Comparison of Midazolam and Diazepam for Sedation in Patients Undergoing Double-Balloon Endoscopic Retrograde Cholangiopancreatography: A Propensity Score-Matched Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Sedation Protocol and Monitoring
2.3. Outcomes and Definitions
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Details of Sedation-Related Outcomes
3.3. Sedation-Related AEs
3.4. Risk Factors for Sedation-Related Adverse Events
4. Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forbes, A.; Cotton, P.B. ERCP and sphincterotomy after Billroth Ⅱ gastrectomy. Gut 1984, 25, 971–974. [Google Scholar] [PubMed]
- Shimatani, M.; Matsushita, M.; Takaoka, M.; Koyabu, M.; Ikeura, T.; Kato, K.; Fukui, T.; Uchida, K.; Okazaki, K. Effective “short” double-balloon enteroscope for diagnostic and therapeutic ERCP in patients with altered gastrointestinal anatomy: A large case series. Endoscopy 2009, 41, 849–854. [Google Scholar]
- Gotoda, T.; Akamatsu, T.; Abe, S.; Shimatani, M.; Nakai, Y.; Hatta, W.; Hosoe, N.; Miura, Y.; Miyahara, R.; Yamaguchi, D.; et al. Guidelines for sedation in gastroenterological endoscopy (second edition). Dig. Endosc. 2021, 33, 21–53. [Google Scholar] [CrossRef] [PubMed]
- Early, D.S.; Lightdale, J.R.; Vargo, J.J.; Acosta, R.D.; Chandrasekhara, V.; Chathadi, K.V.; Evans, J.A.; Fisher, D.A.; Fonkalsrud, L.; Hwang, J.H.; et al. Guidelines for sedation and anesthesia in GI endoscopy. Gastrointest. Endosc. 2018, 87, 327–337. [Google Scholar] [PubMed]
- Igea, F.; Casellas, J.A.; González-Huix, F.; Gómez-Oliva, C.; Baudet, J.S.; Cacho, G.; Simón, M.A.; De la Morena, E.; Lucendo, A.; Vida, F. Sedation for gastrointestinal endoscopy. Endoscopy 2014, 46, 720–731. [Google Scholar] [CrossRef]
- Porro, G.B.; Baroni, S.; Parente, F.; Lazzaroni, M. Midazolam versus diazepam as premedication for upper gastrointestinal endoscopy: A randomized, double-blind, crossover study. Gastrointest. Endosc. 1988, 34, 252–254. [Google Scholar]
- Cole, S.G.; Brozinsky, S.; Isenberg, J.I. Midazolam, a new more potent benzodiazepine, compared with diazepam: A randomized, double-blind study of preendoscopic sedatives. Gastrointest. Endosc. 1983, 29, 219–222. [Google Scholar] [CrossRef]
- Lee, M.G.; Hanna, W.; Harding, H. Sedation for upper gastrointestinal endoscopy: A comparative study of midazolam and diazepam. Gastrointest. Endosc. 1989, 35, 82–84. [Google Scholar] [CrossRef]
- Kongkam, P.; Rerknimitr, R.; Punyathavorn, S.; Sitthi-Amorn, C.; Ponauthai, Y.; Prempracha, N.; Kullavanijaya, P. Propofol infusion versus intermittent meperidine and midazolam injection for conscious sedation in ERCP. J. Gastrointest. Liver Dis. 2008, 17, 291–297. [Google Scholar]
- Bell, G.D.; Morden, A.; Coady, T.; Lee, J.; Logan, R.F. A comparison of diazepam and midazolam as endoscopy premedication assessing changes in ventilation and oxygen saturation. Br. J. Clin. Pharmacol. 1988, 26, 595–600. [Google Scholar]
- Ginsberg, G.G.; Lewis, J.H.; Gallagher, J.E.; Fleischer, D.E.; Al-Kawas, F.H.; Nguyen, C.C.; Mundt, D.J.; Benjamin, S.B. Diazepam versus midazolam for colonoscopy: A prospective evaluation of predicted versus actual dosing requirements. Gastrointest. Endosc. 1992, 38, 651–656. [Google Scholar] [PubMed]
- Ramsay, M.A.; Savege, T.M.; Simpson, B.R.; Goodwin, E.R. Controlled sedation with alphaxalone-alphadolone. Br. Med. J. 1974, 2, 656–659. [Google Scholar] [PubMed]
- Aldrete, J.A.; Kroulik, D. A postanesthetic recovery score. Anesth. Analg. 1970, 49, 924–934. [Google Scholar] [PubMed]
- Miyamoto, K.; Matsumoto, K.; Obata, T.; Sato, R.; Matsumi, A.; Morimoto, K.; Ogawa, T.; Terasawa, H.; Fujii, Y.; Yamazaki, T.; et al. The efficacy of non-anesthesiologist-administered propofol sedation with a target-controlled infusion system during double-balloon endoscopic retrograde cholangiopancreatography. BMC Gastroenterol. 2023, 23, 296. [Google Scholar]
- Lin, Y.; Zhang, X.; Li, L.; Wei, M.; Zhao, B.; Wang, X.; Pan, Z.; Tian, J.; Yu, W.; Su, D. High-flow nasal cannula oxygen therapy and hypoxia during gastroscopy with propofol sedation: A randomized multicenter clinical trial. Gastrointest. Endosc. 2019, 90, 591–601. [Google Scholar]
- Patterson, K.W.; Noonan, N.; Keeling, N.W.; Kirkham, R.; Hogan, D.F. Hypoxemia during outpatient gastrointestinal endoscopy: The effects of sedation and supplemental oxygen. J. Clin. Anesth. 1995, 7, 136–140. [Google Scholar]
- Maruki, Y.; Hijioka, S.; Yagi, S.; Takasaki, T.; Chatto, M.; Fukuda, S.; Yamashige, D.; Okamoto, K.; Agarie, D.; Hara, H.; et al. Sedative effects of propofol and risk factors for excessive sedation in the endoscopic treatment of biliary and pancreatic diseases. DEN Open 2024, 5, e417. [Google Scholar]
- McVay, T.; Fang, J.C.; Taylor, L.; Au, A.; Williams, W.; Presson, A.P.; Al-Dulaimi, R.; Volckmann, E.; Ibele, A. Safety analysis of bariatric patients undergoing outpatient upper endoscopy with non-anesthesia administered propofol sedation. Obes. Surg. 2017, 27, 1501–1507. [Google Scholar]
- Sethi, P.; Mohammed, S.; Bhatia, P.K.; Gupta, N. Dexmedetomidine versus midazolam for conscious sedation in endoscopic retrograde cholangiopancreatography: An open-label randomised controlled trial. Indian journal of anaesthesia. Indian J. Anaesth. 2014, 58, 18–24. [Google Scholar]
- Nishizawa, T.; Suzuki, H.; Sagara, S.; Kanai, T.; Yahagi, N. Dexmedetomidine versus midazolam for gastrointestinal endoscopy: A meta-analysis. Dig. Endosc. 2015, 27, 8–15. [Google Scholar]
- Venn, R.M.; Grounds, R.M. Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: Patient and clinician perceptions. Br. J. Anaesth. 2001, 87, 684–690. [Google Scholar]
- Nonaka, T.; Inamori, M.; Miyashita, T.; Harada, S.; Inoh, Y.; Kanoshima, K.; Matsuura, M.; Higurashi, T.; Ohkubo, H.; Iida, H.; et al. Feasibility of deep sedation with a combination of propofol and dexmedetomidine hydrochloride for esophageal endoscopic submucosal dissection. Dig. Endosc. 2016, 28, 145–151. [Google Scholar] [PubMed]
- Muller, S.; Borowics, S.M.; Fortis, E.A.; Stefani, L.C.; Soares, G.; Maguilnik, I.; Breyer, H.P.; Hidalgo, M.P.L.; Caumo, W. Clinical efficacy of dexmedetomidine alone is less than propofol for conscious sedation during ERCP. Gastrointest. Endosc. 2008, 67, 651–659. [Google Scholar] [PubMed]
- Sethi, S.; Wadhwa, V.; Thaker, A.; Chuttani, R.; Pleskow, D.K.; Barnett, S.R.; Leffler, D.A.; Berzin, T.M.; Sethi, N.; Sawhney, M.S. Propofol versus traditional sedative agents for advanced endoscopic procedures: A meta-analysis. Dig. Endosc. 2014, 26, 515–524. [Google Scholar]
- Wysowski, D.K.; Pollock, M.L. Reports of death with use of propofol (Diprivan) for nonprocedural (long-term) sedation and literature review. Anesthesiology 2006, 105, 1047–1051. [Google Scholar]
- Fanti, L.; Gemma, M.; Agostoni, M.; Rossi, G.; Ruggeri, L.; Azzolini, M.L.; Dabizzi, E.; Beretta, L.; Testoni, P.A. Target controlled infusion for non-anaesthesiologist propofol sedation during gastrointestinal endoscopy: The first double blind randomized controlled trial. Dig. Liver Dis. 2015, 47, 566–571. [Google Scholar]
- Klare, P.; Reiter, J.; Meining, A.; Wagenpfeil, S.; Kronshage, T.; Geist, C.; Heringlake, S.; Schlag, C.; Bajbouj, M.; Schneider, G.; et al. Capnographic monitoring of midazolam and propofol sedation during ERCP: A randomized controlled study (EndoBreath Study). Endoscopy 2016, 48, 42–50. [Google Scholar]
- Goudra, B.G.; Singh, P.M.; Gouda, G.; Borle, A.; Gouda, D.; Dravida, A.; Chandrashakhara, V. Safety of non-anesthesia provider-administered propofol (NAAP) sedation in advanced gastrointestinal endoscopic procedures: Comparative meta-analysis of pooled results. Dig. Dis. Sci. 2015, 60, 2612–2627. [Google Scholar]
- Wadhwa, V.; Issa, D.; Garg, S.; Lopez, R.; Sanaka, M.R.; Vargo, J.J. Similar risk of cardiopulmonary adverse events between propofol and traditional anesthesia for gastrointestinal endoscopy: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2017, 15, 194–206. [Google Scholar]
Unmatched | Propensity Score Matched | |||||
---|---|---|---|---|---|---|
Parameters | Diazepam Sedation (n = 94) | Midazolam Sedation (n = 109) | p Value | Diazepam Sedation (n = 75) | Midazolam Sedation (n = 75) | p Value |
Age, median (IQR), years | 73 (66–78) | 72 (63–77) | 0.29 | 73 (66–77) | 71 (63–78) | 0.57 |
Sex, male/female | 63/31 | 72/37 | 0.88 | 46/29 | 49/26 | 0.61 |
BMI, median (IQR), kg/m2 | 21 (18–23) | 20 (19–22) | 0.64 | 20 (19–22) | 20 (18–22) | 0.99 |
Current or ex-smoker, n (%) | 37 (39) | 28 (26) | 0.037 | 22 (29) | 21 (28) | 0.86 |
Alcohol abuse, n (%) | 13 (14) | 13 (12) | 0.69 | 8 (11) | 8 (11) | 1.0 |
Narcotic/sedative use, n (%) | 20 (21) | 22 (20) | 0.85 | 16 (21) | 14 (19) | 0.68 |
Underlying disease, n (%) | ||||||
Cardiovascular disease | 13 (14) | 16 (15) | 0.86 | 8 (11) | 5 (7) | 0.38 |
Pulmonary disease | 11 (12) | 10 (9) | 0.56 | 8 (11) | 7 (9) | 0.79 |
Liver cirrhosis | 7 (7) | 9 (8) | 0.83 | 6 (8) | 4 (5) | 0.51 |
Chronic renal failure | 4 (4) | 5 (5) | 0.91 | 4 (5) | 3 (4) | 0.70 |
ASA-PS, n (%) * | 0.47 | 0.63 | ||||
1 | 52 (55) | 53 (49) | 38 (51) | 42 (56) | ||
2 | 38 (40) | 53 (49) | 33 (44) | 31 (41) | ||
3 | 4 (4) | 3 (3) | 4 (5) | 2 (3) | ||
Type of intestinal reconstruction, n (%) | 0.62 | 0.70 | ||||
Child | 51 (54) | 64 (59) | 41 (55) | 46 (61) | ||
Roux-en-Y | 37 (39) | 41 (38) | 30 (40) | 26 (35) | ||
Billroth-II | 6 (6) | 4 (4) | 4 (5) | 3 (4) |
Diazepam Sedation (n = 75) | Midazolam Sedation (n = 75) | p Value | |
---|---|---|---|
Induction time, median (IQR), min | 3 (2–5) | 4 (3–5) | 0.22 |
Procedure time, median (IQR), min | 56 (35–80) | 50 (32–69) | 0.19 |
Total sedation time, median (IQR), min | 58 (38–82) | 54 (36–71) | 0.19 |
Induction diazepam/midazolam dose, median (IQR), mg | 5 (5–5) | 3 (2–3) | - |
Total diazepam/midazolam dose, median (IQR), mg | 10 (5–10) | 4 (3–5) | - |
Induction pethidine dose, median (IQR), mg | 35 (18–53) | 35 (18–35) | 0.37 |
Total pethidine dose, median (IQR), mg | 53 (35–70) | 53 (35–70) | 0.26 |
Use of antagonist for sedative and/or analgesic, n (%) | 19 (25) | 20 (27) | 0.85 |
Poor sedation requiring other sedative agents | 6 (8) | 0 (0) | 0.012 |
Diazepam Sedation (n = 75) | Midazolam Sedation (n = 75) | p Value | |
---|---|---|---|
All adverse events | 21 (28) | 11 (14) | 0.046 |
Hypoxemia, n (%) | 14 (19) | 4 (5) | 0.012 |
Period of hypoxemia | 0.036 | ||
Induction period | 2 (3) | 0 (0) | |
Maintenance period | 7 (9) | 4 (5) | |
After procedure | 5 (7) | 0 (0) | |
Hypotension, n (%) | 9 (12) | 6 (8) | 0.41 |
Period of hypotension | 1.0 | ||
Induction period | 0 (0) | 0 (0) | |
Maintenance period | 9 (12) | 5 (7) | |
After procedure | 0 (0) | 1 (1) | |
Bradycardia, n (%) | 2 (3) | 2 (3) | 1.0 |
Period of bradycardia | 1.0 | ||
Induction period | 0 (0) | 0 (0) | |
Maintenance period | 2(3) | 2(3) | |
After procedure | 0 (0) | 0 (0) | |
Discontinuance of procedure owing to adverse event, n (%) | 0 (0) | 0 (0) | NA |
Adverse Event (n = 32) | No Adverse Event (n = 118) | Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|---|---|
OR | 95%CI | p Value | OR | 95%CI | p Value | |||
Age, n (%) | 0.92 | |||||||
>75 years | 10 (21) | 38 (79) | 0.96 | 0.41–2.2 | ||||
≤75 years | 22 (22) | 80 (78) | 1 | |||||
Sex, n (%) | 0.050 | |||||||
Male | 25 (26) | 70 (74) | 2.4 | 0.98–6.1 | ||||
Female | 7 (13) | 48 (87) | 1 | |||||
BMI, n (%) | 0.043 | 0.066 | ||||||
>25 kg/m2 | 5 (45) | 6 (55) | 3.5 | 0.98–12 | 3.5 | 0.92–13 | ||
≤25 kg/m2 | 27 (19) | 112 (81) | 1 | 1 | ||||
ASA-PS, n (%) | 0.71 | |||||||
≥Class 2 | 14 (20) | 56 (80) | 0.86 | 0.39–1.9 | ||||
Class 1 | 18 (23) | 62 (78) | 1 | |||||
Alcohol abuse, n (%) | 0.12 | |||||||
Yes | 1 (6) | 15 (94) | 0.22 | 0.028–1.7 | ||||
No | 31 (23) | 103 (77) | 1 | |||||
Smoking history, n (%) | 0.72 | |||||||
Yes | 10 (23) | 33 (77) | 1.2 | 0.50–2.7 | ||||
No | 22 (21) | 85 (79) | 1 | |||||
Narcotic/sedative use, n (%) | 0.84 | |||||||
Yes | 6 (20) | 24 (80) | 0.90 | 0.33–2.4 | ||||
No | 26 (22) | 94 (78) | 1 | |||||
Underlying disease, n (%) | ||||||||
Cardiovascular disease | 0.21 | |||||||
Yes | 1 (8) | 12 (92) | 0.28 | 0.036–2.3 | ||||
No | 31 (23) | 106 (77) | 1 | |||||
Pulmonary disease | 0.60 | |||||||
Yes | 4 (27) | 11 (73) | 1.4 | 0.41–4.7 | ||||
No | 28 (21) | 107 (79) | 1 | |||||
Liver cirrhosis | 0.37 | |||||||
Yes | 1 (10) | 9 (90) | 0.39 | 0.048–3.2 | ||||
No | 31 (22) | 109 (78) | 1 | |||||
Chronic renal failure | 0.63 | |||||||
Yes | 2 (29) | 5 (71) | 1.5 | 0.28–8.1 | ||||
No | 30 (21) | 113 (79) | 1 | |||||
Indication for DB-ERCP, n (%) | 0.94 | |||||||
Hepaticojejunostomy anastomotic stricture | 19 (21) | 71 (79) | 0.97 | 0.44–2.1 | ||||
Others | 13 (22) | 47 (78) | 1 | |||||
Type of intestinal reconstruction, n (%) | 0.66 | |||||||
Roux-en-Y | 13 (23) | 43 (77) | 1.2 | 0.54–2.7 | ||||
Others | 19 (20) | 75 (80) | 1 | |||||
Total sedation time, n (%) | 0.19 | |||||||
>60 min | 18 (26) | 51 (74) | 1.7 | 0.77–3.7 | ||||
≤60 min | 14 (17) | 67 (83) | 1 | |||||
Diazepam sedation, n (%) | 0.046 | 0.048 | ||||||
Yes | 21 (28) | 54 (72) | 2.3 | 1.0–5.1 | 2.3 | 1.0–5.3 | ||
No | 11 (15) | 64 (85) | 1 | 1 | ||||
Total pethidine dose, n (%) | 0.64 | |||||||
>70 mg | 10 (24) | 32 (76) | 1.2 | 0.52–2.9 | ||||
≤70 mg | 22 (20) | 86 (80) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujii, Y.; Matsumoto, K.; Matsumi, A.; Miyamoto, K.; Uchida, D.; Horiguchi, S.; Tsutsumi, K.; Mitsuhashi, T.; Otsuka, M. Comparison of Midazolam and Diazepam for Sedation in Patients Undergoing Double-Balloon Endoscopic Retrograde Cholangiopancreatography: A Propensity Score-Matched Analysis. J. Clin. Med. 2025, 14, 2287. https://doi.org/10.3390/jcm14072287
Fujii Y, Matsumoto K, Matsumi A, Miyamoto K, Uchida D, Horiguchi S, Tsutsumi K, Mitsuhashi T, Otsuka M. Comparison of Midazolam and Diazepam for Sedation in Patients Undergoing Double-Balloon Endoscopic Retrograde Cholangiopancreatography: A Propensity Score-Matched Analysis. Journal of Clinical Medicine. 2025; 14(7):2287. https://doi.org/10.3390/jcm14072287
Chicago/Turabian StyleFujii, Yuki, Kazuyuki Matsumoto, Akihiro Matsumi, Kazuya Miyamoto, Daisuke Uchida, Shigeru Horiguchi, Koichiro Tsutsumi, Toshiharu Mitsuhashi, and Motoyuki Otsuka. 2025. "Comparison of Midazolam and Diazepam for Sedation in Patients Undergoing Double-Balloon Endoscopic Retrograde Cholangiopancreatography: A Propensity Score-Matched Analysis" Journal of Clinical Medicine 14, no. 7: 2287. https://doi.org/10.3390/jcm14072287
APA StyleFujii, Y., Matsumoto, K., Matsumi, A., Miyamoto, K., Uchida, D., Horiguchi, S., Tsutsumi, K., Mitsuhashi, T., & Otsuka, M. (2025). Comparison of Midazolam and Diazepam for Sedation in Patients Undergoing Double-Balloon Endoscopic Retrograde Cholangiopancreatography: A Propensity Score-Matched Analysis. Journal of Clinical Medicine, 14(7), 2287. https://doi.org/10.3390/jcm14072287