocytes, NK cells). Alterations in skin microbiota (Gram-negative bacteria, antibiotic resistance). Lipopolysaccharides link to MSCs. | Inhibited macrophage transition to M2 phenotype, delaying healing. Increased susceptibility to infections. Bacterial colonization of wounds and biofilm formation. MSCs differentiation toward heterotopic ossification. |
Endocrine and Metabolism | Insulin resistance. ↓ IGF-1 and testosterone production. Decreased basal energy expenditure and lipid metabolism alterations. Changes to pathological lipid and cholesterol profile. | Impaired tissue regeneration. Predisposition to obesity and metabolic syndrome. Increased proinflammatory adipokines, worsening inflammation. Development of hypertension and atherosclerosis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Torija, M.; Esteban, P.F.; Santos-de-la-Mata, A.; Castillo-Hermoso, M.; Molina-Holgado, E.; Moreno-Luna, R. Multifaceted Pathophysiology and Secondary Complications of Chronic Spinal Cord Injury: Focus on Pressure Injury. J. Clin. Med. 2025, 14, 1556. https://doi.org/10.3390/jcm14051556
Martínez-Torija M, Esteban PF, Santos-de-la-Mata A, Castillo-Hermoso M, Molina-Holgado E, Moreno-Luna R. Multifaceted Pathophysiology and Secondary Complications of Chronic Spinal Cord Injury: Focus on Pressure Injury. Journal of Clinical Medicine. 2025; 14(5):1556. https://doi.org/10.3390/jcm14051556
Chicago/Turabian StyleMartínez-Torija, Mario, Pedro F. Esteban, Angela Santos-de-la-Mata, Matilde Castillo-Hermoso, Eduardo Molina-Holgado, and Rafael Moreno-Luna. 2025. "Multifaceted Pathophysiology and Secondary Complications of Chronic Spinal Cord Injury: Focus on Pressure Injury" Journal of Clinical Medicine 14, no. 5: 1556. https://doi.org/10.3390/jcm14051556
APA StyleMartínez-Torija, M., Esteban, P. F., Santos-de-la-Mata, A., Castillo-Hermoso, M., Molina-Holgado, E., & Moreno-Luna, R. (2025). Multifaceted Pathophysiology and Secondary Complications of Chronic Spinal Cord Injury: Focus on Pressure Injury. Journal of Clinical Medicine, 14(5), 1556. https://doi.org/10.3390/jcm14051556