Acromegaly and Cardiovascular Disease: Associated Cardiovascular Risk Factors, Cardiovascular Prognosis, and Therapeutic Impact
Abstract
:1. Introduction
2. Methods
3. Cardiovascular Risk Factors Associated with Acromegaly
3.1. Hyperglycemia, Hyperinsulinemia, and Insulin Resistance
3.2. Dyslipidemia
3.3. Hypertension
3.4. Overweight and Obesity
3.5. Endothelial Dysfunction
3.6. Structural and Functional Cardiac Alterations
3.7. Acromegaly Activity and Duration
4. Cardiovascular Diseases
4.1. Coronary Heart Disease
4.2. Cardiac Arrhythmias
4.3. Heart Failure
4.4. Valvular Heart Disease
4.5. Stroke
4.6. Acromegalic Cardiomyopathy
4.7. Cardiovascular Mortality
5. Improving Cardiovascular Prognosis in Acromegaly: Therapeutic Strategies and Interventions
5.1. Control of Cardiovascular Risk Factors
5.1.1. Diet and Physical Exercise
5.1.2. Blood Glucose Control
5.1.3. Lipid Profile Management
5.1.4. Blood Pressure Control
5.2. Control of Acromegaly Activity
5.3. Management of Cardiovascular Comorbidities
5.3.1. Arrhythmias
5.3.2. Acromegalic Cardiomyopathy: Hypertensive Cardiomyopathy, Dilated Cardiomyopathy, and Heart Failure
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Melmed, S. Acromegaly. N. Engl. J. Med. 1990, 322, 966–977. [Google Scholar] [CrossRef]
- Fleseriu, M.; Langlois, F.; Lim, D.S.T.; Varlamov, E.V.; Melmed, S. Acromegaly: Pathogenesis, Diagnosis, and Management. Lancet Diabetes Endocrinol. 2022, 10, 804–826. [Google Scholar] [CrossRef]
- Holdaway, I.M.; Rajasoorya, C. Epidemiology of Acromegaly. Pituitary 1999, 2, 29–41. [Google Scholar] [CrossRef]
- Fauchier, G.; Laurent, E.; Maione, L.; Lecuyer, A.-I.; Herbert, J.; Pierre-Renoult, P.; Cloix, L.; Chanson, P.; Ducluzeau, P.-H.; Grammatico-Guillon, L. Acromegaly: Incidence, Patient Characteristics and Treatment Patterns in a 10-Year Nationwide Retrospective Hospital Cohort Study. Ann. Endocrinol. 2024, 85, 589–595. [Google Scholar] [CrossRef]
- Daly, A.F.; Rixhon, M.; Adam, C.; Dempegioti, A.; Tichomirowa, M.A.; Beckers, A. High Prevalence of Pituitary Adenomas: A Cross-Sectional Study in the Province of Liege, Belgium. J. Clin. Endocrinol. Metab. 2006, 91, 4769–4775. [Google Scholar] [CrossRef]
- Schneider, H.J.; Sievers, C.; Saller, B.; Wittchen, H.U.; Stalla, G.K. High Prevalence of Biochemical Acromegaly in Primary Care Patients with Elevated IGF-1 Levels. Clin. Endocrinol. 2008, 69, 432–435. [Google Scholar] [CrossRef]
- Mizera, Ł.; Elbaum, M.; Daroszewski, J.; Bolanowski, M. Cardiovascular Complications of Acromegaly. Acta Endocrinol. 2018, 14, 365–374. [Google Scholar] [CrossRef]
- Chanson, P.; Salenave, S. Acromegaly. Orphanet J. Rare Dis. 2008, 3, 17. [Google Scholar] [CrossRef]
- Mosca, S.; Paolillo, S.; Colao, A.; Bossone, E.; Cittadini, A.; Iudice, F.L.; Parente, A.; Conte, S.; Rengo, G.; Leosco, D.; et al. Cardiovascular Involvement in Patients Affected by Acromegaly: An Appraisal. Int. J. Cardiol. 2013, 167, 1712–1718. [Google Scholar] [CrossRef]
- Pivonello, R.; Auriemma, R.S.; Grasso, L.F.S.; Pivonello, C.; Simeoli, C.; Patalano, R.; Galdiero, M.; Colao, A. Complications of Acromegaly: Cardiovascular, Respiratory and Metabolic Comorbidities. Pituitary 2017, 20, 46–62. [Google Scholar] [CrossRef]
- Ramos-Leví, A.M.; Marazuela, M. Cardiovascular Comorbidities in Acromegaly: An Update on Their Diagnosis and Management. Endocrine 2017, 55, 346–359. [Google Scholar] [CrossRef]
- Sherin, R.P.V.; Vietor, N.O.; Usman, A.; Hoang, T.D.; Shakir, M.K.M. Cardiovascular Disorders Associated with Acromegaly: An Update. Endocr. Pract. 2024, 30, 1212–1219. [Google Scholar] [CrossRef]
- Ramos-Leví, A.M.; Marazuela, M. Bringing Cardiovascular Comorbidities in Acromegaly to an Update. How Should We Diagnose and Manage Them? Front. Endocrinol. 2019, 10, 120. [Google Scholar] [CrossRef]
- Vitale, G.; Pivonello, R.; Galderisi, M.; D’Errico, A.; Spinelli, L.; Lupoli, G.; Lombardi, G.; Colao, A. Cardiovascular Complications in Acromegaly: Methods of Assessment. Pituitary 2001, 4, 251–257. [Google Scholar] [CrossRef]
- Hinojosa-Amaya, J.M.; Varlamov, E.V.; Yedinak, C.G.; Cetas, J.S.; McCartney, S.; Banskota, S.; Fleseriu, M. Echocardiographic Findings in Acromegaly: Prevalence of Concentric Left Ventricular Remodeling in a Large Single-Center Cohort. J. Endocrinol. Investig. 2021, 44, 2665–2674. [Google Scholar] [CrossRef]
- Wildbrett, J.; Hanefeld, M.; Fücker, K.; Pinzer, T.; Bergmann, S.; Siegert, G.; Breidert, M. Anomalies of Lipoprotein Pattern and Fibrinolysis in Acromegalic Patients: Relation to Growth Hormone Levels and Insulin-like Growth Factor I. Exp. Clin. Endocrinol. Diabetes 1997, 105, 331–335. [Google Scholar] [CrossRef]
- Tan, K.C.; Shiu, S.W.; Janus, E.D.; Lam, K.S. LDL Subfractions in Acromegaly: Relation to Growth Hormone and Insulin-like Growth Factor-I. Atherosclerosis 1997, 129, 59–65. [Google Scholar] [CrossRef]
- Bondanelli, M.; Ambrosio, M.R.; degli Uberti, E.C. Pathogenesis and Prevalence of Hypertension in Acromegaly. Pituitary 2001, 4, 239–249. [Google Scholar] [CrossRef]
- Anagnostis, P.; Efstathiadou, Z.A.; Gougoura, S.; Polyzos, S.A.; Karathanasi, E.; Dritsa, P.; Kita, M.; Koukoulis, G.N. Oxidative Stress and Reduced Antioxidative Status, along with Endothelial Dysfunction in Acromegaly. Horm. Metab. Res. 2013, 45, 314–318. [Google Scholar] [CrossRef]
- McDowell, I.F.; Lang, D. Homocysteine and Endothelial Dysfunction: A Link with Cardiovascular Disease. J. Nutr. 2000, 130, 369S–372S. [Google Scholar] [CrossRef]
- Khiyami, A.; Mehrotra, N.; Venugopal, S.; Mahmud, H.; Zenonos, G.A.; Gardner, P.A.; Fazeli, P.K. IGF-1 Is Positively Associated with BMI in Patients with Acromegaly. Pituitary 2023, 26, 221–226. [Google Scholar] [CrossRef]
- Jo, J.-R.; An, S.; Ghosh, S.; Nedumaran, B.; Kim, Y.D. Growth Hormone Promotes Hepatic Gluconeogenesis by Enhancing BTG2-YY1 Signaling Pathway. Sci. Rep. 2021, 11, 18999. [Google Scholar] [CrossRef]
- Bramnert, M.; Segerlantz, M.; Laurila, E.; Daugaard, J.R.; Manhem, P.; Groop, L. Growth Hormone Replacement Therapy Induces Insulin Resistance by Activating the Glucose-Fatty Acid Cycle. J. Clin. Endocrinol. Metab. 2003, 88, 1455–1463. [Google Scholar] [CrossRef]
- Moustaki, M.; Paschou, S.A.; Xekouki, P.; Kotsa, K.; Peppa, M.; Psaltopoulou, T.; Kalantaridou, S.; Vryonidou, A. Secondary Diabetes Mellitus in Acromegaly. Endocrine 2023, 81, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Shi, Y.; Wang, W.; Hu, Y.; Chen, Z. Secondary Diabetes Mellitus in Acromegaly: Case Report and Literature Review. Medicine 2024, 103, e39847. [Google Scholar] [CrossRef]
- Fieffe, S.; Morange, I.; Petrossians, P.; Chanson, P.; Rohmer, V.; Cortet, C.; Borson-Chazot, F.; Brue, T.; Delemer, B.; French Acromegaly Registry. Diabetes in Acromegaly, Prevalence, Risk Factors, and Evolution: Data from the French Acromegaly Registry. Eur. J. Endocrinol. 2011, 164, 877–884. [Google Scholar] [CrossRef]
- Alexopoulou, O.; Bex, M.; Kamenicky, P.; Mvoula, A.B.; Chanson, P.; Maiter, D. Prevalence and Risk Factors of Impaired Glucose Tolerance and Diabetes Mellitus at Diagnosis of Acromegaly: A Study in 148 Patients. Pituitary 2014, 17, 81–89. [Google Scholar] [CrossRef]
- Dogansen, S.C.; Yalin, G.Y.; Tanrikulu, S.; Yarman, S. Impact of Glucose Metabolism Disorders on IGF-1 Levels in Patients with Acromegaly. Horm. Metab. Res. 2018, 50, 408–413. [Google Scholar] [CrossRef]
- Espinosa-de-los-Monteros, A.L.; González, B.; Vargas, G.; Sosa, E.; Mercado, M. Clinical and Biochemical Characteristics of Acromegalic Patients with Different Abnormalities in Glucose Metabolism. Pituitary 2011, 14, 231–235. [Google Scholar] [CrossRef]
- Boero, L.; Manavela, M.; Meroño, T.; Maidana, P.; Gómez Rosso, L.; Brites, F. GH Levels and Insulin Sensitivity Are Differently Associated with Biomarkers of Cardiovascular Disease in Active Acromegaly. Clin. Endocrinol. 2012, 77, 579–585. [Google Scholar] [CrossRef]
- Romanisio, M.; Pitino, R.; Ferrero, A.; Pizzolitto, F.; Costelli, S.; Antoniotti, V.; Marzullo, P.; Aimaretti, G.; Prodam, F.; Caputo, M. Discordant Biochemical Parameters of Acromegaly Remission Do Not Influence the Prevalence or Aggressiveness of Metabolic Comorbidities: A Single-Center Study. Front. Endocrinol. 2023, 14, 1256975. [Google Scholar] [CrossRef]
- Vilar, L.; Naves, L.A.; Costa, S.S.; Abdalla, L.F.; Coelho, C.E.; Casulari, L.A. Increase of Classic and Nonclassic Cardiovascular Risk Factors in Patients with Acromegaly. Endocr. Pract. 2007, 13, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Boero, L.; Manavela, M.; Gómez Rosso, L.; Insua, C.; Berardi, V.; Fornari, M.C.; Brites, F. Alterations in Biomarkers of Cardiovascular Disease (CVD) in Active Acromegaly. Clin. Endocrinol. 2009, 70, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, S.; Terzolo, M. Hypertension and Acromegaly. Endocrinol. Metab. Clin. N. Am. 2019, 48, 779–793. [Google Scholar] [CrossRef]
- Colao, A.; Baldelli, R.; Marzullo, P.; Ferretti, E.; Ferone, D.; Gargiulo, P.; Petretta, M.; Tamburrano, G.; Lombardi, G.; Liuzzi, A. Systemic Hypertension and Impaired Glucose Tolerance Are Independently Correlated to the Severity of the Acromegalic Cardiomyopathy. J. Clin. Endocrinol. Metab. 2000, 85, 193–199. [Google Scholar] [CrossRef]
- Khan, S.A.; Ram, N.; Masood, M.Q.; Islam, N. Prevalence of Comorbidities among Patients with Acromegaly. Pak. J. Med. Sci. 2021, 37, 1758–1761. [Google Scholar] [CrossRef]
- Freda, P.U.; Shen, W.; Heymsfield, S.B.; Reyes-Vidal, C.M.; Geer, E.B.; Bruce, J.N.; Gallagher, D. Lower Visceral and Subcutaneous but Higher Intermuscular Adipose Tissue Depots in Patients with Growth Hormone and Insulin-like Growth Factor I Excess Due to Acromegaly. J. Clin. Endocrinol. Metab. 2008, 93, 2334–2343. [Google Scholar] [CrossRef]
- Paisley, A.N.; Izzard, A.S.; Gemmell, I.; Cruickshank, K.; Trainer, P.J.; Heagerty, A.M. Small Vessel Remodeling and Impaired Endothelial-Dependent Dilatation in Subcutaneous Resistance Arteries from Patients with Acromegaly. J. Clin. Endocrinol. Metab. 2009, 94, 1111–1117. [Google Scholar] [CrossRef]
- Fadini, G.P.; Dassie, F.; Albiero, M.; Boscaro, E.; Albano, I.; Martini, C.; de Kreutzenberg, S.V.; Agostini, C.; Avogaro, A.; Vettor, R.; et al. Endothelial Progenitor Cells Are Reduced in Acromegalic Patients and Can Be Restored by Treatment with Somatostatin Analogs. J. Clin. Endocrinol. Metab. 2014, 99, E2549–E2556. [Google Scholar] [CrossRef]
- Hekimsoy, Z.; Ozmen, B.; Ulusoy, S. Homocysteine Levels in Acromegaly Patients. Neuro Endocrinol. Lett. 2005, 26, 811–814. [Google Scholar]
- Maffei, P.; Dassie, F.; Wennberg, A.; Parolin, M.; Vettor, R. The Endothelium in Acromegaly. Front. Endocrinol. 2019, 10, 437. [Google Scholar] [CrossRef]
- Clayton, R.N. Cardiovascular Function in Acromegaly. Endocr. Rev. 2003, 24, 272–277. [Google Scholar] [CrossRef]
- Guo, X.; Cao, J.; Liu, P.; Cao, Y.; Li, X.; Gao, L.; Wang, Z.; Fang, L.; Jin, Z.; Wang, Y.; et al. Cardiac Abnormalities in Acromegaly Patients: A Cardiac Magnetic Resonance Study. Int. J. Endocrinol. 2020, 2020, 2018464. [Google Scholar] [CrossRef]
- De Alcubierre, D.; Feola, T.; Cozzolino, A.; Pofi, R.; Galea, N.; Catalano, C.; Auriemma, R.S.; Pirchio, R.; Pivonello, R.; Isidori, A.M.; et al. The Spectrum of Cardiac Abnormalities in Patients with Acromegaly: Results from a Case-Control Cardiac Magnetic Resonance Study. Pituitary 2024, 27, 416–427. [Google Scholar] [CrossRef]
- Colao, A.; Spiezia, S.; Cerbone, G.; Pivonello, R.; Marzullo, P.; Ferone, D.; Di Somma, C.; Assanti, A.P.; Lombardi, G. Increased Arterial Intima-Media Thickness by B-M Mode Echodoppler Ultrasonography in Acromegaly. Clin. Endocrinol. 2001, 54, 515–524. [Google Scholar] [CrossRef]
- Parolin, M.; Dassie, F.; Martini, C.; Mioni, R.; Russo, L.; Fallo, F.; Rossato, M.; Vettor, R.; Maffei, P.; Pagano, C. Preclinical Markers of Atherosclerosis in Acromegaly: A Systematic Review and Meta-Analysis. Pituitary 2018, 21, 653–662. [Google Scholar] [CrossRef]
- Colao, A.; Pivonello, R.; Grasso, L.F.S.; Auriemma, R.S.; Galdiero, M.; Savastano, S.; Lombardi, G. Determinants of Cardiac Disease in Newly Diagnosed Patients with Acromegaly: Results of a 10 Year Survey Study. Eur. J. Endocrinol. 2011, 165, 713–721. [Google Scholar] [CrossRef]
- Yang, H.; Tan, H.; Huang, H.; Li, J. Advances in Research on the Cardiovascular Complications of Acromegaly. Front. Oncol. 2021, 11, 640999. [Google Scholar] [CrossRef]
- Holdaway, I.M.; Rajasoorya, R.C.; Gamble, G.D. Factors Influencing Mortality in Acromegaly. J. Clin. Endocrinol. Metab. 2004, 89, 667–674. [Google Scholar] [CrossRef]
- Schöfl, C.; Petroff, D.; Tönjes, A.; Grussendorf, M.; Droste, M.; Stalla, G.; Jaursch-Hancke, C.; Störmann, S.; Schopohl, J. Incidence of Myocardial Infarction and Stroke in Acromegaly Patients: Results from the German Acromegaly Registry. Pituitary 2017, 20, 635–642. [Google Scholar] [CrossRef]
- Hong, S.; Kim, K.-S.; Han, K.; Park, C.-Y. Acromegaly and Cardiovascular Outcomes: A Cohort Study. Eur. Heart J. 2022, 43, 1491–1499. [Google Scholar] [CrossRef]
- Sharma, A.N.; Tan, M.; Amsterdam, E.A.; Singh, G.D. Acromegalic Cardiomyopathy: Epidemiology, Diagnosis, and Management. Clin. Cardiol. 2018, 41, 419–425. [Google Scholar] [CrossRef]
- Akutsu, H.; Kreutzer, J.; Wasmeier, G.; Ropers, D.; Rost, C.; Möhlig, M.; Wallaschofski, H.; Buchfelder, M.; Schöfl, C. Acromegaly per Se Does Not Increase the Risk for Coronary Artery Disease. Eur. J. Endocrinol. 2010, 162, 879–886. [Google Scholar] [CrossRef]
- Dos Santos Silva, C.M.; Lima, G.a.B.; Volschan, I.C.M.; Gottlieb, I.; Kasuki, L.; Neto, L.V.; Gadelha, M.R. Low Risk of Coronary Artery Disease in Patients with Acromegaly. Endocrine 2015, 50, 749–755. [Google Scholar] [CrossRef]
- Bogazzi, F.; Battolla, L.; Spinelli, C.; Rossi, G.; Gavioli, S.; Di Bello, V.; Cosci, C.; Sardella, C.; Volterrani, D.; Talini, E.; et al. Risk Factors for Development of Coronary Heart Disease in Patients with Acromegaly: A Five-Year Prospective Study. J. Clin. Endocrinol. Metab. 2007, 92, 4271–4277. [Google Scholar] [CrossRef]
- Herrmann, B.L.; Severing, M.; Schmermund, A.; Berg, C.; Budde, T.; Erbel, R.; Mann, K. Impact of Disease Duration on Coronary Calcification in Patients with Acromegaly. Exp. Clin. Endocrinol. Diabetes 2009, 117, 417–422. [Google Scholar] [CrossRef]
- Cannavo, S.; Almoto, B.; Cavalli, G.; Squadrito, S.; Romanello, G.; Vigo, M.T.; Fiumara, F.; Benvenga, S.; Trimarchi, F. Acromegaly and Coronary Disease: An Integrated Evaluation of Conventional Coronary Risk Factors and Coronary Calcifications Detected by Computed Tomography. J. Clin. Endocrinol. Metab. 2006, 91, 3766–3772. [Google Scholar] [CrossRef]
- Goesswald, A.; Schienkiewitz, A.; Nowossadeck, E.; Busch, M. Prevalence of Myocardial Infarction and Coronary Heart Disease in Adults Aged 40–79 Years in Germany. Results of the German Health Interview and Examination Survey for Adults (DEGS1). Eur. J. Public Health 2013, 23, 650–655. [Google Scholar] [CrossRef]
- Kahaly, G.; Olshausen, K.V.; Mohr-Kahaly, S.; Erbel, R.; Boor, S.; Beyer, J.; Meyer, J. Arrhythmia Profile in Acromegaly. Eur. Heart J. 1992, 13, 51–56. [Google Scholar] [CrossRef]
- Kinugawa, S.; Tsutsui, H.; Ide, T.; Nakamura, R.; Arimura, K.; Egashira, K.; Takeshita, A. Positive Inotropic Effect of Insulin-like Growth Factor-1 on Normal and Failing Cardiac Myocytes. Cardiovasc. Res. 1999, 43, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Orosz, A.; Csajbók, É.; Czékus, C.; Gavallér, H.; Magony, S.; Valkusz, Z.; Várkonyi, T.T.; Nemes, A.; Baczkó, I.; Forster, T.; et al. Increased Short-Term Beat-To-Beat Variability of QT Interval in Patients with Acromegaly. PLoS ONE 2015, 10, e0125639. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Grasso, L.F.S.; Di Somma, C.; Pivonello, R. Acromegaly and Heart Failure. Heart Fail. Clin. 2019, 15, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Lee, E.J.; Seo, G.H.; Ku, C.R. Risk for Acromegaly-Related Comorbidities by Sex in Korean Acromegaly. J. Clin. Endocrinol. Metab. 2020, 105, e1815–e1826. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, Y.; Duan, L.; Yang, S.; Tuniyazi, S.; Zou, J.; Ma, R.; Muhemaitibieke, G.; Amuti, X.; Guo, Y. IGF-1 Levels in the General Population, Heart Failure Patients, and Individuals with Acromegaly: Differences and Projections from Meta-Analyses-a Dual Perspective. Front. Cardiovasc. Med. 2024, 11, 1379257. [Google Scholar] [CrossRef]
- Włochacz, A.; Krzesiński, P.; Uziębło-Życzkowska, B.; Witek, P.; Zieliński, G.; Gielerak, G. Echocardiographic and Impedance Cardiography Analysis of Left Ventricular Diastolic Function in Acromegaly Patients. Med. Sci. Monit. 2024, 30, e946196. [Google Scholar] [CrossRef]
- Rivera, F.B.; Taliño, M.K.; Ansay, M.F.; Mangubat, G.F.; Mahilum, M.L.; Menghrajani, R.H.; Placino, S.; Cha, S.W.; Aparece, J.P.; Yu, M.G.; et al. Cardiovascular Effects of Excess Growth Hormone: How Real Is the Threat? Rev. Cardiovasc. Med. 2023, 24, 95. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Spinelli, L.; Marzullo, P.; Pivonello, R.; Petretta, M.; Di Somma, C.; Vitale, G.; Bonaduce, D.; Lombardi, G. High Prevalence of Cardiac Valve Disease in Acromegaly: An Observational, Analytical, Case-Control Study. J. Clin. Endocrinol. Metab. 2003, 88, 3196–3201. [Google Scholar] [CrossRef]
- Pereira, A.M.; van Thiel, S.W.; Lindner, J.R.; Roelfsema, F.; van der Wall, E.E.; Morreau, H.; Smit, J.W.A.; Romijn, J.A.; Bax, J.J. Increased Prevalence of Regurgitant Valvular Heart Disease in Acromegaly. J. Clin. Endocrinol. Metab. 2004, 89, 71–75. [Google Scholar] [CrossRef]
- van der Klaauw, A.A.; Bax, J.J.; Roelfsema, F.; Bleeker, G.B.; Holman, E.R.; Corssmit, E.P.M.; van der Wall, E.E.; Smit, J.W.A.; Romijn, J.A.; Pereira, A.M. Uncontrolled Acromegaly Is Associated with Progressive Mitral Valvular Regurgitation. Growth Horm. IGF Res. 2006, 16, 101–107. [Google Scholar] [CrossRef]
- Cable, D.G.; Dearani, J.A.; O’Brien, T.; Orszulak, T.A.; Puga, F.J.; Schaff, H.V. Surgical Treatment of Valvular Heart Disease in Patients with Acromegaly. J. Heart Valve Dis. 2000, 9, 828–831. [Google Scholar]
- Goldberg, M.D.; Vadera, N.; Yandrapalli, S.; Frishman, W.H. Acromegalic Cardiomyopathy: An Overview of Risk Factors, Clinical Manifestations, and Therapeutic Options. Cardiol. Rev. 2018, 26, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.; Maione, L.; Kamenický, P.; Chanson, P. Acromegalic Cardiomyopathy: An Entity on Its Own? The Effects of GH and IGF-I Excess and Treatment on Cardiovascular Risk Factors. Arch. Med. Res. 2023, 54, 102921. [Google Scholar] [CrossRef]
- Esposito, D.; Ragnarsson, O.; Granfeldt, D.; Marlow, T.; Johannsson, G.; Olsson, D.S. Decreasing Mortality and Changes in Treatment Patterns in Patients with Acromegaly from a Nationwide Study. Eur. J. Endocrinol. 2018, 178, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, O.M.; Biermasz, N.R.; Pereira, A.M.; Romijn, J.A.; Vandenbroucke, J.P. Mortality in Acromegaly: A Metaanalysis. J. Clin. Endocrinol. Metab. 2008, 93, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Esposito, D.; Olsson, D.S.; Franzén, S.; Miftaraj, M.; Nåtman, J.; Gudbjörnsdottir, S.; Johannsson, G. Effect of Diabetes on Morbidity and Mortality in Patients with Acromegaly. J. Clin. Endocrinol. Metab. 2022, 107, 2483–2492. [Google Scholar] [CrossRef]
- Fatti, L.M.; Cangiano, B.; Vitale, G.; Persani, L.; Mantovani, G.; Sala, E.; Arosio, M.; Maffei, P.; Dassie, F.; Mormando, M.; et al. Arthropathy in Acromegaly: A Questionnaire-Based Estimation of Motor Disability and Its Relation with Quality of Life and Work Productivity. Pituitary 2019, 22, 552–560. [Google Scholar] [CrossRef]
- Martel-Duguech, L.; Alonso-Pérez, J.; Bascuñana, H.; Díaz-Manera, J.; Llauger, J.; Nuñez-Peralta, C.; Montesinos, P.; Webb, S.M.; Valassi, E. Intramuscular Fatty Infiltration and Physical Function in Controlled Acromegaly. Eur. J. Endocrinol. 2021, 185, 167–177. [Google Scholar] [CrossRef]
- Title, M.; Wang, Y.; Steeves, K.; Chen, K.; Ahmad, S.; Tramble, L.; Yusuf Ibrahim, A.; Van Uum, S.; Chik, C.L.; Clarke, D.B.; et al. Joint Pain, Physical Function, and Balance Self-Confidence in Acromegaly versus Nonfunctioning Pituitary Adenoma Patients. Eur. J. Endocrinol. 2023, 189, 156–163. [Google Scholar] [CrossRef]
- Colao, A.; Cuocolo, A.; Marzullo, P.; Nicolai, E.; Ferone, D.; Della Morte, A.M.; Petretta, M.; Salvatore, M.; Lombardi, G. Impact of Patient’s Age and Disease Duration on Cardiac Performance in Acromegaly: A Radionuclide Angiography Study. J. Clin. Endocrinol. Metab. 1999, 84, 1518–1523. [Google Scholar] [CrossRef]
- Spinelli, L.; Petretta, M.; Verderame, G.; Carbone, G.; Venetucci, A.A.; Petretta, A.; Acampa, W.; Bonaduce, D.; Colao, A.; Cuocolo, A. Left Ventricular Diastolic Function and Cardiac Performance during Exercise in Patients with Acromegaly. J. Clin. Endocrinol. Metab. 2003, 88, 4105–4109. [Google Scholar] [CrossRef]
- Hatipoglu, E.; Topsakal, N.; Atilgan, O.E.; Alcalar, N.; Camliguney, A.F.; Niyazoglu, M.; Cotuk, H.B.; Kadioglu, P. Impact of Exercise on Quality of Life and Body-Self Perception of Patients with Acromegaly. Pituitary 2014, 17, 38–43. [Google Scholar] [CrossRef]
- Hatipoglu, E.; Topsakal, N.; Erkut Atilgan, O.; Camliguney, A.F.; Ikitimur, B.; Ugurlu, S.; Niyazoglu, M.; Cotuk, H.B.; Kadioglu, P. Physical and Cardiovascular Performance in Cases with Acromegaly after Regular Short-Term Exercise. Clin. Endocrinol. 2015, 83, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef] [PubMed]
- Hergott, C.G.; Lovins, J. The Impact of Functional Exercise on the Reversal of Acromegaly Induced Frailty: A Case Report. Physiother. Theory Pract. 2022, 38, 471–480. [Google Scholar] [CrossRef]
- Esposito, D.; Boguszewski, C.L.; Colao, A.; Fleseriu, M.; Gatto, F.; Jørgensen, J.O.L.; Ragnarsson, O.; Ferone, D.; Johannsson, G. Diabetes Mellitus in Patients with Acromegaly: Pathophysiology, Clinical Challenges and Management. Nat. Rev. Endocrinol. 2024, 20, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Biagetti, B.; Araujo-Castro, M.; Marazuela, M.; Puig-Domingo, M. Treatment of Acromegaly-Induced Diabetes: An Updated Proposal. Pituitary 2024, 28, 15. [Google Scholar] [CrossRef]
- Gatto, F.; Arecco, A.; Amarù, J.; Arvigo, M.; Campana, C.; Milioto, A.; Esposito, D.; Johannsson, G.; Cocchiara, F.; Maggi, D.C.; et al. Differential Impact of Medical Therapies for Acromegaly on Glucose Metabolism. Int. J. Mol. Sci. 2025, 26, 465. [Google Scholar] [CrossRef]
- Cambuli, V.M.; Galdiero, M.; Mastinu, M.; Pigliaru, F.; Auriemma, R.S.; Ciresi, A.; Pivonello, R.; Amato, M.; Giordano, C.; Mariotti, S.; et al. Glycometabolic Control in Acromegalic Patients with Diabetes: A Study of the Effects of Different Treatments for Growth Hormone Excess and for Hyperglycemia. J. Endocrinol. Investig. 2012, 35, 154–159. [Google Scholar] [CrossRef]
- Adnan, Z. Sodium Glucose Co-Transporter Inhibitors in Patients with Acromegaly and Diabetes. Trends Endocrinol. Metab. 2019, 30, 77–79. [Google Scholar] [CrossRef]
- Zaina, A.; Grober, Y.; Abid, A.; Arad, E.; Golden, E.; Badarny, S. Sodium Glucose Cotransporter 2 Inhibitors Treatment in Acromegalic Patients with Diabetes-a Case Series and Literature Review. Endocrine 2021, 73, 65–70. [Google Scholar] [CrossRef]
- Quarella, M.; Walser, D.; Brändle, M.; Fournier, J.-Y.; Bilz, S. Rapid Onset of Diabetic Ketoacidosis After SGLT2 Inhibition in a Patient with Unrecognized Acromegaly. J. Clin. Endocrinol. Metab. 2017, 102, 1451–1453. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47, S158–S178. [Google Scholar] [CrossRef]
- Weber, S.L.; Gkonos, P.J.; Skyler, J.S. Combined Octreotide and Insulin Therapy in Acromegaly. Endocr. Pract. 1997, 3, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Durrington, P.; Mackness, M.; Siddals, K.W.; Kaushal, K.; Davies, R.; Gibson, M.; Ray, D.W. The Effect of Atorvastatin on Serum Lipoproteins in Acromegaly. Clin. Endocrinol. 2005, 62, 650–655. [Google Scholar] [CrossRef]
- Slagboom, T.N.A.; van Bunderen, C.C.; De Vries, R.; Bisschop, P.H.; Drent, M.L. Prevalence of Clinical Signs, Symptoms and Comorbidities at Diagnosis of Acromegaly: A Systematic Review in Accordance with PRISMA Guidelines. Pituitary 2023, 26, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Borozan, S.; Kamrul-Hasan, A.B.M.; Shetty, S.; Pappachan, J.M. Approach to Endocrine Hypertension: A Case-Based Discussion. Curr. Hypertens. Rep. 2025, 27, 8. [Google Scholar] [CrossRef]
- Cozzolino, A.; Feola, T.; Simonelli, I.; Puliani, G.; Pozza, C.; Giannetta, E.; Gianfrilli, D.; Pasqualetti, P.; Lenzi, A.; Isidori, A.M. Somatostatin Analogs and Glucose Metabolism in Acromegaly: A Meta-Analysis of Prospective Interventional Studies. J. Clin. Endocrinol. Metab. 2018, 103, 2089–2099. [Google Scholar] [CrossRef]
- Ronchi, C.; Epaminonda, P.; Cappiello, V.; Beck-Peccoz, P.; Arosio, M. Effects of Two Different Somatostatin Analogs on Glucose Tolerance in Acromegaly. J. Endocrinol. Investig. 2002, 25, 502–507. [Google Scholar] [CrossRef]
- Baldelli, R.; Battista, C.; Leonetti, F.; Ghiggi, M.-R.; Ribaudo, M.-C.; Paoloni, A.; D’Amico, E.; Ferretti, E.; Baratta, R.; Liuzzi, A.; et al. Glucose Homeostasis in Acromegaly: Effects of Long-Acting Somatostatin Analogues Treatment. Clin. Endocrinol. 2003, 59, 492–499. [Google Scholar] [CrossRef]
- Biagetti, B.; Araujo-Castro, M.; Tebe, C.; Marazuela, M.; Puig-Domingo, M. Real-World Evidence of Effectiveness and Safety of Pasireotide in the Treatment of Acromegaly: A Systematic Review and Meta-Analysis. Rev. Endocr. Metab. Disord. 2024, 26, 97–111. [Google Scholar] [CrossRef]
- Doknic, M.; Stojanovic, M.; Miljic, D.; Milicevic, M. Medical Treatment of Acromegaly—When the Tumor Size Matters: A Narrative Review. Growth Horm. IGF Res. 2024, 78, 101608. [Google Scholar] [CrossRef]
- Brue, T.; Lindberg, A.; Jan van der Lely, A.; Akerblad, A.C.; Koltowska-Häggström, M.; Gomez, R.; Droste, M.; Hey-Hadavi, J.; Strasburger, C.J.; Camacho-Hübner, C. Diabetes in Patients with Acromegaly Treated with Pegvisomant: Observations from Acrostudy. Endocrine 2019, 63, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Feola, T.; Cozzolino, A.; Simonelli, I.; Sbardella, E.; Pozza, C.; Giannetta, E.; Gianfrilli, D.; Pasqualetti, P.; Lenzi, A.; Isidori, A.M. Pegvisomant Improves Glucose Metabolism in Acromegaly: A Meta-Analysis of Prospective Interventional Studies. J. Clin. Endocrinol. Metab. 2019, 104, 2892–2902. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, R.; Maffei, P.; Webb, S.M.; Brue, T.; Loftus, J.; Valluri, S.R.; Gomez, R.; Wajnrajch, M.P.; Fleseriu, M. Patient-Reported Outcomes in Patients with Acromegaly Treated with Pegvisomant in the ACROSTUDY Extension: A Real-World Experience. Pituitary 2022, 25, 420–432. [Google Scholar] [CrossRef]
- De Martino, M.C.; Auriemma, R.S.; Brevetti, G.; Vitale, G.; Schiano, V.; Galdiero, M.; Grasso, L.; Lombardi, G.; Colao, A.; Pivonello, R. The Treatment with Growth Hormone Receptor Antagonist in Acromegaly: Effect on Vascular Structure and Function in Patients Resistant to Somatostatin Analogues. J. Endocrinol. Investig. 2010, 33, 663–670. [Google Scholar] [CrossRef]
- Colao, A.; Ferone, D.; Marzullo, P.; Di Sarno, A.; Cerbone, G.; Sarnacchiaro, F.; Cirillo, S.; Merola, B.; Lombardi, G. Effect of Different Dopaminergic Agents in the Treatment of Acromegaly. J. Clin. Endocrinol. Metab. 1997, 82, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.-Q.; Chen, Z.-Y.; Wang, M.; Yang, Y.-P.; Yu, Y.-F.; Liu, W.-J.; Wang, Y.; Zeng, F.-F.; Gong, W.; Ye, H.-Y.; et al. Effects of Long-Acting Somatostatin Analogues on Lipid Metabolism in Patients with Newly Diagnosed Acromegaly: A Retrospective Study of 120 Cases. Horm. Metab. Res. 2022, 54, 25–32. [Google Scholar] [CrossRef]
- Sesmilo, G.; Fairfield, W.P.; Katznelson, L.; Pulaski, K.; Freda, P.U.; Bonert, V.; Dimaraki, E.; Stavrou, S.; Vance, M.L.; Hayden, D.; et al. Cardiovascular Risk Factors in Acromegaly before and after Normalization of Serum IGF-I Levels with the GH Antagonist Pegvisomant. J. Clin. Endocrinol. Metab. 2002, 87, 1692–1699. [Google Scholar] [CrossRef]
- Vila, G.; Luger, A.; van der Lely, A.J.; Neggers, S.J.C.M.M.; Webb, S.M.; Biller, B.M.K.; Valluri, S.; Hey-Hadavi, J. Hypertension in Acromegaly in Relationship to Biochemical Control and Mortality: Global ACROSTUDY Outcomes. Front. Endocrinol. 2020, 11, 577173. [Google Scholar] [CrossRef]
- Delaroudis, S.P.; Efstathiadou, Z.A.; Koukoulis, G.N.; Kita, M.D.; Farmakiotis, D.; Dara, O.G.; Goulis, D.G.; Makedou, A.; Makris, P.; Slavakis, A.; et al. Amelioration of Cardiovascular Risk Factors with Partial Biochemical Control of Acromegaly. Clin. Endocrinol. 2008, 69, 279–284. [Google Scholar] [CrossRef]
- Colao, A.; Terzolo, M.; Bondanelli, M.; Galderisi, M.; Vitale, G.; Reimondo, G.; Ambrosio, M.R.; Pivonello, R.; Lombardi, G.; Angeli, A.; et al. GH and IGF-I Excess Control Contributes to Blood Pressure Control: Results of an Observational, Retrospective, Multicentre Study in 105 Hypertensive Acromegalic Patients on Hypertensive Treatment. Clin. Endocrinol. 2008, 69, 613–620. [Google Scholar] [CrossRef]
- Smith, J.C.; Lane, H.; Davies, N.; Evans, L.M.; Cockcroft, J.; Scanlon, M.F.; Davies, J.S. The Effects of Depot Long-Acting Somatostatin Analog on Central Aortic Pressure and Arterial Stiffness in Acromegaly. J. Clin. Endocrinol. Metab. 2003, 88, 2556–2561. [Google Scholar] [CrossRef] [PubMed]
- González, B.; Vargas, G.; de Los Monteros, A.L.E.; Mendoza, V.; Mercado, M. Persistence of Diabetes and Hypertension After Multimodal Treatment of Acromegaly. J. Clin. Endocrinol. Metab. 2018, 103, 2369–2375. [Google Scholar] [CrossRef] [PubMed]
- Sardella, C.; Urbani, C.; Lombardi, M.; Nuzzo, A.; Manetti, L.; Lupi, I.; Rossi, G.; Del Sarto, S.; Scattina, I.; Di Bello, V.; et al. The Beneficial Effect of Acromegaly Control on Blood Pressure Values in Normotensive Patients. Clin. Endocrinol. 2014, 81, 573–581. [Google Scholar] [CrossRef]
- Reyes-Vidal, C.; Fernandez, J.C.; Bruce, J.N.; Crisman, C.; Conwell, I.M.; Kostadinov, J.; Geer, E.B.; Post, K.D.; Freda, P.U. Prospective Study of Surgical Treatment of Acromegaly: Effects on Ghrelin, Weight, Adiposity, and Markers of CV Risk. J. Clin. Endocrinol. Metab. 2014, 99, 4124–4132. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Corrales, E.; Biagetti, B.; Marazuela, M.; Asensio-Wandosel, D.; Rodríguez Berrocal, V.; Irigaray Echarri, A.; Novo-Rodríguez, C.; Calatayud, M.; Bernabéu, I.; Alvarez-Escola, C.; et al. Glucose Metabolism Outcomes after Pituitary Surgery in Patients with Acromegaly. Pituitary 2024, 27, 497–506. [Google Scholar] [CrossRef]
- Srinivasan, A.; Bahl, A.; Bhagat, H.; Dutta, P.; Rai, A.; Devgun, J.S.; Kaur, R.; Mukherjee, K.K. Impact of Transsphenoidal Surgery on Asymptomatic Cardiomyopathy in Patients with Acromegaly. A Single-Blinded Study. Neurol. India 2017, 65, 1312–1316. [Google Scholar] [CrossRef]
- Yen, Y.-S.; Chen, H.-S. Changes in Cardiovascular Risk Factors in Patients with Acromegaly after Trans-Sphenoidal Adenomectomy. Endocr. J. 2020, 67, 1169–1177. [Google Scholar] [CrossRef]
- Jaffrain-Rea, M.-L.; Minniti, G.; Moroni, C.; Esposito, V.; Ferretti, E.; Santoro, A.; Infusino, T.; Tamburrano, G.; Cantore, G.; Cassone, R. Impact of Successful Transsphenoidal Surgery on Cardiovascular Risk Factors in Acromegaly. Eur. J. Endocrinol. 2003, 148, 193–201. [Google Scholar] [CrossRef]
- Huynh, K.A.; Al-Gully, J.; Montero-Cabezas, J.M.; Scheffers, L.E.; Verstegen, M.J.T.; Biermasz, N.R.; Coopmans, E.C. The Effect of First Intervention on Cardiac Parameters in Patients with Acromegaly: A Systematic Review. Eur. J. Endocrinol. 2025, 192, S1–S14. [Google Scholar] [CrossRef]
- Ronchi, C.L.; Verrua, E.; Ferrante, E.; Bender, G.; Sala, E.; Lania, A.G.; Fassnacht, M.; Beck-Peccoz, P.; Allolio, B.; Spada, A.; et al. Long-Term Effects of Radiotherapy on Cardiovascular Risk Factors in Acromegaly. Eur. J. Endocrinol. 2011, 164, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Colvin, M.; Cook, J.; Cooper, L.T.; Deswal, A.; Fonarow, G.C.; Francis, G.S.; Lenihan, D.; Lewis, E.F.; McNamara, D.M.; et al. Current Diagnostic and Treatment Strategies for Specific Dilated Cardiomyopathies: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e579–e646. [Google Scholar] [CrossRef] [PubMed]
- Parolin, M.; Dassie, F.; Vettor, R.; Steeds, R.P.; Maffei, P. Electrophysiological Features in Acromegaly: Re-Thinking the Arrhythmic Risk? J. Endocrinol. Investig. 2021, 44, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156. [Google Scholar] [CrossRef]
- Heidarpour, M.; Shafie, D.; Aminorroaya, A.; Sarrafzadegan, N.; Farajzadegan, Z.; Nouri, R.; Najimi, A.; Dimopolou, C.; Stalla, G. Effects of Somatostatin Analog Treatment on Cardiovascular Parameters in Patients with Acromegaly: A Systematic Review. J. Res. Med. Sci. 2019, 24, 29. [Google Scholar] [CrossRef]
Effects on Cardiovascular Risk | Pathogenic Mechanism in Acromegaly | Clinical Consequences |
---|---|---|
Effects on carbohydrate metabolism | Stimulation of hepatic gluconeogenesis and reduction in insulin sensitivity by GH. May also affect insulin secretion by beta-cell dysfunction |
|
Effects on lipid metabolism | Elevated total cholesterol, LDL cholesterol, VLDL cholesterol, triglycerides, and lipoprotein (a) with decreased HDL cholesterol. Increased small and dense LDL particles |
|
Effects on blood pressure | Expansion of plasma volume, promotion of sodium and water retention, and endothelial dysfunction |
|
Effects on endothelial function | Increased oxidative stress and decreased anti-oxidant capacity with reduced nitric oxide. Promotes vascular thickening, decreases endothelial regeneration, and increases cell adhesion molecules (ICAM-1, VCAM-1) |
|
Effects on body weight | Increased intermuscular fat Systemic inflammation Insulin resistance |
|
Effects on cardiac structure and function | Concentric hypertrophy of left ventricle Increased myocyte size and interstitial fibrosis in both ventricles Thickening of intima–media layer of arteries, including coronary arteries |
|
Effect of activity and duration of acromegaly | Increase in frequency and severity of cardiovascular risks and events owing to prolonged duration and active disease |
Cardiovascular Diseases | Clinical Features | Prevalence |
---|---|---|
Coronary artery disease (CHD) |
| CHD (9.8%) and myocardial infarction (1.9%) at diagnosis [4] |
Arrhythmia |
| Atrial fibrillation (4.3–7.7%) at diagnosis [4,12] |
Heart failure |
| 7.1% [4] |
Valvular heart disease |
| 4.9% [4,49] |
Stroke |
| 4.3% [50,51] |
Acromegalic cardiomyopathy |
| 2.3% [4,52] |
Cardiovascular mortality |
| Standardized mortality ratio (SMR) of 2.95 (95% CI: 2.35–3.55) [49,51] |
Strategy/Intervention | Description | Objective |
---|---|---|
Control of cardiovascular risk factors | ||
Diet and physical exercise |
| Improve weight control and cardiovascular health |
Blood glucose control |
| Improve insulin sensitivity and glycemic control |
Lipid profile management |
| Improve atherogenic lipoprotein profile in acromegaly |
Blood pressure control |
| Lower blood pressure and reduce left ventricular hypertrophy |
Control of acromegaly activity | ||
Blood glucose control |
| Improve cardiovascular risk profile |
Lipid profile management |
| |
Hypertension |
| |
Management of cardiovascular comorbidities | ||
Arrythmias |
| Early detection and adequate management of cardiovascular complications Improve symptoms and increase quality of life and survival |
Acromegalic cardiomyopathy |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias, P. Acromegaly and Cardiovascular Disease: Associated Cardiovascular Risk Factors, Cardiovascular Prognosis, and Therapeutic Impact. J. Clin. Med. 2025, 14, 1906. https://doi.org/10.3390/jcm14061906
Iglesias P. Acromegaly and Cardiovascular Disease: Associated Cardiovascular Risk Factors, Cardiovascular Prognosis, and Therapeutic Impact. Journal of Clinical Medicine. 2025; 14(6):1906. https://doi.org/10.3390/jcm14061906
Chicago/Turabian StyleIglesias, Pedro. 2025. "Acromegaly and Cardiovascular Disease: Associated Cardiovascular Risk Factors, Cardiovascular Prognosis, and Therapeutic Impact" Journal of Clinical Medicine 14, no. 6: 1906. https://doi.org/10.3390/jcm14061906
APA StyleIglesias, P. (2025). Acromegaly and Cardiovascular Disease: Associated Cardiovascular Risk Factors, Cardiovascular Prognosis, and Therapeutic Impact. Journal of Clinical Medicine, 14(6), 1906. https://doi.org/10.3390/jcm14061906