Pelvic Asymmetry and Stiffness of the Muscles Stabilizing the Lumbo–Pelvic–Hip Complex (LPHC) in Tensiomyography Examination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Participants
- age between 19 and 29 years;
- right lateralization of the hand and foot;
- no discernible abnormalities were observed in the subject’s body composition;
- Body mass index (BMI) between 18.5 and 24.9.
- pain in the lumbo–pelvic–hip complex area or use of analgesics during the tests;
- pregnancy or menstrual phase;
- lack of written consent to take part in the study.
2.4. Outcome Measures
- ICA (iliac crest angle): the angle between the horizontal axis and the line formed by the apices of the iliac crests;
- ASISA (anterior superior iliac spine angle): the angle between the horizontal axis and the line formed by the anterior superior iliac spines;
- TMA (trochanter major angle): the angle between the horizontal axis and the line formed by the tops of the greater trochanters.
2.5. Intervention
- I.
- Symmetric pelvis (SP)
- II.
- Asymmetric (rotated pelvis) (RP)
2.6. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krahl, H.; Michaelis, U.; Pieper, H.G.; Quack, G.; Montag, M. Stimulation of bone growth through sports. A radiologic investigation of the upper extremities in professional tennis players. Am. J. Sports Med. 1994, 22, 751. [Google Scholar] [CrossRef] [PubMed]
- Boulay, C.; Tardieu, C.; Bénaim, C.; Hecquet, J.; Marty, C.; Prat-Pradal, D.; Legaye, J.; Duval-Beaupère, G.; Pélissier, J. Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives. J. Anat. 2006, 208, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Kanchan, T.; Mohan Kumar, T.S.; Pradeep Kumar, G.; Yoganarasimha, K. Skeletala symmetry. J. Forensic Leg. Med. 2008, 15, 177–179. [Google Scholar] [CrossRef]
- Maloney, S.J. The Relationship Between Asymmetry and Athletic Performance: A Critical Review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef]
- Bussey, M.D. Does the demand for asymmetric functional lower body postures in lateral sports relate to structural asymmetry of the pelvis? J. Sci. Med. Sport 2010, 13, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Güntürkün, O.; Ocklenburg, S. Ontogenesis of Lateralization. Neuron 2017, 94, 249–263. [Google Scholar] [CrossRef]
- Kurki, H.K. Bilateral asymmetry in the human pelvis. Anat. Rec. 2017, 300, 653–665. [Google Scholar] [CrossRef]
- Alqadah, A.; Hsieh, Y.W.; Morrissey, Z.D.; Chuang, C.F. Asymmetric development of the nervous system. Dev. Dyn. 2018, 247, 124–137. [Google Scholar] [CrossRef]
- Traver-Vives, M.; Guillén-Villar, A.; Del Río, L.; Casinos, A. Asymmetry in the length of human humerus and radius during ontogeny. Anthropol. Anz. 2021, 78, 151. [Google Scholar] [CrossRef]
- Bibrowicz, K.; Szurmik, T.; Ogrodzka-Ciechanowicz, K.; Hudakova, Z.; Gąsienica-Walczak, B.; Kurzeja, P. Asymmetry of the pelvis in Polish young adults. Front. Psychol. 2023, 14, 1148239. [Google Scholar] [CrossRef]
- Al-Eisa, E.; Egan, D.; Deluzio, K.; Wassersug, R. Effects of pelvic asymmetry and low back pain on trunk kinematics during sitting: A comparison with standing. Spine 2006, 31, E135–E143. [Google Scholar] [CrossRef]
- Gum, J.L.; Asher, M.A.; Burton, D.C.; Lai, S.M.; Lambart, L.M. Transverse plane pelvic rotation in adolescent idiopathic scoliosis: Primary or compensatory? Eur. Spine J. 2007, 16, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Khamis, S.; Carmeli, E. Relationship and significance of gait deviations associated with limb length discrepancy: A systematic review. Gait Posture 2017, 57, 115–123. [Google Scholar] [CrossRef]
- Kuszewski, M.T.; Gnat, R.; Gogola, A. The impact of core muscles training on the range of anterior pelvic tilt in subjects with increased stiffness of the hamstrings. Hum. Mov. Sci. 2018, 57, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Huang, H.; Zhang, Z.; Hu, X.; Li, W.; Li, L.; Chen, M.; Liang, Z.; Lo, W.L.A.; Wang, C. The association between pelvic asymmetry and non-specific chronic low back pain as assessed by the global postural system. BMC Musculoskelet. Disord. 2020, 21, 596. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, D.; Huang, Z.; Wang, Z.; Cai, X. Morphological Asymmetry of Pelvic Rings: A Study Based on Three-Dimensional Deviation Analysis. Orthop. Surg. 2022, 14, 967–976. [Google Scholar] [CrossRef]
- Stȩpień, A.; Maślanko, K.; Rekowski, W.; Fabian, K.; Tuz, J.; Graff, K. Analysis of the prevalence of asymmetry and muscle tone disorders in the first year of life among youth with idiopathic scoliosis: A retrospective case-control study. J. Back. Musculoskelet. Rehabil. 2022, 35, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, C.J.; Johnson, M.B.; Norton, B.J.; Callaghan, J.P.; Van Dillen, L.R. Asymmetry of lumbopelvic movement patterns during active hip abduction is a risk factor for low back pain development during standing. Hum. Mov. Sci. 2016, 50, 38–46. [Google Scholar] [CrossRef]
- Lewit, K. Manipulative Therapy: Musculoskeletal Medicine, 1st ed.; Churchill Livingstone: London, UK, 2009. [Google Scholar]
- Gnat, R.; Bialy, M. A new approach to the measurement of pelvic asymmetry: Proposed methods and reliability. J. Manip. Physiol. Ther. 2015, 38, 295–301. [Google Scholar] [CrossRef]
- Manheim, C.J. The Myofascial Release Manual, 4th ed.; Slack Incorporated: Charleston, SC, USA, 2008. [Google Scholar]
- Myers, T. Anatomy Trains: Myofascial Meridians for Manual and Movement Therapists; Churchill Livingstone Elsevier: Philadelphia, PA, USA, 2014. [Google Scholar]
- Juhl, J.H.; Ippolito Cremin, T.M.; Russell, G. Prevalence of frontal plane pelvic postural asymmetry—Part 1. J. Am. Osteopath. Assoc. 2004, 104, 411–421. [Google Scholar]
- Gelber, J.D.; Soloff, L.; Schickendantz, M.S. The Thrower’s Shoulder. J. Am. Acad. Orthop. Surg. 2018, 26, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Hellebrandt, F.A.; Houtz, S.J. Mechanisms of muscle training in man: Experimental demonstration of the overload principle. Phys. Ther. Rev. 1956, 36, 371–383. [Google Scholar] [CrossRef]
- Nelson, A.G.; Kokkonen, J.; Arnall, D.A.; Li, L. Acute stretching increases postural stability in nonbalance trained individuals. J. Strength. Cond. Res. 2012, 26, 3095–3100. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, N.; Hirata, K.; Miyamoto-Mikami, E.; Yasuda, O.; Kanehisa, H. Associations of passive muscle stiffness, muscle stretch tolerance, and muscle slack angle with range of motion: Individual and sex differences. Sci. Rep. 2018, 8, 8274. [Google Scholar] [CrossRef]
- Kumagai, H.; Miyamoto-Mikami, E.; Hirata, K.; Kikuchi, N.; Kamiya, N.; Hoshikawa, S.; Zempo, H.; Naito, H.; Miyamoto, N.; Fuku, N. ESR1 Rs2234693 Polymorphism is associated with muscle injury and muscle stiffness. Med. Sci. Sports Exerc. 2019, 51, 19–26. [Google Scholar] [CrossRef]
- Kuitunen, S.; Komi, P.V.; Kyrolainen, H. Knee and ankle joint stiffness in sprint running. Med. Sci. Sports Exerc. 2002, 34, 166–173. [Google Scholar] [CrossRef]
- Ličen, U.; Opara, M.; Kozinc, Ž. The Agreement and Correlation Between Shear-Wave Elastography, Myotonometry, and Passive Joint Stiffness Measurements: A Brief Review. SN Compr. Clin. Med. 2024, 6, 27–35. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, M.; Lee, H. The Measurement of Stiffness for Major Muscles with Shear Wave Elastography and Myoton: A Quantitative Analysis Study. Diagnostics 2021, 11, 524. [Google Scholar] [CrossRef]
- Martín-Rodríguez, S.; Loturco, I.; Hunter, A.M.; Rodríguez-Ruiz, D.; Munguia-Izquierdo, D. Reliability and Measurement Error of Tensiomyography to Assess Mechanical Muscle Function: A Systematic Review. J. Strength. Cond. Res. 2017, 31, 3524–3536. [Google Scholar] [CrossRef]
- Lohr, C.; Braumann, K.M.; Reer, R.; Schroeder, J.; Schmidt, T. Reliability of tensiomyography and myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in healthy volunteers. Eur. J. Appl. Physiol. 2018, 118, 1349–1359. [Google Scholar] [CrossRef]
- Lohr, C.; Schmidt, T.; Braumann, K.M.; Reer, R.; Medina-Porqueres, I. Sex-Based Differences in Tensiomyography as Assessed in the Lower Erector Spinae of Healthy Participants: An Observational Study. Sports Health 2020, 12, 341–346. [Google Scholar] [CrossRef]
- García-García, O.; Cuba-Dorado, A.; Álvarez-Yates, T.; Carballo-López, J.; Iglesias-Caamaño, M. Clinical utility of tensiomyography for muscle function analysis in athletes. Open Access J. Sports Med. 2019, 10, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Kozinc, Ž.; Šarabon, N. Shear-wave elastography for assessment of trapezius muscle stiffness: Reliability and association with low-level muscle activity. PLoS ONE 2020, 15, e0234359. [Google Scholar] [CrossRef]
- Park, S. Theory and usage of tensiomyography and the analysis method for the patient with low back pain. J. Exerc. Rehabil. 2020, 16, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Alfuraih, A.M.; Alhowimel, A.; Alghanim, S.; Khayat, Y.; Aljamaan, A.; Alsobayel, H.I. The Association between Tensiomyography and Elastography Stiffness Measurements in Lower Limb Skeletal Muscles. Sensors 2022, 22, 1206. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Bibrowicz, K.; Szurmik, T.; Lipowicz, A.; Walaszek, R.; Mitas, A. Tilt and mobility of the hip girdle in the sagittal and frontal planes in healthy subjects aged 19–30 years. J. Back. Musculoskelet. Rehabil. 2022, 35, 1203–1210. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Stylianides, G.A.; Beaulieu, M.; Dalleau, G.; Rivard, C.H.; Allard, P. Iliac crest orientation and geometry in able-bodied and non-treated adolescent idiopathic scoliosis girls with moderate and severe spinal deformity. Eur. Spine J. 2012, 21, 725–732. [Google Scholar] [CrossRef]
- Oleksy, Ł.; Mika, A.; Kielnar, R.; Grzegorczyk, J.; Marchewka, A.; Stolarczyk, A. The influence of pelvis reposition exercises on pelvic floor muscles asymmetry: A randomized prospective study. Medicine 2019, 98, e13988. [Google Scholar] [CrossRef]
- Yoo, H.I.; Hwang, U.J.; Ahn, S.H.; Gwak, G.T.; Kwon, O.Y. Comparison of pelvic rotation angle in the transverse plane in the supine position and during active straight leg raise between people with and without nonspecific low back pain. Clin Biomech. 2021, 83, 105310. [Google Scholar] [CrossRef]
- Bibrowicz, K.; Szurmik, T.; Kurzeja, P.; Bibrowicz, B.; Ogrodzka-Ciechanowicz, K. Pelvic tilt and stiffness of the muscles stabilising the lumbo-pelvic-hip (LPH) complex in tensiomyography examination. PLoS ONE 2024, 19, e0312480. [Google Scholar] [CrossRef] [PubMed]
- Biały, M.; Adamczyk, W.; Stranc, T.; Gogola, A.; Gnat, R. The Association between Pelvic Asymmetry and Lateral Abdominal Muscle Activity in a Healthy Population. J. Hum. Kinet. 2025, 97, 1–22. [Google Scholar] [CrossRef]
- Ackermann, W.P. Goal-Oriented Chiropractic: Specific Diagnostic and Therapeutic Techniques According to Dr. Ackermann, 5th ed.; Ackermann Institute: Stockholm, Sweden, 2012. [Google Scholar]
- Gnat, R.; Saulicz, E. Induced static asymmetry of the pelvis is associated with functional asymmetry of the lumbo-pelvo-hip complex. J. Manip. Physiol. Ther. 2008, 31, 204–211. [Google Scholar] [CrossRef]
- Gnat, R.; Saulicz, E.; Biały, M.; Kłaptocz, P. Does Pelvic Asymmetry always Mean Pathology? J. Hum. Kinet. 2009, 21, 23–35. [Google Scholar]
- Savory, B.; Kaute, B. Pelvic shift or short leg syndrome as an avoidable cause of back complaints. Man. Med. 1999, 37, 304–308. [Google Scholar] [CrossRef]
- Pope, R.E. The common compensatory pattern: Its origin and relationship to the postural model. Am. Acad. Osteopath. J. 2003, 14, 19–40. [Google Scholar]
- Morris, C.E.; Bonnefin, D.; Darville, C. The torsional upper crossed syndrome: A multi-planar update to Janda’s model, with a case series introduction of the mid-pectoral fascial lesion as an associated etiological factor. J. Body Mov. Ther. 2015, 19, 681–689. [Google Scholar]
- Kouwenhoven, J.W.; Vincken, K.L.; Bartels, L.W.; Castelein, R.M. Analysis of preexistent vertebral rotation in the normal spine. Spine 2006, 31, 1467–1472. [Google Scholar] [CrossRef]
- Snijders, C.J.; Vleeming, A.; Stoeckart, R. Transfer of lumbosacral load to iliac bones and legs Part 2: Loading of the sacroiliac joints when lifting in a stooped posture. Clin. Biomech. 1993, 8, 295–301. [Google Scholar] [CrossRef]
- Kopecká, B.; Ravnik, D.; Jelen, K.; Bittner, V. Objective Methods of Muscle Tone Diagnosis and Their Application—A Critical Review. Sensors 2023, 23, 7189. [Google Scholar] [CrossRef] [PubMed]
- Shortland, A.P. Muscle tone is not a well-defined term. Dev. Med. Child Neurol. 2018, 60, 637. [Google Scholar] [CrossRef]
- Bravo-Sánchez, A.; Abián, P.; Sánchez-Infante, J.; Ramírez-delaCruz, M.; Esteban-García, P.; Jiménez, F.; Abián-Vicén, J. Five-Compressions Protocol as a Valid Myotonometric Method to Assess the Stiffness of the Lower Limbs: A Brief Report. Int. J. Environ. Res. Public Health 2022, 19, 14425. [Google Scholar] [CrossRef]
- Calvo-Lobo, C.; Diez-Vega, I.; Martínez-Pascual, B.; Fernández-Martínez, S.; de la Cueva-Reguera, M.; Garrosa-Martín, G.; Rodríguez-Sanz, D. Tensiomyography, sonoelastography, and mechanosensitivity differences between active, latent, and control low back myofascial trigger points: A cross-sectional study. Medicine 2017, 96, e6287. [Google Scholar] [CrossRef]
- Labata-Lezaun, N.; López-de-Celis, C.; Llurda-Almuzara, L.; González-Rueda, V.; Cadellans-Arróniz, A.; Pérez-Bellmunt, A. Correlation between maximal radial muscle displacement and stiffness in gastrocnemius muscle. Physiol. Meas. 2020, 41, 125013. [Google Scholar] [CrossRef]
- Šimunič, B.; Koren, K.; Rittweger, J.; Lazzer, S.; Reggiani, C.; Rejc, E.; Pišot, R.; Narici, M.; Degens, H. Tensiomyography detects early hallmarks of bed-rest-induced atrophy before changes in muscle architecture. J. Appl. Physiol. 2019, 126, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Qin, K.; Tang, C.; Zhu, Y.; Klein, C.S.; Zhang, Z.; Liu, C. Assessment of Passive Stiffness of Medial and Lateral Heads of Gastrocnemius Muscle, Achilles Tendon, and Plantar Fascia at Different Ankle and Knee Positions Using the MyotonPRO. Med. Sci. Monit. 2018, 24, 7570–7576. [Google Scholar] [CrossRef] [PubMed]
- Takakusaki, K.; Chiba, R.; Nozu, T.; Okumura, T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J. Neural Transm. 2016, 123, 695–729. [Google Scholar] [CrossRef]
- Takakusaki, K. Functional Neuroanatomy for Posture and Gait Control. J. Mov. Disord. 2017, 10, 1–17. [Google Scholar] [CrossRef]
- Kaminishi, K.; Chiba, R.; Takakusaki, K.; Ota, J. Investigation of the effect of tonus on the change in postural control strategy using musculoskeletal simulation. Gait Posture 2020, 76, 298–304. [Google Scholar] [CrossRef]
Variable | SP n = 20 | RP n = 20 |
---|---|---|
Mean ± Std. | Mean ± Std. | |
Weight (kg) | 57.0 ± 4.01 | 59.7 ± 5.01 |
Height (cm) | 164.4 ± 5.35 | 167.9 ± 5.74 |
BMI (kg m−2) | 21.2 ± 1.59 | 21.2 ± 1.71 |
Muscles | DM (mm) | ||
---|---|---|---|
Left Side n = 40 | Right Side n = 40 | p | |
Mean ± Std. | Mean ± Std. | ||
Gluteus maximus | 5.0 ± 2.57 | 6.4 ± 3.12 | 0.061 |
Biceps femoris | 4.4 ± 2.38 | 4.3 ± 2.12 | 0.856 |
Rectus femoris | 5.6 ± 2.46 | 5.5 ± 2.70 | 0.848 |
Rectus abdominis | 4.2 ± 2.06 | 4.4 ± 2.10 | 0.724 |
Obliques abdominis ext. | 2.8 ± 1.70 | 2.6 ± 1.83 | 0.657 |
Erector spinae | 3.3 ± 1.42 | 3.4 ± 1.47 | 0.810 |
Muscles | Variable | Type of Pelvis | Left Side Mean ± Std. | Right Side Mean ± Std. | p |
---|---|---|---|---|---|
Gluteus maximus | Dm | SP | 5.5 ± 3.67 | 6.5 ± 4.07 | 0.532 |
RP | 4.9 ± 2.01 | 6.3 ± 2.65 | 0.0698 | ||
p | 0.555 | 0.869 | |||
Biceps femoris | Dm | SP | 4.4 ± 2.41 | 4.6 ± 2.37 | 0.845 |
RP | 4.3 ± 2.16 | 4.2 ± 1.85 | 0.874 | ||
p | 0.8855 | 0.584 | |||
Rectus femoris | Dm | SP | 5.6 ± 3.16 | 5.6 ± 3.44 | 0.965 |
RP | 5.9 ± 2.25 | 5.6 ± 2.56 | 0.723 | ||
p | 0.713 | 0.986 | |||
Rectus abdominis | Dm | SP | 4.7 ± 2.34 | 4.8 ± 2.58 | 0.886 |
RP | 4.2 ± 2.10 | 4.4 ± 1.90 | 0.799 | ||
p | 0.516 | 0.532 | |||
Obliques abdominis ext. | Dm | SP | 2.8 ± 1.93 | 2.9 ± 1.66 | 0.922 |
RP | 2.8 ± 1.71 | 2.6 ± 2.10 | 0.851 | ||
p | 0.939 | 0.745 | |||
Erector spinae | Dm | SP | 3.3 ± 0.99 | 3.3 ± 1.38 | 0.920 |
RP | 3.3 ± 1.65 | 3.7 ± 1.43 | 0.449 | ||
p | 0.981 | 0.438 |
Muscle | Variable | |
---|---|---|
Dm [mm] | ||
Left Side | Right Side | |
Gluteus maximus | r = −0.076 p = 0.763 | r = −0.123 p = 0.627 |
Biceps femoris | r = 0.198 p = 0.416 | r = 0.065 p = 0.793 |
Rectus femoris | r = −0.358 p = 0.132 | r = −0.334 p = 0.162 |
Rectus abdominis | r = 0.060 p = 0.807 | r = 0.108 p = 0.659 |
Obliques abdominis ext. | r = 0.029 p = 0.905 | r = 0.002 p = 0.993 |
Erector spinae | r = −0.416 p = 0.076 | r = −0.354 p = 0.137 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bibrowicz, K.; Ogrodzka-Ciechanowicz, K.; Hudakova, Z.; Szurmik, T.; Bibrowicz, B.; Kurzeja, P. Pelvic Asymmetry and Stiffness of the Muscles Stabilizing the Lumbo–Pelvic–Hip Complex (LPHC) in Tensiomyography Examination. J. Clin. Med. 2025, 14, 2229. https://doi.org/10.3390/jcm14072229
Bibrowicz K, Ogrodzka-Ciechanowicz K, Hudakova Z, Szurmik T, Bibrowicz B, Kurzeja P. Pelvic Asymmetry and Stiffness of the Muscles Stabilizing the Lumbo–Pelvic–Hip Complex (LPHC) in Tensiomyography Examination. Journal of Clinical Medicine. 2025; 14(7):2229. https://doi.org/10.3390/jcm14072229
Chicago/Turabian StyleBibrowicz, Karol, Katarzyna Ogrodzka-Ciechanowicz, Zuzana Hudakova, Tomasz Szurmik, Bartosz Bibrowicz, and Piotr Kurzeja. 2025. "Pelvic Asymmetry and Stiffness of the Muscles Stabilizing the Lumbo–Pelvic–Hip Complex (LPHC) in Tensiomyography Examination" Journal of Clinical Medicine 14, no. 7: 2229. https://doi.org/10.3390/jcm14072229
APA StyleBibrowicz, K., Ogrodzka-Ciechanowicz, K., Hudakova, Z., Szurmik, T., Bibrowicz, B., & Kurzeja, P. (2025). Pelvic Asymmetry and Stiffness of the Muscles Stabilizing the Lumbo–Pelvic–Hip Complex (LPHC) in Tensiomyography Examination. Journal of Clinical Medicine, 14(7), 2229. https://doi.org/10.3390/jcm14072229