Circulating Biomarkers of Thyroid Cancer: An Appraisal
Abstract
:1. Introduction
2. Thyroid Cancer
3. Blood Biomarkers in Thyroid Cancer: State of Art
3.1. Thyroglobulin
3.2. Calcitonin
3.3. Carcinoembryonic Antigen
3.4. Carbohydrate Antigen 19-9
4. Emerging Blood Biomarkers in Thyroid Cancer
4.1. Circulating Tumor Cells
4.2. ctNAs
4.2.1. ctDNAs
4.2.2. ctRNAs
Circulating ncRNA | Thyroid Tumor | Expression Level | Biological Matrix | References |
---|---|---|---|---|
miR-1 | PTC | ↑ | Plasma-derived exosomes | [214] |
miR-7 | MTC | ↑ | Serum | [177] |
miR-10 | PTC | ↑ | Serum, Plasma-derived exosomes | [186,215] |
miR-16 | PTC | ↓ | Plasma-derived exosomes | [180] |
miR-17 | MTC, PTC | ↑ | Serum | [180] |
miR-21 | FTC, PTC | ↑↓ | Serum, Plasma-derived exosomes | [185,218] |
miR-24 | PTC | ↑↓ | Serum, Serum-derived exosomes | [181,211] |
miR-25 | PTC | ↑ | Plasma | [188] |
miR-26 | MTC | ↑ | Plasma | [179] |
miR-28 | PTC | ↑ | Serum | [181] |
miR-29 | PTC | ↓ | Serum, Serum-derived exosomes | [187,213] |
miR-31 | FTC, PTC | ↑ | Serum, Plasma-derived exosomes | [185,218] |
miR-34 | MTC, PTC | ↑↓ | Plasma, Plasma-derived exosomes | [178,212,215] |
miR-95 | PTC | ↓ | Serum | [187] |
miR-103 | PTC | ↑ | Serum | [181] |
miR-126 | PTC | ↑ | Plasma-derived exosomes | [218] |
miR127 | PTC | ↑ | Serum-derived exosomes | [211] |
miR-132 | PTC | ↓ | Serum | [180] |
miR-140 | PTC | ↑ | Plasma | [188] |
miR-144 | MTC | ↑ | Plasma, Serum | [177,178] |
miR-145 | PTC | ↑ | Plasma/Serum-derived exosomes | [216,218] |
miR-146 family | PTC | ↑↓ | Plasma, Serum, Plasma/Serum-derived exosomes | [180,181,183,184,186,211,212,218,219] |
miR-151 | PTC | ↑ | Serum | [182,185] |
miR-181 | FTC, PTC | ↑↓ | Plasma, Plasma/Serum-derived exosomes | [184,211,218] |
miR-182 | PTC | ↓ | Plasma-derived exosomes | [212] |
miR-183 | PTC | ↓ | Serum | [180] |
miR-190 | PTC | ↓ | Serum | [187] |
miR-191 | PTC | ↑ | Serum | [181] |
miR-199 | PTC | ↓ | Serum | [186] |
miR-206 | PTC | ↑ | Plasma-derived exosomes | [214] |
miR-221 | PTC | ↑ | Serum, Plasma-derived exosomes/EVs | [181,185,214,218] |
miR-222 | MTC, PTC | ↑ | Plasma, Serum | [180,181,182,183,184,185,219] |
miR-223 | PTC | ↓ | Plasma-derived exosomes | [212] |
miR-335 | MTC | ↑ | Serum | [177] |
miR-346 | PTC | ↑ | Plasma-derived exosomes | [186,215] |
miR-375 | MTC | ↑ | Plasma, Serum | [175,176] |
miR376 | PTC | ↑ | Plasma/Serum-derived exosomes | [211,217] |
miR382 | PTC | ↓ | Serum-derived exosomes | [211] |
miR-451 | MTC, PTC | ↑ | Plasma, Serum | [179,180,188] |
miR485 | PTC | ↑ | Plasma-derived exosomes | [217] |
miR-579 | PTC | ↓ | Serum | [187] |
miR4306 | PTC | ↑ | Plasma-derived exosomes | [217] |
miR4433 | PTC | ↑ | Plasma-derived exosomes | [217] |
miR6774 | PTC | ↑ | Plasma-derived exosomes | [220] |
miR6879 | PTC | ↑ | Plasma-derived exosomes | [220] |
let-7 family | PTC | ↑ | Plasma, Serum | [182,185,186,188] |
circ-007293 | PTC | ↑ | Serum-derived exosomes | [221,222] |
circ-031752 | PTC | ↑ | Serum-derived exosomes | [222] |
circ-020135 | PTC | ↑ | Serum-derived exosomes | [222] |
CCAT1 | PTC | ↑ | Plasma | [189] |
SYNPR | PTC | ↑ | Plasma | [189] |
SFTA1P | PTC | ↑ | Plasma | [189] |
HOTAIR | PTC | ↑ | Plasma | [189] |
HCG22 | PTC | ↑ | Plasma | [189] |
CLDN10 | PTC | ↓ | Plasma | [189] |
DOCK9-AS2 | PTC | ↓ | Plasma-derived exosomes | [223] |
4.3. Procalcitonin
5. Discussion
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATC | Anaplastic thyroid carcinoma |
ATG | Anti-thyroglobulin antibodies |
ATPO | Antibodies against thyroid peroxidase |
BMI | Body mass index |
BST2 | Bone marrow stromal cell antigen 2 |
Ca 19-9 | Carbohydrate antigen 19-9 |
CCH | C-cell hyperplasia |
ccf-mtDNA | Cell-free mtDNA |
CEA | Carcinoembryonic antigen |
circRNAs | Circular RNAs |
CLEIA | Chemiluminescence enzyme immunoassay |
CLIA | Chemiluminescence assays |
CT | Calcitonin |
CT-CALCA | CT-related polypeptide alpha transcript |
CTCs | Circulating tumor cells |
ctDNAs | Circulating tumor DNAs |
ctNAs | Circulating tumor nucleic acids |
ctRNAs | Circulating tumor RNAs |
CV | Coefficients of variation |
DTC | Differentiated thyroid carcinoma |
ECLIA | Electrochemiluminescence assays |
ELISA | Enzyme-linked immunosorbent assay |
ELFA | Enzyme-linked fluorescence assay |
EQA | External quality assessment |
EVs | Extracellular vesicles |
FIA | Fluoroimmunoassay |
FEIA | Fluorescence enzyme immunoassay |
FMTC | Familial medullary thyroid cancer |
FNAB | Fine needle aspiration biopsy |
FTC | Follicular thyroid carcinoma |
GFRA2 | Glial cell line-derived neurotrophic factor family receptor alpha-2 |
HAMA | Human anti-animal antibodies |
hsTG | TG assays with high analytical sensitivity |
IYD | Iodotyrosine deiodinase |
ILMA | Immunoluminometric assay |
IMAs | Immunoassays |
IRMA | Immunoradiometric assay |
IRP | International Reference Preparation |
LC-MS/MS | Liquid chromatography coupled to tandem mass spectrometry |
lncRNAs | Long non-coding RNAs |
LNM | Lymph node metastasis |
LOD | Limit of detection |
MEN | Multiple endocrine neoplasia |
mRNAs | Messenger RNAs |
miRNAs | MicroRNAs |
MTC | Medullary thyroid carcinoma |
mtDNA | Mitochondrial DNA |
ncRNAs | Non-coding RNAs |
NENs | Neuroendocrine neoplasms |
NGS | Next-generation sequencing |
OTC | Oncocytic thyroid carcinoma |
PPIs | Proton pump inhibitors |
PPV | Positive predictive value |
ProCT | Procalcitonin |
PTC | Papillary thyroid carcinoma |
PTMC | Papillary microcarcinoma |
RAI | Radioactive iodine |
rhTSH | Recombinant human TSH |
RIA | Radio immunoassay |
ROC | Receiver-operating characteristic |
TG | Thyroglobulin |
T3 | Triiodothyronine |
T4 | Thyroxine |
TPO | Thyroid peroxidase |
TRACE | Time Resolved Amplified Cryptate Emission |
TSH | Thyrotropin |
TSHR | Thyroid-stimulating hormone receptor |
References
- Melvin, K.E.; Miller, H.H.; Tashjian, A.H. Early Diagnosis of Medullary Carcinoma of the Thyroid Gland by Means of Calcitonin Assay. N. Engl. J. Med. 1971, 285, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Milhaud, G.; Calmette, C.; Taboulet, J.; Julienne, A.; Moukhtar, M.S. Letter: Hypersecretion of Calcitonin in Neoplastic Conditions. Lancet 1974, 1, 462–463. [Google Scholar] [CrossRef] [PubMed]
- Fang, B. Introduction to This Special Issue: “Biomarker Discovery and Precision Medicine”. J. Cancer Metastasis Treat. 2020, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, F.; Zhong, J.-Y.; Lin, X.; Shan, S.-K.; Guo, B.; Zheng, M.-H.; Yuan, L.-Q. Exosomes as Mediators of Cell-to-Cell Communication in Thyroid Disease. Int. J. Endocrinol. 2020, 2020, 4378345. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Ma, R.; Zhang, L.; Li, H.; Tang, Y.; Du, G.; Niu, D.; Yin, D. The Role of Exosomes in Thyroid Cancer and Their Potential Clinical Application. Front. Oncol. 2020, 10, 596132. [Google Scholar] [CrossRef]
- Boucai, L.; Zafereo, M.; Cabanillas, M.E. Thyroid Cancer: A Review. JAMA 2024, 331, 425–435. [Google Scholar] [CrossRef]
- Cancer of the Thyroid-Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/thyro.html (accessed on 8 January 2025).
- Cao, J.; He, X.; Li, X.; Sun, Y.; Zhang, W.; Li, Y.; Zhu, X. The Potential Association of Peripheral Inflammatory Biomarkers in Patients with Papillary Thyroid Cancer before Radioiodine Therapy to Clinical Outcomes. Front. Endocrinol. 2023, 14, 1253394. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Online. Available online: https://tumourclassification.iarc.who.int/welcome/ (accessed on 8 January 2025).
- Hlozek, J.; Pekova, B.; Rotnágl, J.; Holý, R.; Astl, J. Genetic Changes in Thyroid Cancers and the Importance of Their Preoperative Detection in Relation to the General Treatment and Determination of the Extent of Surgical Intervention—A Review. Biomedicines 2022, 10, 1515. [Google Scholar] [CrossRef]
- Prete, A.; Borges de Souza, P.; Censi, S.; Muzza, M.; Nucci, N.; Sponziello, M. Update on Fundamental Mechanisms of Thyroid Cancer. Front. Endocrinol. 2020, 11, 102. [Google Scholar] [CrossRef]
- Verburg, F.A. Differentiated Thyroid Cancer: Diagnosis, Therapy, and Follow-Up. In Atlas of Thyroid and Neuroendocrine Tumor Markers; Giovanella, L., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 51–64. ISBN 978-3-319-62506-5. [Google Scholar]
- Conzo, G.; Avenia, N.; Bellastella, G.; Candela, G.; de Bellis, A.; Esposito, K.; Pasquali, D.; Polistena, A.; Santini, L.; Sinisi, A.A. The Role of Surgery in the Current Management of Differentiated Thyroid Cancer. Endocrine 2014, 47, 380–388. [Google Scholar] [CrossRef]
- Kitahara, C.M.; Sosa, J.A. Understanding the Ever-Changing Incidence of Thyroid Cancer. Nat. Rev. Endocrinol. 2020, 16, 617–618. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Zhang, H.; Sui, C.; Du, R.; Li, C.; Li, J.; Dionigi, G.; Zhang, D.; Sun, H. Surgical Resection of Recurrent Differentiated Thyroid Cancer: Patterns, Detection, Staging, and Treatment of 683 Patients. Front. Endocrinol. 2023, 14, 1301620. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.W.; Lang, B.H.H.; McLeod, D.S.A.; Newbold, K.; Haymart, M.R. Thyroid Cancer. Lancet 2023, 401, 1531–1544. [Google Scholar] [CrossRef]
- Gharib, H.; Papini, E.; Garber, J.R.; Duick, D.S.; Harrell, R.M.; Hegedüs, L.; Paschke, R.; Valcavi, R.; Vitti, P. American association of clinical endocrinologists, american college of endocrinology, and associazione medici endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules—2016 update. Endocr. Pract. 2016, 22, 622–639. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.J.; Stybayeva, G.; Hwang, S.H. Surgical Completeness and Safety of Minimally Invasive Thyroidectomy in Patients with Thyroid Cancer: A Network Meta-Analysis. Surgery 2023, 173, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- Alfuraih, A.M.; Alotaibi, A.M.; Alshammari, A.K.; Alrashied, B.F.; Mashhor, Y.M.; Mahmoud, M.; Alsaadi, M.J. Evaluating Diagnostic Accuracy and Agreement of TI-RADS Scoring in Thyroid Nodules: A Comparative Analysis between Sonographers and Radiologists. PLoS ONE 2024, 19, e0312121. [Google Scholar] [CrossRef]
- Alexander, E.K.; Kennedy, G.C.; Baloch, Z.W.; Cibas, E.S.; Chudova, D.; Diggans, J.; Friedman, L.; Kloos, R.T.; LiVolsi, V.A.; Mandel, S.J.; et al. Preoperative Diagnosis of Benign Thyroid Nodules with Indeterminate Cytology. N. Engl. J. Med. 2012, 367, 705–715. [Google Scholar] [CrossRef]
- Trimboli, P.; Treglia, G.; Guidobaldi, L.; Saggiorato, E.; Nigri, G.; Crescenzi, A.; Romanelli, F.; Orlandi, F.; Valabrega, S.; Sadeghi, R.; et al. Clinical Characteristics as Predictors of Malignancy in Patients with Indeterminate Thyroid Cytology: A Meta-Analysis. Endocrine 2014, 46, 52–59. [Google Scholar] [CrossRef]
- Perros, P.; Boelaert, K.; Colley, S.; Evans, C.; Evans, R.M.; Gerrard Ba, G.; Gilbert, J.; Harrison, B.; Johnson, S.J.; Giles, T.E.; et al. Guidelines for the Management of Thyroid Cancer. Clin. Endocrinol. 2014, 81 (Suppl 1), 1–122. [Google Scholar] [CrossRef]
- Gharib, H.; Papini, E.; Paschke, R.; Duick, D.S.; Valcavi, R.; Hegedüs, L.; Vitti, P.; et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules: Executive Summary of Recommendations. Endocr. Pract. 2010, 16, 468–475. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. The Bethesda System for Reporting Thyroid Cytopathology. Thyroid Off. J. Am. Thyroid Assoc. 2009, 19, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.S. Clinical Use of Molecular Data in Thyroid Nodules and Cancer. J. Clin. Endocrinol. Metab. 2023, 108, 2759–2771. [Google Scholar] [CrossRef]
- Fumagalli, C.; Serio, G. Molecular Testing in Indeterminate Thyroid Nodules: An Additional Tool for Clinical Decision-Making. Pathol.-J. Ital. Soc. Anat. Pathol. Diagn. Cytopathol. 2023, 115, 205–216. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Sun, P.; Lin, J.; Shen, J.; Lin, H.; Jiang, H.; Qiu, R.; Lin, E.; Lu, Y. Application of Carbon Nanoparticles in Endoscopic Thyroid Cancer Surgery: A Systematic Review and Meta-Analysis. Front. Surg. 2023, 10, 1283573. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Vaisman, F.; Shaha, A.; Fish, S.; Michael Tuttle, R. Initial Therapy with Either Thyroid Lobectomy or Total Thyroidectomy without Radioactive Iodine Remnant Ablation Is Associated with Very Low Rates of Structural Disease Recurrence in Properly Selected Patients with Differentiated Thyroid Cancer. Clin. Endocrinol. 2011, 75, 112–119. [Google Scholar] [CrossRef]
- Addasi, N.; Fingeret, A.; Goldner, W. Hemithyroidectomy for Thyroid Cancer: A Review. Med. Kaunas Lith. 2020, 56, 586. [Google Scholar] [CrossRef]
- Guo, M.; Sun, Y.; Wei, Y.; Xu, J.; Zhang, C. Advances in Targeted Therapy and Biomarker Research in Thyroid Cancer. Front. Endocrinol. 2024, 15, 1372553. [Google Scholar] [CrossRef]
- Tao, Y.; Li, P.; Feng, C.; Cao, Y. New Insights into Immune Cells and Immunotherapy for Thyroid Cancer. Immunol. Investig. 2023, 52, 1039–1064. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Zhao, P. Diagnosis and Prognosis of Thyroid Cancer by Immune-Related Genes. Am. J. Clin. Oncol. 2024, 47, 1–10. [Google Scholar] [CrossRef]
- Drugs Approved for Thyroid Cancer-NCI. Available online: https://www.cancer.gov/about-cancer/treatment/drugs/thyroid (accessed on 8 January 2025).
- Wells, S.A.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association Guidelines for the Management of Medullary Thyroid Carcinoma. Thyroid Off. J. Am. Thyroid Assoc. 2015, 25, 567–610. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, P.; Giovanella, L. Serum Calcitonin Negative Medullary Thyroid Carcinoma: A Systematic Review of the Literature. Clin. Chem. Lab. Med. 2015, 53, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, R.; Basnayake, O.; Jayarajah, U.; Seneviratne, S. Management of Medullary Carcinoma of the Thyroid: A Review. J. Int. Med. Res. 2022, 50, 3000605221110698. [Google Scholar] [CrossRef] [PubMed]
- Bartz-Kurycki, M.A.; Oluwo, O.E.; Morris-Wiseman, L.F. Medullary Thyroid Carcinoma: Recent Advances in Identification, Treatment, and Prognosis. Ther. Adv. Endocrinol. Metab. 2021, 12, 20420188211049611. [Google Scholar] [CrossRef] [PubMed]
- Elisei, R.; Bottici, V.; Luchetti, F.; Di Coscio, G.; Romei, C.; Grasso, L.; Miccoli, P.; Iacconi, P.; Basolo, F.; Pinchera, A.; et al. Impact of Routine Measurement of Serum Calcitonin on the Diagnosis and Outcome of Medullary Thyroid Cancer: Experience in 10,864 Patients with Nodular Thyroid Disorders. J. Clin. Endocrinol. Metab. 2004, 89, 163–168. [Google Scholar] [CrossRef]
- Alevizaki, M.; Saltiki, K.; Rentziou, G.; Papathoma, A.; Sarika, L.; Vasileiou, V.; Anastasiou, E. Medullary Thyroid Carcinoma: The Influence of Policy Changing in Clinical Characteristics and Disease Progression. Eur. J. Endocrinol. 2012, 167, 799–808. [Google Scholar] [CrossRef]
- Alevizaki, M.; Saltiki, K.; Simeakis, G.; Pappa, T. Medullary Thyroid Carcinoma (MTC): Diagnosis, Treatment and Follow-Up. In Atlas of Thyroid and Neuroendocrine Tumor Markers; Giovanella, L., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 119–132. ISBN 978-3-319-62506-5. [Google Scholar]
- Kushchayev, S.V.; Kushchayeva, Y.S.; Tella, S.H.; Glushko, T.; Pacak, K.; Teytelboym, O.M. Medullary Thyroid Carcinoma: An Update on Imaging. J. Thyroid Res. 2019, 2019, 1893047. [Google Scholar] [CrossRef]
- Essig, G.F.; Porter, K.; Schneider, D.; Arpaia, D.; Lindsey, S.C.; Busonero, G.; Fineberg, D.; Fruci, B.; Boelaert, K.; Smit, J.W.; et al. Multifocality in Sporadic Medullary Thyroid Carcinoma: An International Multicenter Study. Thyroid Off. J. Am. Thyroid Assoc. 2016, 26, 1563–1572. [Google Scholar] [CrossRef]
- Yang, G.; Pu, J.; Zhu, S.; Shi, Y.; Yang, Y.; Mao, J.; Sun, Y.; Zhao, B. Optimizing Levothyroxine Replacement: A Precision Dosage Model for Post-Thyroidectomy Patients. Int. J. Gen. Med. 2024, 17, 377–386. [Google Scholar] [CrossRef]
- Giovanella, L.; Feldt-Rasmussen, U.; Verburg, F.A.; Grebe, S.K.; Plebani, M.; Clark, P.M. Thyroglobulin Measurement by Highly Sensitive Assays: Focus on Laboratory Challenges. Clin. Chem. Lab. Med. CCLM 2015, 53, 1301–1314. [Google Scholar] [CrossRef]
- Mater, A.; Boelen, A.; Heijboer, A.C.; Hillebrand, J.J. Thyroglobulin and Calcitonin Measurements: Pitfalls and Future Perspectives. J. Endocrinol. 2024, 264, JOE-24-0156. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L. (Ed.) Atlas of Thyroid and Neuroendocrine Tumor Markers; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-62505-8. [Google Scholar]
- Giovanella, L.; D’Aurizio, F.; Algeciras-Schimnich, A.; Görges, R.; Petranovic Ovcaricek, P.; Tuttle, R.M.; Visser, W.E.; Verburg, F.A.; hsTg; TgAb Consensus Working Group. Thyroglobulin and Thyroglobulin Antibody: An Updated Clinical and Laboratory Expert Consensus. Eur. J. Endocrinol. 2023, 189, R11–R27. [Google Scholar] [CrossRef] [PubMed]
- Ward, G.; Simpson, A.; Boscato, L.; Hickman, P.E. The Investigation of Interferences in Immunoassay. Clin. Biochem. 2017, 50, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Rosario, P.W.; Côrtes, M.C.S.; Mourão, G.F. Follow-up of Patients with Thyroid Cancer and Antithyroglobulin Antibodies: A Review for Clinicians. Endocr. Relat. Cancer 2021, 28, R111–R119. [Google Scholar] [CrossRef]
- Jin, Y.; Zhai, T.; Wang, Y.; Li, J.; Wang, T.; Huang, J. Recent Advances in Liquid Chromatography-Tandem Mass Spectrometry for the Detection of Thyroid Hormones and Thyroglobulin in Clinical Samples: A Review. J. Sep. Sci. 2024, 47, e2400466. [Google Scholar] [CrossRef]
- Giovanella, L.; D’Aurizio, F.; Petranović Ovčariček, P.; Görges, R. Diagnostic, Theranostic and Prognostic Value of Thyroglobulin in Thyroid Cancer. J. Clin. Med. 2024, 13, 2463. [Google Scholar] [CrossRef]
- Netzel, B.C.; Grant, R.P.; Hoofnagle, A.N.; Rockwood, A.L.; Shuford, C.M.; Grebe, S.K.G. First Steps toward Harmonization of LC-MS/MS Thyroglobulin Assays. Clin. Chem. 2016, 62, 297–299. [Google Scholar] [CrossRef]
- Trimboli, P.; La Torre, D.; Ceriani, L.; Condorelli, E.; Laurenti, O.; Romanelli, F.; Ventura, C.; Signore, A.; Valabrega, S.; Giovanella, L. High Sensitive Thyroglobulin Assay on Thyroxine Therapy: Can It Avoid Stimulation Test in Low and High Risk Differentiated Thyroid Carcinoma Patients? Horm. Metab. Res. Horm. Stoffwechselforschung Horm. Metab. 2013, 45, 664–668. [Google Scholar] [CrossRef]
- Giovanella, L.; Treglia, G.; Sadeghi, R.; Trimboli, P.; Ceriani, L.; Verburg, F.A. Unstimulated Highly Sensitive Thyroglobulin in Follow-up of Differentiated Thyroid Cancer Patients: A Meta-Analysis. J. Clin. Endocrinol. Metab. 2014, 99, 440–447. [Google Scholar] [CrossRef]
- Giovanella, L.; Castellana, M.; Trimboli, P. Unstimulated High-Sensitive Thyroglobulin Is a Powerful Prognostic Predictor in Patients with Thyroid Cancer. Clin. Chem. Lab. Med. 2019, 58, 130–137. [Google Scholar] [CrossRef]
- Spencer, C.; Fatemi, S.; Singer, P.; Nicoloff, J.; Lopresti, J. Serum Basal Thyroglobulin Measured by a Second-Generation Assay Correlates with the Recombinant Human Thyrotropin-Stimulated Thyroglobulin Response in Patients Treated for Differentiated Thyroid Cancer. Thyroid Off. J. Am. Thyroid Assoc. 2010, 20, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Malandrino, P.; Latina, A.; Marescalco, S.; Spadaro, A.; Regalbuto, C.; Fulco, R.A.; Scollo, C.; Vigneri, R.; Pellegriti, G. Risk-Adapted Management of Differentiated Thyroid Cancer Assessed by a Sensitive Measurement of Basal Serum Thyroglobulin. J. Clin. Endocrinol. Metab. 2011, 96, 1703–1709. [Google Scholar] [CrossRef] [PubMed]
- Chindris, A.M.; Diehl, N.N.; Crook, J.E.; Fatourechi, V.; Smallridge, R.C. Undetectable Sensitive Serum Thyroglobulin (<0.1 Ng/Ml) in 163 Patients with Follicular Cell-Derived Thyroid Cancer: Results of rhTSH Stimulation and Neck Ultrasonography and Long-Term Biochemical and Clinical Follow-Up. J. Clin. Endocrinol. Metab. 2012, 97, 2714–2723. [Google Scholar] [CrossRef]
- Castagna, M.G.; Tala Jury, H.P.; Cipri, C.; Belardini, V.; Fioravanti, C.; Pasqui, L.; Sestini, F.; Theodoropoulou, A.; Pacini, F. The Use of Ultrasensitive Thyroglobulin Assays Reduces but Does Not Abolish the Need for TSH Stimulation in Patients with Differentiated Thyroid Carcinoma. J. Endocrinol. Investig. 2011, 34, e219–e223. [Google Scholar] [CrossRef]
- Spencer, C.; LoPresti, J.; Fatemi, S. How Sensitive (Second-Generation) Thyroglobulin Measurement Is Changing Paradigms for Monitoring Patients with Differentiated Thyroid Cancer, in the Absence or Presence of Thyroglobulin Autoantibodies. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 394–404. [Google Scholar] [CrossRef]
- Smallridge, R.C.; Meek, S.E.; Morgan, M.A.; Gates, G.S.; Fox, T.P.; Grebe, S.; Fatourechi, V. Monitoring Thyroglobulin in a Sensitive Immunoassay Has Comparable Sensitivity to Recombinant Human Tsh-Stimulated Thyroglobulin in Follow-up of Thyroid Cancer Patients. J. Clin. Endocrinol. Metab. 2007, 92, 82–87. [Google Scholar] [CrossRef]
- Rosario, P.W.; Purisch, S. Does a Highly Sensitive Thyroglobulin (Tg) Assay Change the Clinical Management of Low-Risk Patients with Thyroid Cancer with Tg on T4 < 1 Ng/Ml Determined by Traditional Assays? Clin. Endocrinol. 2008, 68, 338–342. [Google Scholar] [CrossRef]
- Lamartina, L.; Durante, C.; Filetti, S.; Cooper, D.S. Low-Risk Differentiated Thyroid Cancer and Radioiodine Remnant Ablation: A Systematic Review of the Literature. J. Clin. Endocrinol. Metab. 2015, 100, 1748–1761. [Google Scholar] [CrossRef]
- Schlumberger, M.; Leboulleux, S.; Catargi, B.; Deandreis, D.; Zerdoud, S.; Bardet, S.; Rusu, D.; Godbert, Y.; Buffet, C.; Schvartz, C.; et al. Outcome after Ablation in Patients with Low-Risk Thyroid Cancer (ESTIMABL1): 5-Year Follow-up Results of a Randomised, Phase 3, Equivalence Trial. Lancet Diabetes Endocrinol. 2018, 6, 618–626. [Google Scholar] [CrossRef]
- Makarewicz, J.; Adamczewski, Z.; Knapska-Kucharska, M.; Lewiński, A. Evaluation of the Diagnostic Value of the First Thyroglobulin Determination in Detecting Metastases after Differentiated Thyroid Carcinoma Surgery. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2006, 114, 485–489. [Google Scholar] [CrossRef]
- Salvatori, M.; Raffaelli, M.; Castaldi, P.; Treglia, G.; Rufini, V.; Perotti, G.; Lombardi, C.P.; Rubello, D.; Ardito, G.; Bellantone, R. Evaluation of the Surgical Completeness after Total Thyroidectomy for Differentiated Thyroid Carcinoma. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2007, 33, 648–654. [Google Scholar] [CrossRef] [PubMed]
- McLeod, D.S.A.; Cooper, D.S.; Ladenson, P.W.; Ain, K.B.; Brierley, J.D.; Fein, H.G.; Haugen, B.R.; Jonklaas, J.; Magner, J.; Ross, D.S.; et al. Prognosis of Differentiated Thyroid Cancer in Relation to Serum Thyrotropin and Thyroglobulin Antibody Status at Time of Diagnosis. Thyroid Off. J. Am. Thyroid Assoc. 2014, 24, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Husseini, M.A.E. Implication of Different Clinical and Pathological Variables in Patients with Differentiated Thyroid Cancer on Successful Ablation for 3700 MBq (131)I: A Single Egyptian Institutional Experience over 14 Years. Ann. Nucl. Med. 2016, 30, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Liang, J.; Li, T.; Gao, W.; Lin, Y. Serial Stimulated Thyroglobulin Measurements Are More Specific for Detecting Distant Metastatic Differentiated Thyroid Cancer before Radioiodine Therapy. Chin. J. Cancer Res. Chung-Kuo Yen Cheng Yen Chiu 2017, 29, 213–222. [Google Scholar] [CrossRef]
- Signore, A.; Lauri, C.; Di Paolo, A.; Stati, V.; Santolamazza, G.; Capriotti, G.; Prosperi, D.; Tofani, A.; Valabrega, S.; Campagna, G. Predictive Role of Serum Thyroglobulin after Surgery and before Radioactive Iodine Therapy in Patients with Thyroid Carcinoma. Cancers 2023, 15, 2976. [Google Scholar] [CrossRef]
- Nozières, C.; Chardon, L.; Goichot, B.; Borson-Chazot, F.; Hervieu, V.; Chikh, K.; Lombard-Bohas, C.; Walter, T. Neuroendocrine Tumors Producing Calcitonin: Characteristics, Prognosis and Potential Interest of Calcitonin Monitoring during Follow-Up. Eur. J. Endocrinol. 2016, 174, 335–341. [Google Scholar] [CrossRef]
- Copp, D.H.; Cheney, B. Calcitonin—A Hormone from the Parathyroid Which Lowers the Calcium-Level of the Blood. Nature 1962, 193, 381–382. [Google Scholar] [CrossRef]
- d’Herbomez, M.; Caron, P.; Bauters, C.; Do Cao, C.; Schlienger, J.-L.; Sapin, R.; Baldet, L.; Carnaille, B.; Wémeau, J.-L.; French Group GTE (Groupe des Tumeurs Endocrines). Reference Range of Serum Calcitonin Levels in Humans: Influence of Calcitonin Assays, Sex, Age, and Cigarette Smoking. Eur. J. Endocrinol. 2007, 157, 749–755. [Google Scholar] [CrossRef]
- Kahaly, G.J.; Algeciras-Schimnich, A.; Davis, T.E.; Diana, T.; Feldkamp, J.; Karger, S.; König, J.; Lupo, M.A.; Raue, F.; Ringel, M.D.; et al. United States and European Multicenter Prospective Study for the Analytical Performance and Clinical Validation of a Novel Sensitive Fully Automated Immunoassay for Calcitonin. Clin. Chem. 2017, 63, 1489–1496. [Google Scholar] [CrossRef]
- Vardarli, I.; Weber, M.; Weidemann, F.; Führer, D.; Herrmann, K.; Görges, R. Diagnostic Accuracy of Routine Calcitonin Measurement for the Detection of Medullary Thyroid Carcinoma in the Management of Patients with Nodular Thyroid Disease: A Meta-Analysis. Endocr. Connect. 2021, 10, 358–370. [Google Scholar] [CrossRef]
- Costante, G.; Durante, C.; Francis, Z.; Schlumberger, M.; Filetti, S. Determination of Calcitonin Levels in C-Cell Disease: Clinical Interest and Potential Pitfalls. Nat. Clin. Pract. Endocrinol. Metab. 2009, 5, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Fugazzola, L.; Di Stefano, M.; Censi, S.; Repaci, A.; Colombo, C.; Grimaldi, F.; Magri, F.; Pagotto, U.; Iacobone, M.; Persani, L.; et al. Basal and Stimulated Calcitonin for the Diagnosis of Medullary Thyroid Cancer: Updated Thresholds and Safety Assessment. J. Endocrinol. Investig. 2021, 44, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Giannetta, E.; Guarnotta, V.; Altieri, B.; Sciammarella, C.; Guadagno, E.; Malandrino, P.; Puliani, G.; Feola, T.; Isidori, A.M.; Colao, A.A.L.; et al. ENDOCRINE TUMOURS: Calcitonin in Thyroid and Extra-Thyroid Neuroendocrine Neoplasms: The Two-Faced Janus. Eur. J. Endocrinol. 2020, 183, R197–R215. [Google Scholar] [CrossRef] [PubMed]
- Allelein, S.; Ehlers, M.; Morneau, C.; Schwartz, K.; Goretzki, P.E.; Seppel, T.; Feldkamp, J.; Krieg, A.; Knoefel, W.T.; Kuebart, A.; et al. Measurement of Basal Serum Calcitonin for the Diagnosis of Medullary Thyroid Cancer. Horm. Metab. Res. Horm. Stoffwechselforschung Horm. Metab. 2018, 50, 23–28. [Google Scholar] [CrossRef]
- Niederle, M.B.; Scheuba, C.; Riss, P.; Selberherr, A.; Koperek, O.; Niederle, B. Early Diagnosis of Medullary Thyroid Cancer: Are Calcitonin Stimulation Tests Still Indicated in the Era of Highly Sensitive Calcitonin Immunoassays? Thyroid Off. J. Am. Thyroid Assoc. 2020, 30, 974–984. [Google Scholar] [CrossRef]
- Verbeek, H.H.; de Groot, J.W.B.; Sluiter, W.J.; Muller Kobold, A.C.; van den Heuvel, E.R.; Plukker, J.T.; Links, T.P. Calcitonin Testing for Detection of Medullary Thyroid Cancer in People with Thyroid Nodules. Cochrane Database Syst. Rev. 2020, 3, CD010159. [Google Scholar] [CrossRef]
- Kiriakopoulos, A.; Giannakis, P.; Menenakos, E. Calcitonin: Current Concepts and Differential Diagnosis. Ther. Adv. Endocrinol. Metab. 2022, 13, 20420188221099344. [Google Scholar] [CrossRef]
- Tobler, P.H.; Tschopp, F.A.; Dambacher, M.A.; Born, W.; Fischer, J.A. Identification and Characterization of Calcitonin Forms in Plasma and Urine of Normal Subjects and Medullary Carcinoma Patients. J. Clin. Endocrinol. Metab. 1983, 57, 749–754. [Google Scholar] [CrossRef]
- Motté, P.; Vauzelle, P.; Gardet, P.; Ghillani, P.; Caillou, B.; Parmentier, C.; Bohuon, C.; Bellet, D. Construction and Clinical Validation of a Sensitive and Specific Assay for Serum Mature Calcitonin Using Monoclonal Anti-Peptide Antibodies. Clin. Chim. Acta Int. J. Clin. Chem. 1988, 174, 35–54. [Google Scholar] [CrossRef]
- Schiettecatte, J.; Strasser, O.; Anckaert, E.; Smitz, J. Performance Evaluation of an Automated Electrochemiluminescent Calcitonin (CT) Immunoassay in Diagnosis of Medullary Thyroid Carcinoma. Clin. Biochem. 2016, 49, 929–931. [Google Scholar] [CrossRef]
- Costante, G.; Lalami, Y.; Jungels, C.; Awada, A. Calcitonin and Carcinoembryonic Antigen for the Diagnosis and Management of Medullary Thyroid Carcinoma. In Atlas of Thyroid and Neuroendocrine Tumor Markers; Giovanella, L., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 133–150. ISBN 978-3-319-62506-5. [Google Scholar]
- Gold, P.; Freedman, S.O. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J. Exp. Med. 1965, 121, 439–462. [Google Scholar] [CrossRef] [PubMed]
- Jansen, K.; Kornfeld, L.; Lennartz, M.; Dwertmann Rico, S.; Kind, S.; Reiswich, V.; Viehweger, F.; Bawahab, A.A.; Fraune, C.; Gorbokon, N.; et al. Carcinoembryonic Antigen Expression in Human Tumors: A Tissue Microarray Study on 13,725 Tumors. Cancers 2024, 16, 4052. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, B.D.; Shinkins, B.; Pathiraja, I.; Roberts, N.W.; James, T.J.; Mallett, S.; Perera, R.; Primrose, J.N.; Mant, D. Blood CEA Levels for Detecting Recurrent Colorectal Cancer. Cochrane Database Syst. Rev. 2015, 2015, CD011134. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.; Clarke, L.; Pal, A.; Buchwald, P.; Eglinton, T.; Wakeman, C.; Frizelle, F. A Review of the Role of Carcinoembryonic Antigen in Clinical Practice. Ann. Coloproctology 2019, 35, 294–305. [Google Scholar] [CrossRef]
- Bhagat, A.; Lyerly, H.K.; Morse, M.A.; Hartman, Z.C. CEA Vaccines. Hum. Vaccines Immunother. 2023, 19, 2291857. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, H.; Li, X. Serum Biochemical Markers for Medullary Thyroid Carcinoma: An Update. Cancer Manag. Res. 2024, 16, 299. [Google Scholar] [CrossRef]
- Fan, W.; Xiao, C.; Wu, F. Analysis of Risk Factors for Cervical Lymph Node Metastases in Patients with Sporadic Medullary Thyroid Carcinoma. J. Int. Med. Res. 2018, 46, 1982–1989. [Google Scholar] [CrossRef]
- Wang, B.; Huang, J.; Chen, L. Management of Medullary Thyroid Cancer Based on Variation of Carcinoembryonic Antigen and Calcitonin. Front. Endocrinol. 2024, 15, 1418657. [Google Scholar] [CrossRef]
- Cameselle-Teijeiro, J.M.; Eloy, C.; Sobrinho-Simões, M. Pitfalls in Challenging Thyroid Tumors: Emphasis on Differential Diagnosis and Ancillary Biomarkers. Endocr. Pathol. 2020, 31, 197–217. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Kim, Y.; Choi, A.; Lee, H.; Lim, J.; Kim, Y.; Han, K.; Oh, E.J. Comparison of Four Automated Carcinoembryonic Antigen Immunoassays: ADVIA Centaur XP, ARCHITECT I2000sr, Elecsys E170, and Unicel Dxi800. Ann. Lab. Med. 2018, 38, 355–361. [Google Scholar] [CrossRef]
- Fu, W.; Yue, Y.; Song, Y.; Zhang, S.; Shi, J.; Zhao, R.; Wang, Q.; Zhang, R. Comparable Analysis of Six Immunoassays for Carcinoembryonic Antigen Detection. Heliyon 2024, 10, e25158. [Google Scholar] [CrossRef] [PubMed]
- Börmer, O.P. Standardization, Specificity, and Diagnostic Sensitivity of Four Immunoassays for Carcinoembryonic Antigen. Clin. Chem. 1991, 37, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Dominici, R.; Cabrini, E.; Cattozzo, G.; Ceriotti, F.; Grazioli, V.; Scapellato, L.; Franzini, C. Intermethod Variation in Serum Carcinoembryonic Antigen (CEA) Measurement. Fresh Serum Pools and Control Materials Compared. Clin. Chem. Lab. Med. 2002, 40, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.N.; Fulford, K.M.; Huong, A.Y. Results of a Nationwide Proficiency Test for Carcinoembryonic Antigen. J. Clin. Microbiol. 1977, 5, 433–438. [Google Scholar] [CrossRef]
- Reinauer, H.; Wood, W.G. External Quality Assessment of Tumour Marker Analysis: State of the Art and Consequences for Estimating Diagnostic Sensitivity and Specificity. Ger. Med. Sci. GMS E-J. 2005, 3, Doc02. [Google Scholar]
- Wojtalewicz, N.; Vierbaum, L.; Kaufmann, A.; Schellenberg, I.; Holdenrieder, S. Longitudinal Evaluation of AFP and CEA External Proficiency Testing Reveals Need for Method Harmonization. Diagnostics 2023, 13, 2019. [Google Scholar] [CrossRef]
- Bjerner, J.; Lebedin, Y.; Bellanger, L.; Kuroki, M.; Shively, J.E.; Varaas, T.; Nustad, K.; Hammarström, S.; Børmer, O.P. Protein Epitopes in Carcinoembryonic Antigen. Report of the ISOBM TD8 Workshop. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2002, 23, 249–262. [Google Scholar] [CrossRef]
- Zeng, X.; Shen, Z.; Mernaugh, R. Recombinant Antibodies and Their Use in Biosensors. Anal. Bioanal. Chem. 2012, 402, 3027–3038. [Google Scholar] [CrossRef]
- Ascoli, C.A.; Aggeler, B. Overlooked Benefits of Using Polyclonal Antibodies. BioTechniques 2018, 65, 127–136. [Google Scholar] [CrossRef]
- Giovanella, L.; D’Aurizio, F.; Tozzoli, R. Circulating Mucins and Cytokeratins in Aggressive Thyroid Cancers; Giovanella, L., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 175–189. [Google Scholar]
- Luo, G.; Jin, K.; Deng, S.; Cheng, H.; Fan, Z.; Gong, Y.; Qian, Y.; Huang, Q.; Ni, Q.; Liu, C.; et al. Roles of CA19-9 in Pancreatic Cancer: Biomarker, Predictor and Promoter. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188409. [Google Scholar] [CrossRef]
- Plebani, M.; Basso, D.; Panozzo, M.P.; Fogar, P.; Del Favero, G.; Naccarato, R. Tumor Markers in the Diagnosis, Monitoring and Therapy of Pancreatic Cancer: State of the Art. Int. J. Biol. Markers 1995, 10, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J.; Sturgeon, C.; Lamerz, R.; Haglund, C.; Holubec, V.L.; Klapdor, R.; Nicolini, A.; Topolcan, O.; Heinemann, V. Tumor Markers in Pancreatic Cancer: A European Group on Tumor Markers (EGTM) Status Report. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2010, 21, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Galli, C.; Basso, D.; Plebani, M. CA 19-9: Handle with Care. Clin. Chem. Lab. Med. 2013, 51, 1369–1383. [Google Scholar] [CrossRef] [PubMed]
- Milman, S.; Whitney, K.D.; Fleischer, N. Metastatic Medullary Thyroid Cancer Presenting with Elevated Levels of CA 19-9 and CA 125. Thyroid Off. J. Am. Thyroid Assoc. 2011, 21, 913–916. [Google Scholar] [CrossRef]
- Elisei, R.; Lorusso, L.; Romei, C.; Bottici, V.; Mazzeo, S.; Giani, C.; Fiore, E.; Torregrossa, L.; Insilla, A.C.; Basolo, F.; et al. Medullary Thyroid Cancer Secreting Carbohydrate Antigen 19-9 (Ca 19-9): A Fatal Case Report. J. Clin. Endocrinol. Metab. 2013, 98, 3550–3554. [Google Scholar] [CrossRef]
- Elisei, R.; Lorusso, L.; Piaggi, P.; Torregrossa, L.; Pellegrini, G.; Molinaro, E.; Agate, L.; Bottici, V.; Pani, F.; Cacciato Insilla, A.; et al. Elevated Level of Serum Carbohydrate Antigen 19.9 as Predictor of Mortality in Patients with Advanced Medullary Thyroid Cancer. Eur. J. Endocrinol. 2015, 173, 297–304. [Google Scholar] [CrossRef]
- Lorusso, L.; Romei, C.; Piaggi, P.; Fustini, C.; Molinaro, E.; Agate, L.; Bottici, V.; Viola, D.; Pellegrini, G.; Elisei, R. Ca19.9 Positivity and Doubling Time Are Prognostic Factors of Mortality in Patients with Advanced Medullary Thyroid Cancer with No Evidence of Structural Disease Progression According to Response Evaluation Criteria in Solid Tumors. Thyroid Off. J. Am. Thyroid Assoc. 2021, 31, 1050–1055. [Google Scholar] [CrossRef]
- Alencar, R.; Kendler, D.B.; Andrade, F.; Nava, C.; Bulzico, D.; Cordeiro de Noronha Pessoa, C.; Corbo, R.; Vaisman, F. CA19-9 as a Predictor of Worse Clinical Outcome in Medullary Thyroid Carcinoma. Eur. Thyroid J. 2019, 8, 186–191. [Google Scholar] [CrossRef]
- Hashimoto, T.; Matsubara, F.; Mizukami, Y.; Miyazaki, I.; Michigishi, T.; Yanaihara, N. Tumor Markers and Oncogene Expression in Thyroid Cancer Using Biochemical and Immunohistochemical Studies. Endocrinol. Jpn. 1990, 37, 247–254. [Google Scholar] [CrossRef]
- Yamaguchi, E.; Makino, Y.; Sato, T.; Uchida, M.; Harada, Y.; Maruyama, R. CA19-9-Producing Lung Metastasis after Surgery for Papillary Thyroid Carcinoma: Report of a Case. Surg. Today 2014, 44, 2157–2161. [Google Scholar] [CrossRef]
- Vierbuchen, M.; Schröder, S.; Uhlenbruck, G.; Ortmann, M.; Fischer, R. CA 50 and CA 19-9 Antigen Expression in Normal, Hyperplastic, and Neoplastic Thyroid Tissue. Lab. Investig. J. Tech. Methods Pathol. 1989, 60, 726–732. [Google Scholar]
- Kihara, M.; Miyauchi, A.; Hirokawa, M.; Fujishima, M.; Masuoka, H.; Higashiyama, T.; Onoda, N.; Ito, Y.; Miya, A. Metastatic Papillary Thyroid Carcinoma Presenting with Elevated Serum Levels of Carbohydrate Antigen 19-9 (CA19-9): A Case Report. Surg. Case Rep. 2022, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Kihara, M.; Miyauchi, A.; Hirokawa, M.; Suzuki, A.; Akamizu, T. Availability of Serum Levels of Carbohydrate Antigen 19-9 (CA19-9) as a Surrogate Tumor Marker for Papillary Thyroid Carcinoma. JMA J. 2024, 7, 250–257. [Google Scholar] [CrossRef]
- Munkley, J. The Glycosylation Landscape of Pancreatic Cancer. Oncol. Lett. 2019, 17, 2569–2575. [Google Scholar] [CrossRef]
- Partyka, K.; Maupin, K.A.; Brand, R.E.; Haab, B.B. Diverse Monoclonal Antibodies against the CA 19-9 Antigen Show Variation in Binding Specificity with Consequences for Clinical Interpretation. Proteomics 2012, 12, 2212–2220. [Google Scholar] [CrossRef]
- Passerini, R.; Riggio, D.; Salvatici, M.; Zorzino, L.; Radice, D.; Sandri, M.T. Interchangeability of Measurements of CA 19-9 in Serum with Four Frequently Used Assays: An Update. Clin. Chem. Lab. Med. 2007, 45, 100–104. [Google Scholar] [CrossRef]
- La’ulu, S.L.; Roberts, W.L. Performance Characteristics of Five Automated CA 19-9 Assays. Am. J. Clin. Pathol. 2007, 127, 436–440. [Google Scholar] [CrossRef]
- Hotakainen, K.; Tanner, P.; Alfthan, H.; Haglund, C.; Stenman, U.-H. Comparison of Three Immunoassays for CA 19-9. Clin. Chim. Acta Int. J. Clin. Chem. 2009, 400, 123–127. [Google Scholar] [CrossRef]
- Deinzer, M.; Faissner, R.; Metzger, T.; Kaminski, W.E.; Löhr, M.; Neumaier, M.; Brinkmann, T. Comparison of Two Different Methods for CA19-9 Antigen Determination. Clin. Lab. 2010, 56, 319–325. [Google Scholar]
- Stieber, P.; Molina, R.; Gion, M.; Gressner, A.; Troalen, F.; Holdenrieder, S.; Auge, J.M.; Zancan, M.; Wycislo, M.; Jarrige, V. Alternative Antibody for the Detection of CA19-9 Antigen: A European Multicenter Study for the Evaluation of the Analytical and Clinical Performance of the Access GI Monitor Assay on the UniCel Dxl 800 Immunoassay System. Clin. Chem. Lab. Med. 2008, 46, 600–611. [Google Scholar] [CrossRef]
- Kremser, M.; Weiss, N.; Kaufmann-Stoeck, A.; Vierbaum, L.; Schmitz, A.; Schellenberg, I.; Holdenrieder, S. Longitudinal Evaluation of External Quality Assessment Results for CA 15-3, CA 19-9, and CA 125. Front. Mol. Biosci. 2024, 11, 1401619. [Google Scholar] [CrossRef] [PubMed]
- Hamada, E.; Taniguchi, T.; Baba, S.; Maekawa, M. Investigation of Unexpected Serum CA19-9 Elevation in Lewis-Negative Cancer Patients. Ann. Clin. Biochem. 2012, 49, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Jin, K.; Guo, M.; Cheng, H.; Liu, Z.; Xiao, Z.; Lu, Y.; Long, J.; Liu, L.; Xu, J.; et al. Patients with Normal-Range CA19-9 Levels Represent a Distinct Subgroup of Pancreatic Cancer Patients. Oncol. Lett. 2017, 13, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Shen, L.; Luo, M.; Zhang, K.; Li, J.; Yang, Q.; Zhu, F.; Zhou, D.; Zheng, S.; Chen, Y.; et al. Circulating Tumor Cells: Biology and Clinical Significance. Signal Transduct. Target. Ther. 2021, 6, 1–24. [Google Scholar] [CrossRef]
- Capuozzo, M.; Ferrara, F.; Santorsola, M.; Zovi, A.; Ottaiano, A. Circulating Tumor Cells as Predictive and Prognostic Biomarkers in Solid Tumors. Cells 2023, 12, 2590. [Google Scholar] [CrossRef]
- Chambers, A.F.; Groom, A.C.; MacDonald, I.C. Dissemination and Growth of Cancer Cells in Metastatic Sites. Nat. Rev. Cancer 2002, 2, 563–572. [Google Scholar] [CrossRef]
- Kanwar, N.; Balde, Z.; Nair, R.; Dawe, M.; Chen, S.; Maganti, M.; Atenafu, E.G.; Manolescu, S.; Wei, C.; Mao, A.; et al. Heterogeneity of Circulating Tumor Cell-Associated Genomic Gains in Breast Cancer and Its Association with the Host Immune Response. Cancer Res. 2021, 81, 6196–6206. [Google Scholar] [CrossRef]
- Racila, E.; Euhus, D.; Weiss, A.J.; Rao, C.; McConnell, J.; Terstappen, L.W.M.M.; Uhr, J.W. Detection and Characterization of Carcinoma Cells in the Blood. Proc. Natl. Acad. Sci. USA 1998, 95, 4589–4594. [Google Scholar] [CrossRef]
- Yoon, H.J.; Kozminsky, M.; Nagrath, S. Emerging Role of Nanomaterials in Circulating Tumor Cell Isolation and Analysis. ACS Nano 2014, 8, 1995–2017. [Google Scholar] [CrossRef]
- Lim, S.B.; Lim, C.T.; Lim, W.-T. Single-Cell Analysis of Circulating Tumor Cells: Why Heterogeneity Matters. Cancers 2019, 11, 1595. [Google Scholar] [CrossRef]
- Orrapin, S.; Thongkumkoon, P.; Udomruk, S.; Moonmuang, S.; Sutthitthasakul, S.; Yongpitakwattana, P.; Pruksakorn, D.; Chaiyawat, P. Deciphering the Biology of Circulating Tumor Cells through Single-Cell RNA Sequencing: Implications for Precision Medicine in Cancer. Int. J. Mol. Sci. 2023, 24, 12337. [Google Scholar] [CrossRef] [PubMed]
- Theil, G.; Fornara, P.; Bialek, J. Position of Circulating Tumor Cells in the Clinical Routine in Prostate Cancer and Breast Cancer Patients. Cancers 2020, 12, 3782. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.; Watters, M.; Davies, C.R.; Pantel, K.; Lu, Y.-J. Circulating Tumour Cells for Early Detection of Clinically Relevant Cancer. Nat. Rev. Clin. Oncol. 2023, 20, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Ring, A.; Nguyen-Sträuli, B.D.; Wicki, A.; Aceto, N. Biology, Vulnerabilities and Clinical Applications of Circulating Tumour Cells. Nat. Rev. Cancer 2023, 23, 95–111. [Google Scholar] [CrossRef]
- Liu, M.C.; Shields, P.G.; Warren, R.D.; Cohen, P.; Wilkinson, M.; Ottaviano, Y.L.; Rao, S.B.; Eng-Wong, J.; Seillier-Moiseiwitsch, F.; Noone, A.-M.; et al. Circulating Tumor Cells: A Useful Predictor of Treatment Efficacy in Metastatic Breast Cancer. J. Clin. Oncol. 2009, 27, 5153. [Google Scholar] [CrossRef]
- Li, D.; Li, N.; Ding, Y. Epithelial-to-Mesenchymal Transition of Circulating Tumor Cells and CD133 Expression on Predicting Prognosis of Thyroid Cancer Patients. Mol. Clin. Oncol. 2022, 17, 141. [Google Scholar] [CrossRef]
- Sriramareddy, S.N.; Hamoir, E.; Chavez, M.; Louis, R.; Beckers, A.; Willems, L. Tumor Cells May Circulate in Medullary Thyroid Cancer Patients Independently of Serum Calcitonin. Endocr. Relat. Cancer 2018, 25, ERC-18-0180. [Google Scholar] [CrossRef]
- Weng, X.; YangYang; Cai, Y. Clinical Significance of Circulating Tumor Cells (CTCs) and Survivin on Predicting Prognosis in Thyroid Cancer Patients. Dis. Markers 2022, 2022, 5188006. [Google Scholar] [CrossRef]
- Xu, J.Y.; Handy, B.; Michaelis, C.L.; Waguespack, S.G.; Hu, M.I.; Busaidy, N.; Jimenez, C.; Cabanillas, M.E.; Fritsche, H.A., Jr.; Cote, G.J.; et al. Detection and Prognostic Significance of Circulating Tumor Cells in Patients With Metastatic Thyroid Cancer. J. Clin. Endocrinol. Metab. 2016, 101, 4461. [Google Scholar] [CrossRef]
- Qiu, Z.-L.; Wei, W.-J.; Sun, Z.-K.; Shen, C.-T.; Song, H.-J.; Zhang, X.-Y.; Zhang, G.-Q.; Chen, X.-Y.; Luo, Q.-Y. Circulating Tumor Cells Correlate with Clinicopathological Features and Outcomes in Differentiated Thyroid Cancer. Cell. Physiol. Biochem. 2018, 48, 718–730. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhong, H.; Rao, H.; Wang, Y. Diagnostic Value of Circulating Tumor Cells in Patients with Thyroid Cancer: A Retrospective Study of 1478 Patients. Discov. Oncol. 2024, 15, 114. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.-X.; Fei, Y.-J.; Yang, K.; Tang, W.-J.; Cao, X.-H.; Tang, J.-H. Potential Values of Circulating Tumor Cell for Detection of Recurrence in Patients of Thyroid Cancer: A Diagnostic Meta-Analysis. BMC Cancer 2022, 22, 954. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Cheng, J.; Wei, B.; Zhang, Y.; Li, Y.; Zhang, Z.; Liu, Y.; Zhang, Y.; Zhang, R.; Wang, K.; et al. Development and Validation of Circulating Tumor Cells Signatures for Papillary Thyroid Cancer Diagnosis: A Prospective, Blinded, Multicenter Study. Clin. Transl. Med. 2020, 10, e142. [Google Scholar] [CrossRef] [PubMed]
- Stejskal, P.; Goodarzi, H.; Srovnal, J.; Hajdúch, M.; van ’t Veer, L.J.; Magbanua, M.J.M. Circulating Tumor Nucleic Acids: Biology, Release Mechanisms, and Clinical Relevance. Mol. Cancer 2023, 22, 15. [Google Scholar] [CrossRef]
- Cui, M.; Wang, H.; Yao, X.; Zhang, D.; Xie, Y.; Cui, R.; Zhang, X. Circulating MicroRNAs in Cancer: Potential and Challenge. Front. Genet. 2019, 10, 626. [Google Scholar] [CrossRef]
- Gold, B.; Cankovic, M.; Furtado, L.V.; Meier, F.; Gocke, C.D. Do Circulating Tumor Cells, Exosomes, and Circulating Tumor Nucleic Acids Have Clinical Utility? A Report of the Association for Molecular Pathology. J. Mol. Diagn. JMD 2015, 17, 209–224. [Google Scholar] [CrossRef]
- Sadik, N.; Cruz, L.; Gurtner, A.; Rodosthenous, R.S.; Dusoswa, S.A.; Ziegler, O.; Solinge, T.S.V.; Wei, Z.; Salvador-Garicano, A.M.; Gyorgy, B.; et al. Extracellular RNAs: A New Awareness of Old Perspectives. Methods Mol. Biol. Clifton NJ 2018, 1740, 1. [Google Scholar] [CrossRef]
- Cheng, F.; Su, L.; Qian, C. Circulating Tumor DNA: A Promising Biomarker in the Liquid Biopsy of Cancer. Oncotarget 2016, 7, 48832. [Google Scholar] [CrossRef]
- Kan, C.-M.; Pei, X.M.; Yeung, M.H.Y.; Jin, N.; Ng, S.S.M.; Tsang, H.F.; Cho, W.C.S.; Yim, A.K.-Y.; Yu, A.C.-S.; Wong, S.C.C. Exploring the Role of Circulating Cell-Free RNA in the Development of Colorectal Cancer. Int. J. Mol. Sci. 2023, 24, 11026. [Google Scholar] [CrossRef]
- Nemeth, K.; Bayraktar, R.; Ferracin, M.; Calin, G.A. Non-Coding RNAs in Disease: From Mechanisms to Therapeutics. Nat. Rev. Genet. 2024, 25, 211–232. [Google Scholar] [CrossRef]
- Slack, F.J.; Chinnaiyan, A.M. The Role of Non-Coding RNAs in Oncology. Cell 2019, 179, 1033–1055. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-C. Circulating Tumor DNA in Liquid Biopsy: Current Diagnostic Limitation. World J. Gastroenterol. 2024, 30, 2175. [Google Scholar] [CrossRef] [PubMed]
- Pupilli, C.; Pinzani, P.; Salvianti, F.; Fibbi, B.; Rossi, M.; Petrone, L.; Perigli, G.; De Feo, M.L.; Vezzosi, V.; Pazzagli, M.; et al. Circulating BRAFV600E in the Diagnosis and Follow-Up of Differentiated Papillary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2013, 98, 3359–3365. [Google Scholar] [CrossRef]
- Zane, M.; Agostini, M.; Enzo, M.V.; Casal Ide, E.; Del Bianco, P.; Torresan, F.; Merante Boschin, I.; Pennelli, G.; Saccani, A.; Rubello, D.; et al. Circulating Cell-Free DNA, SLC5A8 and SLC26A4 Hypermethylation, BRAFV600E: A Non-Invasive Tool Panel for Early Detection of Thyroid Cancer. Biomed. Pharmacother. 2013, 67, 723–730. [Google Scholar] [CrossRef]
- Sato, A.; Tanabe, M.; Tsuboi, Y.; Niwa, T.; Shinozaki-Ushiku, A.; Seto, Y.; Murakami, Y. Circulating Tumor DNA Harboring the BRAFV600E Mutation May Predict Poor Outcomes of Primary Papillary Thyroid Cancer Patients. Thyroid Off. J. Am. Thyroid Assoc. 2021, 31, 1822–1828. [Google Scholar] [CrossRef]
- Cote, G.J.; Evers, C.; Hu, M.I.; Grubbs, E.G.; Williams, M.D.; Hai, T.; Duose, D.Y.; Houston, M.R.; Bui, J.H.; Mehrotra, M.; et al. Prognostic Significance of Circulating RET M918T Mutated Tumor DNA in Patients With Advanced Medullary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2017, 102, 3591. [Google Scholar] [CrossRef]
- Suh, Y.J.; Kwon, M.J.; Noh, H.-M.; Lee, H.K.; Ra, Y.J.; Kim, N.Y. Limited Clinical and Diagnostic Utility of Circulating Tumor DNA Detection in Patients with Early-Stage Well-Differentiated Thyroid Cancer: Comparison with Benign Thyroid Nodules and Healthy Individuals. Healthcare 2021, 9, 386. [Google Scholar] [CrossRef]
- Tarasova, V.D.; Tsai, J.; Masannat, J.; Hernandez Prera, J.C.; Hallanger Johnson, J.; Veloski, C.; Agosto Salgado, S.; McIver, B.; Drusbosky, L.M.; Chung, C.H. Characterization of the Thyroid Cancer Genomic Landscape by Plasma-Based Circulating Tumor DNA Next-Generation Sequencing. Thyroid Off. J. Am. Thyroid Assoc. 2024, 34, 197–205. [Google Scholar] [CrossRef]
- Shokolenko, I.N.; Alexeyev, M.F. Mitochondrial DNA: A Disposable Genome? Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2015, 1852, 1805–1809. [Google Scholar] [CrossRef]
- Tan, B.G.; Gustafsson, C.M.; Falkenberg, M. Mechanisms and Regulation of Human Mitochondrial Transcription. Nat. Rev. Mol. Cell Biol. 2024, 25, 119–132. [Google Scholar] [CrossRef]
- Kopinski, P.K.; Singh, L.N.; Zhang, S.; Lott, M.T.; Wallace, D.C. Mitochondrial DNA Variation and Cancer. Nat. Rev. Cancer 2021, 21, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Gasparre, G.; Porcelli, A.M.; Bonora, E.; Pennisi, L.F.; Toller, M.; Iommarini, L.; Ghelli, A.; Moretti, M.; Betts, C.M.; Martinelli, G.N.; et al. Disruptive Mitochondrial DNA Mutations in Complex I Subunits Are Markers of Oncocytic Phenotype in Thyroid Tumors. Proc. Natl. Acad. Sci. USA 2007, 104, 9001–9006. [Google Scholar] [CrossRef] [PubMed]
- Alwehaidah, M.S.; Al-Awadhi, R.; Roomy, M.A.; Baqer, T.A. Mitochondrial DNA Copy Number and Risk of Papillary Thyroid Carcinoma. BMC Endocr. Disord. 2024, 24, 138. [Google Scholar] [CrossRef] [PubMed]
- Cabané, P.; Correa, C.; Bode, I.; Aguilar, R.; Elorza, A.A. Biomarkers in Thyroid Cancer: Emerging Opportunities from Non-Coding RNAs and Mitochondrial Space. Int. J. Mol. Sci. 2024, 25, 6719. [Google Scholar] [CrossRef]
- Perdas, E.; Stawski, R.; Kaczka, K.; Nowak, D.; Zubrzycka, M. Altered Levels of Circulating Nuclear and Mitochondrial DNA in Patients with Papillary Thyroid Cancer. Sci. Rep. 2019, 9, 14438. [Google Scholar] [CrossRef]
- Ricci, C.; Salvemini, A.; Dalmiglio, C.; Castagna, M.G.; Cantara, S. From Circulating Tumor Cells to Mirna: New Challenges in the Diagnosis and Prognosis of Medullary Thyroid Cancer. Cancers 2023, 15, 4009. [Google Scholar] [CrossRef]
- Romeo, P.; Colombo, C.; Granata, R.; Calareso, G.; Gualeni, A.V.; Dugo, M.; De Cecco, L.; Rizzetti, M.G.; Zanframundo, A.; Aiello, A.; et al. Circulating miR-375 as a Novel Prognostic Marker for Metastatic Medullary Thyroid Cancer Patients. Endocr. Relat. Cancer 2018, 25, 217–231. [Google Scholar] [CrossRef]
- Censi, S.; Bertazza, L.; Piva, I.; Manso, J.; Benna, C.; Iacobone, M.; Mondin, A.; Plebani, M.; Faggian, D.; Galuppini, F.; et al. Serum miR-375 for Diagnostic and Prognostic Purposes in Medullary Thyroid Carcinoma. Front. Endocrinol. 2021, 12, 647369. [Google Scholar] [CrossRef]
- Melone, V.; Salvati, A.; Palumbo, D.; Giurato, G.; Nassa, G.; Rizzo, F.; Palo, L.; Giordano, A.; Incoronato, M.; Vitale, M.; et al. Identification of Functional Pathways and Molecular Signatures in Neuroendocrine Neoplasms by Multi-Omics Analysis. J. Transl. Med. 2022, 20, 306. [Google Scholar] [CrossRef]
- Shabani, N.; Sheikholeslami, S.; Paryan, M.; Zarif Yeganeh, M.; Tavangar, S.M.; Azizi, F.; Mohammadi-Yeganeh, S.; Hedayati, M. An Investigation on the Expression of miRNAs Including miR-144 and miR-34a in Plasma Samples of RET-Positive and RET-Negative Medullar Thyroid Carcinoma Patients. J. Cell. Physiol. 2020, 235, 1366–1373. [Google Scholar] [CrossRef]
- Besharat, Z.M.; Trocchianesi, S.; Verrienti, A.; Ciampi, R.; Cantara, S.; Romei, C.; Sabato, C.; Noviello, T.M.R.; Po, A.; Citarella, A.; et al. Circulating miR-26b-5p and miR-451a as Diagnostic Biomarkers in Medullary Thyroid Carcinoma Patients. J. Endocrinol. Investig. 2023, 46, 2583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Wang, C.; Lu, H.; Chen, X.; Ba, Y.; Zhang, C.; Zhang, C.-Y. Altered Serum MicroRNA Profile May Serve as an Auxiliary Tool for Discriminating Aggressive Thyroid Carcinoma from Nonaggressive Thyroid Cancer and Benign Thyroid Nodules. Dis. Markers 2019, 2019, 3717683. [Google Scholar] [CrossRef] [PubMed]
- Rosignolo, F.; Sponziello, M.; Giacomelli, L.; Russo, D.; Pecce, V.; Biffoni, M.; Bellantone, R.; Lombardi, C.P.; Lamartina, L.; Grani, G.; et al. Identification of Thyroid-Associated Serum microRNA Profiles and Their Potential Use in Thyroid Cancer Follow-Up. J. Endocr. Soc. 2017, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Liu, Y.; Wang, J.; Guo, Z.; Zhang, Q.; Yu, F.; Zhang, Y.; Huang, K.; Li, Y.; Song, E.; et al. Circulating MicroRNA Profiles as Potential Biomarkers for Diagnosis of Papillary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2012, 97, 2084–2092. [Google Scholar] [CrossRef]
- Lee, J.C.; Zhao, J.T.; Clifton-Bligh, R.J.; Gill, A.; Gundara, J.S.; Ip, J.C.; Glover, A.; Sywak, M.S.; Delbridge, L.W.; Robinson, B.G.; et al. MicroRNA-222 and microRNA-146b Are Tissue and Circulating Biomarkers of Recurrent Papillary Thyroid Cancer. Cancer 2013, 119, 4358–4365. [Google Scholar] [CrossRef]
- Rezaei, M.; Khamaneh, A.M.; Zarghami, N.; Vosoughi, A.; Hashemzadeh, S. Evaluating Pre- and Post-Operation Plasma miRNAs of Papillary Thyroid Carcinoma (PTC) Patients in Comparison to Benign Nodules. BMC Cancer 2019, 19, 690. [Google Scholar] [CrossRef]
- Yoruker, E.E.; Terzioglu, D.; Teksoz, S.; Uslu, F.E.; Gezer, U.; Dalay, N. MicroRNA Expression Profiles in Papillary Thyroid Carcinoma, Benign Thyroid Nodules and Healthy Controls. J. Cancer 2016, 7, 803. [Google Scholar] [CrossRef]
- Graham, M.E.R.; Hart, R.D.; Douglas, S.; Makki, F.M.; Pinto, D.; Butler, A.L.; Bullock, M.; Rigby, M.H.; Trites, J.R.B.; Taylor, S.M.; et al. Serum microRNA Profiling to Distinguish Papillary Thyroid Cancer from Benign Thyroid Masses. J. Otolaryngol.-Head Neck Surg. J. Oto-Rhino-Laryngol. Chir. Cervico-Faciale 2015, 44, 33. [Google Scholar] [CrossRef]
- Cantara, S.; Pilli, T.; Sebastiani, G.; Cevenini, G.; Busonero, G.; Cardinale, S.; Dotta, F.; Pacini, F. Circulating miRNA95 and miRNA190 Are Sensitive Markers for the Differential Diagnosis of Thyroid Nodules in a Caucasian Population. J. Clin. Endocrinol. Metab. 2014, 99, 4190–4198. [Google Scholar] [CrossRef]
- Li, M.; Song, Q.; Li, H.; Lou, Y.; Wang, L. Circulating miR-25-3p and miR-451a May Be Potential Biomarkers for the Diagnosis of Papillary Thyroid Carcinoma. PLoS ONE 2015, 10, e0132403. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, J.; Chen, J.; Wang, J.; Xu, J. Construction and Analysis of an Aberrant lncRNA-miRNA-mRNA Network Associated with Papillary Thyroid Cancer. Medicine 2020, 99, e22705. [Google Scholar] [CrossRef] [PubMed]
- Gou, L.; Zou, H.; Li, B. Long Noncoding RNA MALAT1 Knockdown Inhibits Progression of Anaplastic Thyroid Carcinoma by Regulating miR-200a-3p/FOXA1. Cancer Biol. Ther. 2019, 20, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Shi, Y.; Liu, B.; Zhao, M. Expression of lncRNA-HOTAIR in the Serum of Patients with Lymph Node Metastasis of Papillary Thyroid Carcinoma and Its Impact. Oncol. Lett. 2020, 20, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, X.; Fu, X.; Yan, W.; Lin, F.; Kuang, P.; Luo, Y.; Lin, E.; Hong, X.; Wu, G. Long Non-Coding RNA BANCR Regulates Cancer Stem Cell Markers in Papillary Thyroid Cancer via the RAF/MEK/ERK Signaling Pathway. Oncol. Rep. 2018, 40, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, B.; Ru, Z.; Cong, L. CircRNA Circ-ITCH Suppresses Papillary Thyroid Cancer Progression through miR-22-3p/CBL/β-Catenin Pathway. Biochem. Biophys. Res. Commun. 2018, 504, 283–288. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, X.; Yang, H.; Chen, W.; Qian, Y.; Yan, Z.; Liao, T.; Yao, W.; Wu, W.; Yu, T.; et al. Hsa_circ_0058124 Promotes Papillary Thyroid Cancer Tumorigenesis and Invasiveness through the NOTCH3/GATAD2A Axis. J. Exp. Clin. Cancer Res. 2019, 38, 318. [Google Scholar] [CrossRef]
- Wei, H.; Pan, L.; Tao, D.; Li, R. Circular RNA circZFR Contributes to Papillary Thyroid Cancer Cell Proliferation and Invasion by Sponging miR-1261 and Facilitating C8orf4 Expression. Biochem. Biophys. Res. Commun. 2018, 503, 56–61. [Google Scholar] [CrossRef]
- Li, X.; Tian, Y.; Hu, Y.; Yang, Z.; Zhang, L.; Luo, J. CircNUP214 Sponges miR-145 to Promote the Expression of ZEB2 in Thyroid Cancer Cells. Biochem. Biophys. Res. Commun. 2018, 507, 168–172. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Z.; Pang, W.; Zhou, J.; Liang, Y.; Yang, J.; Yang, L.; Zhang, Q. Upregulated Hsa_circ_0004458 Contributes to Progression of Papillary Thyroid Carcinoma by Inhibition of miR-885-5p and Activation of RAC1. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 5488. [Google Scholar] [CrossRef]
- Yang, S.P.; Koh, L.C.W.; Kong, K.W.; Parameswaran, R.; Loke, K.S.H.; Ngiam, K.Y.; Tan, W.B.; Loh, T.; Ng, D.C.E.; Goh, B.C.; et al. A Multiplex Thyroid-Specific Assay for Quantification of Circulating Thyroid Cell-Free RNA in Plasma of Thyroid Cancer Patients. Front. Genet. 2021, 12, 721832. [Google Scholar] [CrossRef]
- Ringel, M.D.; Ladenson, P.W.; Levine, M.A. Molecular Diagnosis of Residual and Recurrent Thyroid Cancer by Amplification of Thyroglobulin Messenger Ribonucleic Acid in Peripheral Blood. J. Clin. Endocrinol. Metab. 1998, 83, 4435–4442. [Google Scholar] [CrossRef] [PubMed]
- Bellantone, R.; Lombardi, C.P.; Bossola, M.; Ferrante, A.; Princi, P.; Boscherini, M.; Maussier, L.; Salvatori, M.; Rufini, V.; Reale, F.; et al. Validity of Thyroglobulin mRNA Assay in Peripheral Blood of Postoperative Thyroid Carcinoma Patients in Predicting Tumor Recurrences Varies According to the Histologic Type: Results of a Prospective Study. Cancer 2001, 92, 2273–2279. [Google Scholar] [CrossRef]
- Amakawa, M.; Kato, R.; Kameko, F.; Maruyama, M.; Tajiri, J. Thyroglobulin mRNA Expression in Peripheral Blood Lymphocytes of Healthy Subjects and Patients with Thyroid Disease. Clin. Chim. Acta Int. J. Clin. Chem. 2008, 390, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Sellitti, D.F.; Akamizu, T.; Doi, S.Q.; Kim, G.H.; Kariyil, J.T.; Kopchik, J.J.; Koshiyama, H. Renal Expression of Two “thyroid-Specific” Genes: Thyrotropin Receptor and Thyroglobulin. Exp. Nephrol. 2000, 8, 235–243. [Google Scholar] [CrossRef]
- Aliyev, A.; Gupta, M.; Nasr, C.; Hatipoglu, B.; Milas, M.; Siperstein, A.; Berber, E. Circulating thyroid-stimulating hormone receptor messenger rna as a marker of tumor aggressiveness in patients with papillary thyroid microcarcinoma. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2015, 21, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Aliyev, A.; Patel, J.; Brainard, J.; Gupta, M.; Nasr, C.; Hatipoglu, B.; Siperstein, A.; Berber, E. Diagnostic Accuracy of Circulating Thyrotropin Receptor Messenger RNA Combined with Neck Ultrasonography in Patients with Bethesda III-V Thyroid Cytology. Surgery 2016, 159, 113–117. [Google Scholar] [CrossRef]
- Chia, S.-Y.; Milas, M.; Reddy, S.K.; Siperstein, A.; Skugor, M.; Brainard, J.; Gupta, M.K. Thyroid-Stimulating Hormone Receptor Messenger Ribonucleic Acid Measurement in Blood as a Marker for Circulating Thyroid Cancer Cells and Its Role in the Preoperative Diagnosis of Thyroid Cancer. J. Clin. Endocrinol. Metab. 2007, 92, 468–475. [Google Scholar] [CrossRef]
- Chinnappa, P.; Taguba, L.; Arciaga, R.; Faiman, C.; Siperstein, A.; Mehta, A.E.; Reddy, S.K.; Nasr, C.; Gupta, M.K. Detection of Thyrotropin-Receptor Messenger Ribonucleic Acid (mRNA) and Thyroglobulin mRNA Transcripts in Peripheral Blood of Patients with Thyroid Disease: Sensitive and Specific Markers for Thyroid Cancer. J. Clin. Endocrinol. Metab. 2004, 89, 3705–3709. [Google Scholar] [CrossRef]
- Savagner, F.; Rodien, P.; Reynier, P.; Rohmer, V.; Bigorgne, J.-C.; Malthiery, Y. Analysis of Tg Transcripts by Real-Time RT-PCR in the Blood of Thyroid Cancer Patients. J. Clin. Endocrinol. Metab. 2002, 87, 635–639. [Google Scholar] [CrossRef]
- Camacho, C.P.; Lindsey, S.C.; Melo, M.C.C.; Yang, J.H.; Germano-Neto, F.; de Valente, O.F.; Lima, T.R.; Biscolla, R.P.M.; Vieira, J.G.; Cerutti, J.M.; et al. Measurement of Calcitonin and Calcitonin Gene–Related Peptide mRNA Refines the Management of Patients with Medullary Thyroid Cancer and May Replace Calcitonin-Stimulation Tests. Thyroid 2013, 23, 308. [Google Scholar] [CrossRef]
- Lubitz, C.C.; Parangi, S.; Holm, T.M.; Bernasconi, M.J.; Schalck, A.P.; Suh, H.; Economopoulos, K.P.; Gunda, V.; Donovan, S.E.; Sadow, P.M.; et al. Detection of Circulating BRAFV600E in Patients with Papillary Thyroid Carcinoma. J. Mol. Diagn. JMD 2016, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, A.; Ochiya, T. Exosomes and Extracellular Vesicles: Rethinking the Essential Values in Cancer Biology. Semin. Cancer Biol. 2021, 74, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Capriglione, F.; Verrienti, A.; Celano, M.; Maggisano, V.; Sponziello, M.; Pecce, V.; Gagliardi, A.; Giacomelli, L.; Aceti, V.; Durante, C.; et al. Analysis of Serum microRNA in Exosomal Vehicles of Papillary Thyroid Cancer. Endocrine 2022, 75, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Yu, S.; Tang, S.; Bai, L.; Cheng, J.; Gu, Y.; Li, S.; Zheng, X.; Duan, L.; Wang, L.; et al. A Panel of Plasma Exosomal miRNAs as Potential Biomarkers for Differential Diagnosis of Thyroid Nodules. Front. Genet. 2020, 11, 449. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, Y.; Li, X.; Jin, X.; Wang, G. Decreased Serum Exosomal miR-29a Expression and Its Clinical Significance in Papillary Thyroid Carcinoma. J. Clin. Lab. Anal. 2021, 35, e23560. [Google Scholar] [CrossRef]
- D’Amico, G.; Santonocito, R.; Grech, G.; Graceffa, G.; Cipolla, C.; Scalia, F.; Raccosta, S.; Manno, M.; Conway de Macario, E.; Macario, A.J.L.; et al. MiRNAs in Extracellular Vesicles as Biomarkers in Plasma of Papillary Thyroid Cancer Patients: A Proof-of-Concept Study. Biology 2024, 13, 743. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, J.; Zou, X.; Huang, Z.; Zhang, H.; Liu, Q.; Jiang, L.; Zhou, X.; Zhu, W. A Three Plasma microRNA Signature for Papillary Thyroid Carcinoma Diagnosis in Chinese Patients. Gene 2019, 693, 37–45. [Google Scholar] [CrossRef]
- Boufraqech, M.; Zhang, L.; Jain, M.; Patel, D.; Ellis, R.; Xiong, Y.; He, M.; Nilubol, N.; Merino, M.J.; Kebebew, E. miR-145 Suppresses Thyroid Cancer Growth and Metastasis and Targets AKT3. Endocr. Relat. Cancer 2014, 21, 517–531. [Google Scholar] [CrossRef]
- Dai, D.; Tan, Y.; Guo, L.; Tang, A.; Zhao, Y. Identification of Exosomal miRNA Biomarkers for Diagnosis of Papillary Thyroid Cancer by Small RNA Sequencing. Eur. J. Endocrinol. 2020, 182, 111–121. [Google Scholar] [CrossRef]
- Samsonov, R.; Burdakov, V.; Shtam, T.; Radzhabova, Z.; Vasilyev, D.; Tsyrlina, E.; Titov, S.; Ivanov, M.; Berstein, L.; Filatov, M.; et al. Plasma Exosomal miR-21 and miR-181a Differentiates Follicular from Papillary Thyroid Cancer. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2016, 37, 12011–12021. [Google Scholar] [CrossRef]
- Jiang, K.; Li, G.; Chen, W.; Song, L.; Wei, T.; Li, Z.; Gong, R.; Lei, J.; Shi, H.; Zhu, J. Plasma Exosomal miR-146b-5p and miR-222-3p Are Potential Biomarkers for Lymph Node Metastasis in Papillary Thyroid Carcinomas. OncoTargets Ther. 2020, 13, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, G.; Li, Z.; Zhu, J.; Wei, T.; Lei, J. Evaluation of Plasma Exosomal miRNAs as Potential Diagnostic Biomarkers of Lymph Node Metastasis in Papillary Thyroid Carcinoma. Endocrine 2022, 75, 846–855. [Google Scholar] [CrossRef]
- Lin, Q.; Qi, Q.; Hou, S.; Chen, Z.; Jiang, N.; Zhang, L.; Lin, C. Exosomal Circular RNA Hsa_circ_007293 Promotes Proliferation, Migration, Invasion, and Epithelial–Mesenchymal Transition of Papillary Thyroid Carcinoma Cells through Regulation of the microRNA-653-5p/Paired Box 6 Axis. Bioengineered 2021, 12, 10136–10149. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wei, Y.; Yu, L.; Xiao, Y. Identification of Altered Circular RNA Expression in Serum Exosomes from Patients with Papillary Thyroid Carcinoma by High-Throughput Sequencing. Med. Sci. Monit. 2019, 25, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Jin, X.; Han, L.; Huang, H.; Ji, Z.; Xu, X.; Tang, M.; Jiang, B.; Chen, W. Exosomal lncRNA DOCK9-AS2 Derived from Cancer Stem Cell-like Cells Activated Wnt/β-Catenin Pathway to Aggravate Stemness, Proliferation, Migration, and Invasion in Papillary Thyroid Carcinoma. Cell Death Dis. 2020, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Zhan, S.; Xia, W.; Huang, L.; Ge, W.; Wang, T. Proteomics Study of Serum Exosomes from Papillary Thyroid Cancer Patients. Endocr. Relat. Cancer 2018, 25, 879–891. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, Y.; Wu, J.; Tang, X.; Qian, Z.; Zhang, Z.; Liu, R.; Liu, P.; Li, Z.; Xu, X.; et al. Serum Small Extracellular Vesicles-Derived BST2 as a Biomarker for Papillary Thyroid Microcarcinoma Promotes Lymph Node Metastasis. Cancer Gene Ther. 2025, 32, 38–50. [Google Scholar] [CrossRef]
- Caruso Bavisotto, C.; Cipolla, C.; Graceffa, G.; Barone, R.; Bucchieri, F.; Bulone, D.; Cabibi, D.; Campanella, C.; Marino Gammazza, A.; Pitruzzella, A.; et al. Immunomorphological Pattern of Molecular Chaperones in Normal and Pathological Thyroid Tissues and Circulating Exosomes: Potential Use in Clinics. Int. J. Mol. Sci. 2019, 20, 4496. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Eddama, M.M.R.; Beatson, K.; Gurung, R.; Patel, J.; Iskandar, G.; Abdel-Salam, A.; Al-Omar, A.; Cohen, R.; Abdel-Aziz, T.; et al. Circulating Large Extracellular Vesicles as Diagnostic Biomarkers of Indeterminate Thyroid Nodules: Multi-Platform Omics Analysis. BJS Open 2024, 9, zrae139. [Google Scholar] [CrossRef]
- Zaccone, V.; Falsetti, L.; Nitti, C.; Gentili, T.; Marchetti, A.; Piersantelli, M.N.; Sampaolesi, M.; Riccomi, F.; Raponi, A.; Salvi, A. The Prognostic Role of Procalcitonin in Critically Ill Patients Admitted in a Medical Stepdown Unit: A Retrospective Cohort Study. Sci. Rep. 2020, 10, 4531. [Google Scholar] [CrossRef]
- Azzini, A.M.; Dorizzi, R.M.; Sette, P.; Vecchi, M.; Coledan, I.; Righi, E.; Tacconelli, E. A 2020 Review on the Role of Procalcitonin in Different Clinical Settings: An Update Conducted with the Tools of the Evidence Based Laboratory Medicine. Ann. Transl. Med. 2020, 8, 610. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, P.; Seregni, E.; Treglia, G.; Alevizaki, M.; Giovanella, L. Procalcitonin for Detecting Medullary Thyroid Carcinoma: A Systematic Review. Endocr. Relat. Cancer 2015, 22, R157–R164. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, A.K.A.; Girio-Fragkoulakis, C.; Nakouti, T. Procalcitonin: A New Biomarker for Medullary Thyroid Cancer? A Systematic Review. Anticancer Res. 2016, 36, 3803–3810. [Google Scholar] [PubMed]
- Austin, L.A.; Heath, H. Calcitonin. N. Engl. J. Med. 1981, 304, 269–278. [Google Scholar] [CrossRef]
- Goltzman, D.; Tischler, A.S. Characterization of the Immunochemical Forms of Calcitonin Released by a Medullary Thyroid Carcinoma in Tissue Culture. J. Clin. Investig. 1978, 61, 449–458. [Google Scholar] [CrossRef]
- Meisner, M.; Schmidt, J.; Hüttner, H.; Tschaikowsky, K. The Natural Elimination Rate of Procalcitonin in Patients with Normal and Impaired Renal Function. Intensive Care Med. 2000, 26 (Suppl. 2), S212–S216. [Google Scholar] [CrossRef]
- Kratzsch, J.; Willenberg, A.; Frank-Raue, K.; Kempin, U.; Rocktäschel, J.; Raue, F. Procalcitonin Measured by Three Different Assays Is an Excellent Tumor Marker for the Follow-up of Patients with Medullary Thyroid Carcinoma. Clin. Chem. Lab. Med. CCLM 2021, 59, 1861–1868. [Google Scholar] [CrossRef]
- Giovanella, L.; Verburg, F.A.; Imperiali, M.; Valabrega, S.; Trimboli, P.; Ceriani, L. Comparison of Serum Calcitonin and Procalcitonin in Detecting Medullary Thyroid Carcinoma among Patients with Thyroid Nodules. Clin. Chem. Lab. Med. 2013, 51, 1477–1481. [Google Scholar] [CrossRef]
- Machens, A.; Lorenz, K.; Dralle, H. Utility of Serum Procalcitonin for Screening and Risk Stratification of Medullary Thyroid Cancer. J. Clin. Endocrinol. Metab. 2014, 99, 2986–2994. [Google Scholar] [CrossRef]
- Giovanella, L.; Fontana, M.; Keller, F.; Verburg, F.A.; Ceriani, L. Clinical Performance of Calcitonin and Procalcitonin Elecsys® Immunoassays in Patients with Medullary Thyroid Carcinoma. Clin. Chem. Lab. Med. 2021, 59, 743–747. [Google Scholar] [CrossRef]
- Censi, S.; Manso, J.; Benvenuti, T.; Piva, I.; Iacobone, M.; Mondin, A.; Torresan, F.; Basso, D.; Crivellari, G.; Zovato, S.; et al. The Role of Procalcitonin in the Follow-up of Medullary Thyroid Cancer. Eur. Thyroid J. 2023, 12, e220161. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Garo, M.L.; Ceriani, L.; Paone, G.; Campenni’, A.; D’Aurizio, F. Procalcitonin as an Alternative Tumor Marker of Medullary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2021, 106, 3634–3643. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Imperiali, M.; Piccardo, A.; Taborelli, M.; Verburg, F.A.; Daurizio, F.; Trimboli, P. Procalcitonin Measurement to Screen Medullary Thyroid Carcinoma: A Prospective Evaluation in a Series of 2705 Patients with Thyroid Nodules. Eur. J. Clin. Investig. 2018, 48, e12934. [Google Scholar] [CrossRef]
- Giovanella, L.; Giordani, I.; Imperiali, M.; Orlandi, F.; Trimboli, P. Measuring Procalcitonin to Overcome Heterophilic-Antibody-Induced Spurious Hypercalcitoninemia. Clin. Chem. Lab. Med. CCLM 2018, 56, e191–e193. [Google Scholar] [CrossRef]
- Kratzsch, J.; Petzold, A.; Raue, F.; Reinhardt, W.; Bröcker-Preuss, M.; Görges, R.; Mann, K.; Karges, W.; Morgenthaler, N.; Luster, M.; et al. Basal and Stimulated Calcitonin and Procalcitonin by Various Assays in Patients with and without Medullary Thyroid Cancer. Clin. Chem. 2011, 57, 467–474. [Google Scholar] [CrossRef]
- Bytnar, J.A.; Enewold, L.; Shriver, C.D.; Zhu, K. Incidence of Papillary Thyroid Cancer: Comparison of the Military and the General Population by Race and Tumor Stage/Size. Cancer Epidemiol. 2024, 89, 102539. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, X.; Li, L.; Zhang, C.; Huang, J.; Huang, W. Molecular Basis and Targeted Therapies for Radioiodine Refractory Thyroid Cancer. Asia Pac. J. Clin. Oncol. 2023, 19, 279–289. [Google Scholar] [CrossRef]
- Grogan, R.H.; Mitmaker, E.J.; Clark, O.H. The Evolution of Biomarkers in Thyroid Cancer—From Mass Screening to a Personalized Biosignature. Cancers 2010, 2, 885–912. [Google Scholar] [CrossRef]
- Avram, A.M.; Giovanella, L.; Greenspan, B.; Lawson, S.A.; Luster, M.; Van Nostrand, D.; Peacock, J.G.; Ovčariček, P.P.; Silberstein, E.; Tulchinsky, M.; et al. SNMMI Procedure Standard/EANM Practice Guideline for Nuclear Medicine Evaluation and Therapy of Differentiated Thyroid Cancer: Abbreviated Version. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2022, 63, 15N–35N. [Google Scholar]
- Favresse, J.; Burlacu, M.-C.; Maiter, D.; Gruson, D. Interferences With Thyroid Function Immunoassays: Clinical Implications and Detection Algorithm. Endocr. Rev. 2018, 39, 830–850. [Google Scholar] [CrossRef]
- Garo, M.L.; Campennì, A.; Petranovic-Ovcaricek, P.; D’Aurizio, F.; Giovanella, L. Evolution of Thyroid Cancer Biomarkers: From Laboratory Test to Patients’ Clinical Management. Clin. Chem. Lab. Med. 2023, 61, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Ceriotti, F. Harmonization Initiatives in Europe. EJIFCC 2016, 27, 23–29. [Google Scholar] [PubMed]
- Ozarda, Y.; Sikaris, K.; Streichert, T.; Macri, J.; IFCC Committee on Reference intervals and Decision Limits (C-RIDL). Distinguishing Reference Intervals and Clinical Decision Limits—A Review by the IFCC Committee on Reference Intervals and Decision Limits. Crit. Rev. Clin. Lab. Sci. 2018, 55, 420–431. [Google Scholar] [CrossRef] [PubMed]
- EP28 A3C: Define and Verify Reference Intervals in Lab. Available online: https://clsi.org/standards/products/method-evaluation/documents/ep28/ (accessed on 8 January 2025).
- Holdenrieder, S. Circulating Biomarkers: Biological Basis, Methods, and Interpretation Criteria. In Atlas of Thyroid and Neuroendocrine Tumor Markers; Giovanella, L., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 39–48. ISBN 978-3-319-62506-5. [Google Scholar]
- Xie, K. A Biomarker and Molecular Mechanism Investigation for Thyroid Cancer. Cent.-Eur. J. Immunol. 2023, 48, 203–218. [Google Scholar] [CrossRef]
- Gao, Z.; Jiang, J.; Hou, L.; Zhang, B. Dysregulation of MiR-144-5p/RNF187 Axis Contributes to the Progression of Colorectal Cancer. J. Transl. Intern. Med. 2022, 10, 65–75. [Google Scholar] [CrossRef]
- Garofalo, M.; Quintavalle, C.; Romano, G.; Croce, C.M.; Condorelli, G. miR221/222 in Cancer: Their Role in Tumor Progression and Response to Therapy. Curr. Mol. Med. 2012, 12, 27–33. [Google Scholar] [CrossRef]
- Rhim, J.; Baek, W.; Seo, Y.; Kim, J.H. From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells 2022, 11, 2791. [Google Scholar] [CrossRef]
- Capdevila, J.; Awada, A.; Führer-Sakel, D.; Leboulleux, S.; Pauwels, P. Molecular Diagnosis and Targeted Treatment of Advanced Follicular Cell-Derived Thyroid Cancer in the Precision Medicine Era. Cancer Treat. Rev. 2022, 106, 102380. [Google Scholar] [CrossRef]
- Agarwal, S.; Bychkov, A.; Jung, C.-K. Emerging Biomarkers in Thyroid Practice and Research. Cancers 2021, 14, 204. [Google Scholar] [CrossRef]
- Zakari, S.; Niels, N.K.; Olagunju, G.V.; Nnaji, P.C.; Ogunniyi, O.; Tebamifor, M.; Israel, E.N.; Atawodi, S.E.; Ogunlana, O.O. Emerging Biomarkers for Non-Invasive Diagnosis and Treatment of Cancer: A Systematic Review. Front. Oncol. 2024, 14, 1405267. [Google Scholar] [CrossRef]
- D′Avó Luís, A.B.; Seo, M.K. Has the Development of Cancer Biomarkers to Guide Treatment Improved Health Outcomes? Eur. J. Health Econ. HEPAC Health Econ. Prev. Care 2021, 22, 789–810. [Google Scholar] [CrossRef]
- Sebastian, A.M.; Peter, D. Artificial Intelligence in Cancer Research: Trends, Challenges and Future Directions. Life 2022, 12, 1991. [Google Scholar] [CrossRef]
Biomarker | Thyroid Tumor | Biological Matrix | Currently Available Methods | Clinical Use | Limitations | References |
---|---|---|---|---|---|---|
TG | DTC | Plasma, Serum | IMAs, LC-MS/MS | Prediction of tumor relapses after treatment (surgery, RAI ablation); estimation of tumor burden. | Elevations in non-neoplastic disorders; analytical interferences. | [28,47,48,49,50,51,52,54,64,65,66,67,68,69,70] |
CT | MTC | Plasma, Serum | IMAs | Preoperative MTC identification (most sensitive marker); estimation of tumor burden; prognostic predictor; evaluation of response to therapy. | Elevations in non-neoplastic disorders; lack of a univocal cut-off for basal CT; analytical interferences. | [35,74,76,77,78,80,81,83] |
CEA | MTC | Plasma, Serum | IMAs | Prognostic predictor; marker of tumor dedifferentiation, progression and invasion; evaluation of response to therapy. | Elevations in non-neoplastic disorders; lack of specificity for thyroid cancer (other neoplasms such as colon, breast, …); analytical interferences. | [89,90,91,92,93,94,95,97,98] |
Ca 19-9 | DTC, MTC | Plasma, Serum | IMAs | Prognostic predictor; marker of MTC dedifferentiation and disease aggressiveness. | Elevations in non-neoplastic disorders; lack of specificity for thyroid cancer (other neoplasms such as pancreas); lack of a univocal cut-off to distinguish between benign and malignant disease; analytical interferences. | [107,108,109,110,111,112,113,114,115,116,121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Codrich, M.; Biasotto, A.; D’Aurizio, F. Circulating Biomarkers of Thyroid Cancer: An Appraisal. J. Clin. Med. 2025, 14, 1582. https://doi.org/10.3390/jcm14051582
Codrich M, Biasotto A, D’Aurizio F. Circulating Biomarkers of Thyroid Cancer: An Appraisal. Journal of Clinical Medicine. 2025; 14(5):1582. https://doi.org/10.3390/jcm14051582
Chicago/Turabian StyleCodrich, Marta, Alessia Biasotto, and Federica D’Aurizio. 2025. "Circulating Biomarkers of Thyroid Cancer: An Appraisal" Journal of Clinical Medicine 14, no. 5: 1582. https://doi.org/10.3390/jcm14051582
APA StyleCodrich, M., Biasotto, A., & D’Aurizio, F. (2025). Circulating Biomarkers of Thyroid Cancer: An Appraisal. Journal of Clinical Medicine, 14(5), 1582. https://doi.org/10.3390/jcm14051582