Endotyping Insulin–Glucose Homeostasis in Hidradenitis Suppurativa: The Impact of Diabetes Mellitus and Inflammation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Sample Size Calculation
2.3. Physiological Calculations and Cut-Off Value
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Prevalence of and Therapy for Diabetes
3.3. Measured and Calculated Biomarkers for Insulin–Glucose Homeostasis
3.4. Parameters of Insulin–Glucose Homeostasis in Patients with HS and with and Without Diabetes Mellitus
3.5. Parameters of Insulin–Glucose Homeostasis in Patients with HS and Different Expressions of Haptoglobin Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Onghia, M.; Malvaso, D.; Galluccio, G.; Antonelli, F.; Coscarella, G.; Rubegni, P.; Peris, K.; Calabrese, L. Evidence on Hidradenitis Suppurativa as an Autoinflammatory Skin Disease. J. Clin. Med. 2024, 13, 5211. [Google Scholar] [CrossRef]
- Ballard, K.; Shuman, V.L. Hidradenitis Suppurativa; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Sabat, R.; Alavi, A.; Wolk, K.; Wortsman, X.; McGrath, B.; Garg, A.; Szepietowski, J.C. Hidradenitis suppurativa. Lancet 2025, 405, 420–438. [Google Scholar]
- Moltrasio, C.; Tricarico, P.M.; Romagnuolo, M.; Marzano, A.V.; Crovella, S. Hidradenitis Suppurativa: A Perspective on Genetic Factors Involved in the Disease. Biomedicines 2022, 10, 2039. [Google Scholar] [CrossRef]
- Pace, N.P.; Mintoff, D.; Borg, I. The Genomic Architecture of Hidradenitis Suppurativa-A Systematic Review. Front. Genet. 2022, 13, 861241. [Google Scholar]
- Wark, K.J.L.; Cains, G.D. The Microbiome in Hidradenitis Suppurativa: A Review. Dermatol. Ther. 2021, 11, 39–52. [Google Scholar]
- Abu Rached, N.; Gambichler, T.; Dietrich, J.W.; Ocker, L.; Seifert, C.; Stockfleth, E.; Bechara, F.G. The Role of Hormones in Hidradenitis Suppurativa: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 15250. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.M.; Naik, H.B.; Clancy, S.; Pauli, M.; Smith, K.M.; Bi, Y.; Dunstan, R.; Gudjonsson, J.E.; Paul, M.; Harris, H.; et al. Immunopathogenesis of hidradenitis suppurativa and response to anti-TNF-α therapy. JCI Insight 2020, 5, e139932. [Google Scholar]
- Jiang, S.W.; Whitley, M.J.; Mariottoni, P.; Jaleel, T.; MacLeod, A.S. Hidradenitis Suppurativa: Host-Microbe and Immune Pathogenesis Underlie Important Future Directions. JID Innov. Ski. Sci. Mol. Popul. Health 2021, 1, 100001. [Google Scholar]
- Kimball, A.B.; Jemec, G.B.E.; Sayed, C.J.; Kirby, J.S.; Prens, E.; Ingram, J.R.; Garg, A.; Gottlieb, A.B.; Szepietowski, J.C.; Bechara, F.G.; et al. Efficacy and safety of bimekizumab in patients with moderate-to-severe hidradenitis suppurativa (BE HEARD I and BE HEARD II): Two 48-week, randomised, double-blind, placebo-controlled, multicentre phase 3 trials. Lancet 2024, 403, 2504–2519. [Google Scholar]
- Li, Y.-H.; Chuang, S.-H.; Yang, H.-J. Systematic review and meta-analysis of peripheral blood inflammatory markers in hidradenitis Suppurativa. J. Dermatol. 2025. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.; Chen, X. Unraveling the causal associations between systemic cytokines and six inflammatory skin diseases. Cytokine 2025, 185, 156810. [Google Scholar] [PubMed]
- Alba, M.; Rudd, N.; Zakaria, A.; Chang, A.Y.; Amerson, E.H. Hidradenitis suppurativa is associated with cardiometabolic comorbidities in a racially and ethnically diverse safety net population: A cross-sectional analysis. JAAD Int. 2025, 18, 131–133. [Google Scholar]
- Daoud, M.; Suppa, M.; Benhadou, F.; Heudens, S.; Sarkis, A.-S.; Njimi, H.; Saunte, S.K.; Desmarest, L.; Orte Cano, C.; Dandoy, C.; et al. Factors Associated with Severe Hidradenitis Suppurativa, Using Hurley Staging and Metascore. Dermatology 2024, 240, 713–731. [Google Scholar] [PubMed]
- Kim, S.R.; Koh, S.-J.; Park, H. Association of childhood obesity or weight change with early-onset follicular occlusion triad in children. Br. J. Dermatol. 2025, 192, 430–439. [Google Scholar]
- MACKENNA, R.M.; LEHMANN, H. The glucose tolerance curve in hidradenitis suppurativa. Br. J. Dermatol. 1960, 72, 142–144. [Google Scholar]
- Abu Rached, N.; Gambichler, T.; Ocker, L.; Skrygan, M.; Seifert, C.; Scheel, C.H.; Stockfleth, E.; Bechara, F.G. Haptoglobin is an independent marker for disease severity and risk for metabolic complications in hidradenitis suppurativa: A prospective study. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 205–213. [Google Scholar] [PubMed]
- Russo, S.; Kwiatkowski, M.; Govorukhina, N.; Bischoff, R.; Melgert, B.N. Meta-Inflammation and Metabolic Reprogramming of Macrophages in Diabetes and Obesity: The Importance of Metabolites. Front. Immunol. 2021, 12, 746151. [Google Scholar]
- Schleh, M.W.; Caslin, H.L.; Garcia, J.N.; Mashayekhi, M.; Srivastava, G.; Bradley, A.B.; Hasty, A.H. Metaflammation in obesity and its therapeutic targeting. Sci. Transl. Med. 2023, 15, eadf9382. [Google Scholar]
- Mintoff, D.; Agius, R.; Benhadou, F.; Das, A.; Frew, J.W.; Pace, N.P. Obesity and hidradenitis suppurativa: Targeting meta-inflammation for therapeutic gain. Clin. Exp. Dermatol. 2023, 48, 984–990. [Google Scholar]
- Abu Rached, N.; Dietrich, J.W.; Ocker, L.; Quast, D.R.; Stockfleth, E.; Bechara, F.G. Diabetes remission associated with optimized treatment of hidradenitis suppurativa. J. Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. JDDG 2024, 22, 1427–1429. [Google Scholar]
- de Luca, D.A.; Papara, C.; Hawro, T.; Thaçi, D. Psoriasis and diabetes: A review of the pathophysiological and therapeutic interconnections. Minerva Medica 2025. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Hu, S.; Bai, X.; Zhu, J.; Hao, R.; Cao, Y.; Shi, Z. AGDMP1 alleviates insulin resistance by modulating heat shock protein 60-mediated IRS-1/AKT/GLUT4 pathway and adipose inflammation: A potential therapeutic peptide for gestational diabetes mellitus. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2025, 39, e70339. [Google Scholar]
- Ahlqvist, E.; Prasad, R.B.; Groop, L. Subtypes of Type 2 Diabetes Determined from Clinical Parameters. Diabetes 2020, 69, 2086–2093. [Google Scholar] [PubMed]
- Ahlqvist, E.; Prasad, R.B.; Groop, L. 100 YEARS OF INSULIN: Towards improved precision and a new classification of diabetes mellitus. J. Endocrinol. 2021, 252, R59–R70. [Google Scholar] [PubMed]
- Dietrich, J.W.; Abood, A.; Dasgupta, R.; Anoop, S.; Jebasingh, F.K.; Spurgeon, R.; Thomas, N.; Boehm, B.O. A novel simple disposition index (SPINA-DI) from fasting insulin and glucose concentration as a robust measure of carbohydrate homeostasis. J. Diabetes 2024, 16, e13525. [Google Scholar]
- Dietrich, J.W.; Dasgupta, R.; Anoop, S.; Jebasingh, F.; Kurian, M.E.; Inbakumari, M.; Boehm, B.O.; Thomas, N. SPINA Carb: A simple mathematical model supporting fast in-vivo estimation of insulin sensitivity and beta cell function. Sci. Rep. 2022, 12, 17659. [Google Scholar]
- Ahlqvist, E.; Storm, P.; Käräjämäki, A.; Martinell, M.; Dorkhan, M.; Carlsson, A.; Vikman, P.; Prasad, R.B.; Aly, D.M.; Almgren, P.; et al. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018, 6, 361–369. [Google Scholar]
- Schleicher, E.; Gerdes, C.; Petersmann, A.; Müller-Wieland, D.; Müller, U.A.; Freckmann, G.; Heinemann, L.; Nauck, M.; Landgraf, R. Definition, Classification and Diagnosis of Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2022, 130, S1–S8. [Google Scholar]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S19–S40. [Google Scholar]
- Abu Rached, N.; Gambichler, T.; Ocker, L.; Dietrich, J.W.; Quast, D.R.; Sieger, C.; Seifert, C.; Scheel, C.; Bechara, F.G. Screening for Diabetes Mellitus in Patients with Hidradenitis Suppurativa-A Monocentric Study in Germany. Int. J. Mol. Sci. 2023, 24, 6596. [Google Scholar] [CrossRef]
- Vilanova, I.; Hernández, J.L.; Mata, C.; Durán, C.; García-Unzueta, M.T.; Portilla, V.; Fuentevilla, P.; Corrales, A.; González-Vela, M.C.; González-Gay, M.A.; et al. Insulin resistance in hidradenitis suppurativa: A case-control study. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 820–824. [Google Scholar]
- Wang, X.; Ji, X. Sample Size Estimation in Clinical Research: From Randomized Controlled Trials to Observational Studies. Chest 2020, 158, S12–S20. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar]
- Phan, K.; Charlton, O.; Smith, S.D. Hidradenitis suppurativa and diabetes mellitus: Updated systematic review and adjusted meta-analysis. Clin. Exp. Dermatol. 2019, 44, e126–e132. [Google Scholar] [PubMed]
- Mintoff, D.; Agius, R.; Fava, S.; Pace, N.P. Investigating Adiposity-Related Metabolic Health Phenotypes in Patients with Hidradenitis Suppurativa: A Cross-Sectional Study. J. Clin. Med. 2023, 12, 4847. [Google Scholar] [CrossRef] [PubMed]
- Elzawawi, K.E.; Elmakaty, I.; Habibullah, M.; Ahmed, M.B.; Al Lahham, S.; Al Harami, S.; Albasti, H.; Alsherawi, A. Hidradenitis suppurativa and its association with obesity, smoking, and diabetes mellitus: A systematic review and meta-analysis. Int. Wound J. 2024, 21, e70035. [Google Scholar] [CrossRef] [PubMed]
- Karin, O.; Raz, M.; Tendler, A.; Bar, A.; Korem Kohanim, Y.; Milo, T.; Alon, U. A new model for the HPA axis explains dysregulation of stress hormones on the timescale of weeks. Mol. Syst. Biol. 2020, 16, e9510. [Google Scholar]
- Karin, O.; Swisa, A.; Glaser, B.; Dor, Y.; Alon, U. Dynamical compensation in physiological circuits. Mol. Syst. Biol. 2016, 12, 886. [Google Scholar]
- Korem Kohanim, Y.; Milo, T.; Raz, M.; Karin, O.; Bar, A.; Mayo, A.; Mendelson Cohen, N.; Toledano, Y.; Alon, U. Dynamics of thyroid diseases and thyroid-axis gland masses. Mol. Syst. Biol. 2022, 18, e10919. [Google Scholar]
- Wellen, K.E.; Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Investig. 2005, 115, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Heydemann, A. An Overview of Murine High Fat Diet as a Model for Type 2 Diabetes Mellitus. J. Diabetes Res. 2016, 2016, 2902351. [Google Scholar] [CrossRef]
- Frew, J.W. Hidradenitis suppurativa is an autoinflammatory keratinization disease: A review of the clinical, histologic, and molecular evidence. JAAD Int. 2020, 1, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Anguiano, M.E.; Klufas, D.; Amerson, E. Screening for cardiometabolic risk factors in patients with psoriasis and hidradenitis suppurativa: A pilot study in a safety net population. J. Am. Acad. Dermatol. 2024, 91, 1269–1272. [Google Scholar] [CrossRef]
- Krajewski, P.K.; Złotowska, A.; Szepietowski, J.C. The Therapeutic Potential of GLP-1 Receptor Agonists in the Management of Hidradenitis Suppurativa: A Systematic Review of Anti-Inflammatory and Metabolic Effects. J. Clin. Med. 2024, 13, 6292. [Google Scholar] [CrossRef] [PubMed]
- Lal, K.; Herringshaw, E. The Use of GLP-1 Agonists in the Management of Cutaneous Disease. J. Clin. Aesthetic Dermatol. 2024, 17, 34–37. [Google Scholar]
- Ponce, M.B.; Shields, B.E. Dermatologic Implications of Glycemic Control Medications for Patients with Type 2 Diabetes Mellitus. Cutis 2025, 115, 7–13. [Google Scholar] [CrossRef]
- Madaan, T.; Doan, K.; Hartman, A.; Gherardini, D.; Ventrola, A.; Zhang, Y.; Kotagiri, N. Advances in Microbiome-Based Therapeutics for Dermatological Disorders: Current Insights and Future Directions. Exp. Dermatol. 2024, 33, e70019. [Google Scholar] [CrossRef]
- Cho, M.; Woo, Y.R.; Cho, S.H.; Lee, J.D.; Kim, H.S. Metformin: A Potential Treatment for Acne, Hidradenitis Suppurativa and Rosacea. Acta Derm. Venereol. 2023, 103, adv18392. [Google Scholar] [CrossRef]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef]
- Melchor, J.; Prajapati, S.; Pichardo, R.O.; Feldman, S.R. Cytokine-Mediated Molecular Pathophysiology of Hidradenitis Suppurativa: A Narrative Review. Ski. Appendage Disord. 2024, 10, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Kelly, G.; Hughes, R.; McGarry, T.; van den Born, M.; Adamzik, K.; Fitzgerald, R.; Lawlor, C.; Tobin, A.M.; Sweeney, C.M.; Kirby, B. Dysregulated cytokine expression in lesional and nonlesional skin in hidradenitis suppurativa. Br. J. Dermatol. 2015, 173, 1431–1439. [Google Scholar] [PubMed]
- Gbadamosi, S.O.; Evans, K.A.; Brady, B.L.; Hoovler, A. Noninvasive tests and diagnostic pathways to MASH diagnosis in the United States: A retrospective observational study. J. Med. Econ. 2025, 28, 314–322. [Google Scholar]
Parameter | Hidradenitis Suppurativa (n = 95) | Controls (n = 49) | p-Value |
---|---|---|---|
Sex | 0.78 | ||
Female (%) | 37 (39%) | 21 (43%) | |
Male (%) | 58 (61%) | 28 (57%) | |
Age (years) | 41 (33–52) | 40 (34–46) | 0.54 |
BMI (kg/m2) | 31.1 (27.2–36.2) | 27.4 (22.7–30.8) | 0.0003 * |
Diabetes mellitus (%) | 17 (18%) | 2 (4%) | 0.039 * |
MOD (%) | 12 (13%) | 0 (0%) | |
SIRD (%) | 3 (3%) | 1 (2%) | |
SIDD (%) | 1 (1%) | 1 (2%) | |
MARD (%) | 1 (1%) | 0 (0%) | |
Antidiabetic medication | |||
Metformin (%) | 10 (11%) | 2 (4%) | 0.31 |
Sitagliptin (%) | 3 (3%) | 1 (2%) | 1.00 |
Vildagliptin (%) | 1 (1%) | 0 (0%) | 1.00 |
Saxagliptin (%) | 1 (1%) | 0 (0%) | 1.00 |
Glimepiride (%) | 1 (1%) | 0 (0%) | 1.00 |
Empagliflocin (%) | 1 (1%) | 0 (0%) | 1.00 |
Hurley stage | 2 (2–3) | N/A | N/A |
SAHS scale | 7 (5–9) | 0 (0–0) | <0.0001 * |
Number of exacerbations | 0 (0–2) | 0 (0–0) | <0.0001 * |
Affected regions | 3 (2–5) | 0 (0–0) | <0.0001 * |
Fistulae | 4 (2–8) | 0 (0–0) | <0.0001 * |
Nodules | 2 (1–4.5) | 0 (0–0) | <0.0001 * |
Abscesses | 0 (0–0) | 0 (0–0) | 0.0098 * |
Parameter (Reference Range) | Hidradenitis Suppurativa (n = 95) | Controls (n = 49) | p-Value |
---|---|---|---|
Fasting glucose (mmol/L) | 5.1 {4.6–5.9) | 4.9 (4.6–5.6) | 0.35 |
Fasting insulin (pmol/L) | 97.2 (53.8–189.6) | 69.0 (46.0–121.2) | 0.035 * |
HbA1c (%) | 5.6 (5.3–6.0) | N/A | N/A |
SPINA-GBeta (0.64–3.73 pmol/s) | 3.87 (2.32–7.81) | 2.82 (1.86–4.25) | 0.041 * |
SPINA-GR (1.41–9.00 mol/s) | 1.34 (0.62–2.16) | 1.76 (1.06–2.90) | 0.017 * |
SPINA-DI (4.01–7.65) | 4.82 (4.04–5.96) | 5.17 (4.09–5.95) | 0.51 |
HOMA-Beta | 197.1 (119.3–401.1) | 156.5 (117.6–262.1) | 0.14 |
HOMA-IR (<2.5) | 3.47 (2.03–7.70) | 2.57 (1.57–4.56) | 0.016 * |
HOMA-IS (>0.4) | 0.29 (0.13–0.49) | 0.39 (0.22–0.64) | 0.016 * |
QUICKI (>0.4) | 0.32 (0.29–0.34} | 0.33 (0.31–0.36) | 0.016 * |
Parameter (Reference Range) | No Diabetes (n = 78) | Diabetes Mellitus (n = 17) | p-Value |
---|---|---|---|
Fasting glucose (mmol/L) | 5.03 (4.54–5.90) | 6.28 (5.56–7.61) | <0.0001 * |
Fasting insulin (pmol/L) | 86.4 (52.6–186.9) | 145.8 (94.8–283.2) | 0.13 |
HbA1c (%) | 5.4 (5.2–5.7) | 6.8 (6.4–7.2) | <0.0001 * |
SPINA-GBeta (0.64–3.73 pmol/s) | 3.55 (0.26–7.68) | 5.09 (2.61–8.76) | 0.38 |
SPINA-GR (1.41–9.00 mol/s) | 1.41 (0.69–2.26) | 0.61 (0.29–1.35) | 0.0057 * |
SPINA-DI (4.01–7.65) | 5.11 (4.38–6.01) | 3.29 (2.43–4.15) | <0.0001 * |
HOMA-Beta | 207.0 (129.6–439.6) | 176.1 (82.3–246.3) | 0.11 |
HOMA-IR (<2.5) | 3.2 (1.9–7.1) | 7.3 (3.4–9.8) | 0.017 * |
HOMA-IS (>0.4) | 0.3 (0.1–0.5) | 0.1 (0.1–0.3) | 0.017 * |
QUICKI (>0.4) | 0.32 (0.29–0.35) | 0.29 (0.28–0.32) | 0.017 * |
Parameter (Reference Range) | Haptoglobin ≤ 209.8 mg/dL (n = 51) | Haptoglobin > 209.8 mg/dL (n = 44) | p-Value |
---|---|---|---|
Fasting glucose (mmol/L) | 5.11 (4.51–5.53) | 5.77 (4.81–6.28) | 0.043 * |
Fasting insulin (pmol/L) | 90.0 (53.2–201.0) | 100.2 (56.9–186.9) | 0.68 |
HbA1c (%) | 5.4 (5.2–5.7) | 5.7 (5.3–6.4) | 0.0081 * |
SPINA-GBeta (0.64–3.73 pmol/s) | 3.76 (2.21–8.86) | 3.99 (2.43–7.39) | 1.00 |
SPINA-GR (1.41–9.00 mol/s) | 1.41 (0.68–2.18) | 1.17 (0.55–2.14) | 0.30 |
SPINA-DI (4.01–7.65) | 5.11 (4.41–6.00) | 4.37 (3.46–5.48) | 0.028 * |
HOMA-Beta | 209.5 (119.4–433.6) | 193.9 (127.5–347.0) | 0.50 |
HOMA-IR (<2.5) | 3.2 (2.0–7.2) | 3.9 (2.1–8.3) | 0.43 |
HOMA-IS (>0.4) | 0.3 (0.1–0.5) | 0.3 (0.1–0.5) | 0.43 |
QUICKI (>0.4) | 0.32 (0.29–0.34) | 0.31 (0.28–0.34) | 0.43 |
Parameter (Reference Range) | No Antidiabetic Medication (n = 83) | Antidiabetic Medication (n = 12) | p-Value |
---|---|---|---|
Fasting glucose (mmol/L) | 5.06 (4.56–5.50) | 6.75 (6.11–8.03) | <0.0001 * |
Fasting insulin (pmol/L) | 88.8 (53.1–186.0) | 153.0 (65.4–294.3) | 0.28 |
HbA1c (%) | 5.5 (5.2–5.8) | 7.1 (6.8–8.1) | <0.0001 * |
SPINA-GBeta (0.64–3.73 pmol/s) | 3.70 (2.32–7.67) | 5.29 (2.35–8.93) | 0.67 |
SPINA-GR (1.41–9.00 mol/s) | 1.38 (0.68–2.19) | 0.53 (0.28–1.38) | 0.02 * |
SPINA-DI (4.01–7.65) | 5.05 (4.30–5.99) | 2.92 (2.33–3.52) | <0.0001 * |
HOMA-Beta | 207.9 (134.6–410.6) | 139.9 (75.4–207.2) | 0.051 |
HOMA-IR (<2.5) | 3.3 (2.0–7.2) | 8.7 (3.0–11.6) | 0.051 |
HOMA-IS (>0.4) | 0.3 (0.1–0.5) | 0.1 (0.1–0.3) | 0.051 |
QUICKI (>0.4) | 0.32 (0.29–0.34) | 0.29 (0.27–0.32) | 0.051 |
Hurley stage | 2.0 (2.0–3.0) | 3.0 (2.8–3.0) | 0.046 * |
SAHS scale | 7.0 (5.0–9.0) | 8.0 (7.0–9.3) | 0.25 |
Number of exacerbations | 0 (0–2) | 0 (0–2) | 0.89 |
Affected regions | 3.0 (2.0–5.0) | 4.5 (4.0–6.0) | 0.051 |
CRP | 5.4 (5.0–13.3) | 11.4 (7.9–18.4) | 0.109 |
Haptoglobin | 197.4 (153.3–237.8) | 256.6 (228.8–291.1) | 0.003 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Rached, N.; Dietrich, J.W.; Ocker, L.; Stockfleth, E.; Haven, Y.; Myszkowski, D.; Bechara, F.G. Endotyping Insulin–Glucose Homeostasis in Hidradenitis Suppurativa: The Impact of Diabetes Mellitus and Inflammation. J. Clin. Med. 2025, 14, 2145. https://doi.org/10.3390/jcm14072145
Abu Rached N, Dietrich JW, Ocker L, Stockfleth E, Haven Y, Myszkowski D, Bechara FG. Endotyping Insulin–Glucose Homeostasis in Hidradenitis Suppurativa: The Impact of Diabetes Mellitus and Inflammation. Journal of Clinical Medicine. 2025; 14(7):2145. https://doi.org/10.3390/jcm14072145
Chicago/Turabian StyleAbu Rached, Nessr, Johannes W. Dietrich, Lennart Ocker, Eggert Stockfleth, Yannik Haven, Daniel Myszkowski, and Falk G. Bechara. 2025. "Endotyping Insulin–Glucose Homeostasis in Hidradenitis Suppurativa: The Impact of Diabetes Mellitus and Inflammation" Journal of Clinical Medicine 14, no. 7: 2145. https://doi.org/10.3390/jcm14072145
APA StyleAbu Rached, N., Dietrich, J. W., Ocker, L., Stockfleth, E., Haven, Y., Myszkowski, D., & Bechara, F. G. (2025). Endotyping Insulin–Glucose Homeostasis in Hidradenitis Suppurativa: The Impact of Diabetes Mellitus and Inflammation. Journal of Clinical Medicine, 14(7), 2145. https://doi.org/10.3390/jcm14072145