Cardiovascular Disease Markers in Schizophrenia During Negative Symptoms and Remission Periods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Participants
2.2. Exclusion Criteria
2.3. Positive and Negative Syndrome Scale (PANSS)
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 2008, 30, 67–76. [Google Scholar] [CrossRef]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017, a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar]
- McCutcheon, R.A.; Reis Marques, T.; Howes, O.D. Schizophrenia-An Overview. JAMA Psychiatry 2020, 77, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Laursen, T.M.; Nordentoft, M.; Mortensen, P.B. Excess early mortality in schizophrenia. Annu. Rev. Clin. Psychol. 2014, 10, 425–448. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Solmi, M.; Veronese, N.; Bortolato, B.; Rosson, S.; Santonastaso, P.; Thapa-Chhetri, N.; Fornaro, M.; Gallicchio, D.; Collantoni, E.; et al. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: A large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry 2017, 16, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Pillinger, T.; Osimo, E.F.; de Marvao, A.; Shah, M.; Francis, C.; Huang, J.; D’Ambrosio, E.; Firth, J.; Nour, M.M.; McCutcheon, R.A.; et al. Effect of polygenic risk for schizophrenia on cardiac structure and function: A UK Biobank observational study. Lancet Psychiatry 2023, 10, 98–107. [Google Scholar] [CrossRef]
- Jose, J.S.; Madhu Latha, K.; Bhongir, A.V.; Sampath, S.; Pyati, A.K. Evaluating Dyslipidemia and Atherogenic Indices as Predictors of Coronary Artery Disease Risk: A Retrospective Cross-Sectional Study. Cureus 2024, 16, e7118. [Google Scholar] [CrossRef]
- Park, H.M.; Han, T.; Heo, S.J.; Kwon, Y.J. Effectiveness of the triglyceride-glucose index and triglyceride-glucose-related indices in predicting cardiovascular disease in middle-aged and older adults: A prospective cohort study. J. Clin. Lipidol. 2024, 18, e70–e79. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Andreasen, N.C.; Carpenter, W.T.; Kane, J.M.; Lasser, R.A.; Marder, S.R.; Weinberger, D.R. Remission in Schizophrenia: Proposed Criteria and Rationale for Consensus. Am. J. Psychiatry 2005, 162, 441–449. [Google Scholar]
- Carpiniello, B.; Pinna, F.; Manchia, M.; Tusconi, M.; Cavallaro, R.; Bosia, M. Sustained symptomatic remission in schizophrenia: Course and predictors from a two-year prospective study. Schizophr. Res. 2022, 239, 34–41. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar]
- Greenhalgh, A.M.; Gonzalez-Blanco, L.; Garcia-Rizo, C.; Fernandez-Egea, E.; Miller, B.; Arroyo, M.B.; Kirkpatrick, B. Meta-analysis of glucose tolerance, insulin, and insulin resistance in antipsychotic-naïve patients with nonaffective psychosis. Schizophr. Res. 2017, 179, 57–63. [Google Scholar]
- Sepúlveda-Lizcano, L.; Arenas-Villamizar, V.V.; Jaimes-Duarte, E.B.; García-Pacheco, H.; Paredes, C.S.; Bermúdez, V.; Rivera-Porras, D. Metabolic Adverse Effects of Psychotropic Drug Therapy: A Systematic Review. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 1505–1520. [Google Scholar] [CrossRef]
- Anjum, S.; Bathla, M.; Panchal, S.; Singh, G.P.; Singh, M. Metabolic syndrome in drug naïve schizophrenic patients. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 135–140. [Google Scholar]
- Mitchell, A.J.; Vancampfort, D.; De Herdt, A.; Yu, W.; De Hert, M. Is the Prevalence of Metabolic Syndrome and Metabolic Abnormalities Increased in Early Schizophrenia? A Comparative Meta-Analysis of First Episode, Untreated and Treated Patients. Schizophr. Bull. 2013, 39, 295–305. [Google Scholar]
- Parksepp, M.; Haring, L.; Kilk, K.; Taalberg, E.; Kangro, R.; Zilmer, M.; Vasar, E. A Marked Low-Grade Inflammation and a Significant Deterioration in Metabolic Status in First-Episode Schizophrenia: A Five-Year Follow-Up Study. Metabolites 2022, 12, 983. [Google Scholar] [CrossRef]
- Bryll, A.; Skrzypek, J.; Krzyściak, W.; Szelągowska, M.; Śmierciak, N.; Kozicz, T.; Popiela, T. Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecules 2020, 10, 384. [Google Scholar] [CrossRef]
- Gaulin, B.D.; Markowitz, J.S.; Caley, C.F.; Nesbitt, L.A.; Dufresne, R.L. Clozapine-Associated Elevation in Serum Triglycerides. Am. J. Psychiatry 1999, 156, 1270–1272. [Google Scholar]
- Huang, P.-P.; Zhu, W.-Q.; Xiao, J.-M.; Zhang, Y.-Q.; Li, R.; Yang, Y.; Shen, L.; Luo, F.; Dai, W.; Lian, P.-A.; et al. Alterations in sorting and secretion of hepatic apoA5 induce hypertriglyceridemia due to short-term use of olanzapine. Front. Pharmacol. 2022, 13, 935362. [Google Scholar] [CrossRef]
- Yang, Y.; Ning, X.; Wang, X.; Wang, J.; Zhang, Y.; Zhong, Y.; Zhang, Y.; Zhao, T.; Liu, Z.; Xia, L.; et al. Triglyceride/glucose index is a reliable predictor of insulin resistance in schizophrenia. Schizophr. Res. 2020, 223, 366–367. [Google Scholar] [CrossRef] [PubMed]
- Tikhonoff, V.; Casiglia, E.; Virdis, A.; Grassi, G.; Angeli, F.; Arca, M.; Barbagallo, C.M.; Bombelli, M.; Cappelli, F.; Cianci, R.; et al. Prognostic Value and Relative Cutoffs of Triglycerides Predicting Cardiovascular Outcome in a Large Regional-Based Italian Database. J. Am. Heart Assoc. 2024, 13, e030319. [Google Scholar] [CrossRef]
- Ye, X.; Kong, W.; Zafar, M.I.; Chen, L.L. Serum triglycerides as a risk factor for cardiovascular diseases in type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Cardiovasc. Diabetol. 2019, 18, 48. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Nohara, A.; Kawashiri, M.-A. Serum Triglycerides and Atherosclerotic Cardiovascular Disease: Insights from Clinical and Genetic Studies. Nutrients 2018, 10, 1789. [Google Scholar] [CrossRef] [PubMed]
- Misiak, B.; Stańczykiewicz, B.; Łaczmański, Ł.; Frydecka, D. Lipid profile disturbances in antipsychotic-naive patients with first-episode non-affective psychosis: A systematic review and meta-analysis. Schizophr Res. 2017, 190, 18–27. [Google Scholar] [CrossRef]
- Holven, K.B.; Retterstøl, K.; Ueland, T.; Ulven, S.M.; Nenseter, M.S.; Sandvik, M.; Narverud, I.; Berge, K.E.; Ose, L.; Aukrust, P.; et al. Subjects with Low Plasma HDL Cholesterol Levels Are Characterized by an Inflammatory and Oxidative Phenotype. PLoS ONE 2013, 8, e78241. [Google Scholar] [CrossRef]
- Carli, M.; Kolachalam, S.; Longoni, B.; Pintaudi, A.; Baldini, M.; Aringhieri, S.; Fasciani, I.; Annibale, P.; Maggio, R.; Scarselli, M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals 2021, 14, 238. [Google Scholar] [CrossRef]
- Gurusamy, J.; Gandhi, S.; Damodharan, D.; Ganesan, V.; Palaniappan, M. Exercise, diet and educational interventions for metabolic syndrome in persons with schizophrenia: A systematic review. Asian J. Psychiatr. 2018, 36, 73–85. [Google Scholar] [CrossRef]
- Wójciak, P.; Domowicz, K.; Rybakowski, J.K. Metabolic indices in schizophrenia: Association of negative symptoms with higher HDL cholesterol in female patients. World J. Biol. Psychiatry 2021, 22, 552–556. [Google Scholar] [CrossRef]
- Musunuru, K. Atherogenic Dyslipidemia: Cardiovascular Risk and Dietary Intervention. Lipids 2010, 45, 907–914. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Bhattacharjee, J.; Bhatnagar, M.K.; Tyagi, S.; Delhi, N. Atherogenic Index of Plasma, Castelli Risk Index And Atherogenic Coefficient-New Parameters In Assessing Cardiovascular Risk. Int. J. Pharm. Biol. Sci. 2013, 3, 359–364. [Google Scholar]
- Zhu, L.; Lu, Z.; Zhu, L.; Ouyang, X.; Yang, Y.; He, W.; Feng, Y.; Yi, F.; Song, Y. Lipoprotein ratios are better than conventional lipid parameters in predicting coronary heart disease in Chinese Han people. Kardiol. Pol. 2015, 73, 931–938. [Google Scholar] [CrossRef]
- Goldfarb, M.; De Hert, M.; Detraux, J.; Di Palo, K.; Munir, H.; Music, S.; Piña, I.; Ringen, P.A. Severe Mental Illness and Cardiovascular Disease. J. Am. Coll. Cardiol. 2022, 80, 918–933. [Google Scholar]
- Lioy, B.; Webb, R.J.; Amirabdollahian, F. The Association between the Atherogenic Index of Plasma and Cardiometabolic Risk Factors: A Review. Healthcare 2023, 11, 966. [Google Scholar] [CrossRef]
- Raaj, I.; Thalamati, M.; Gowda MN, V.; Rao, A. The Role of the Atherogenic Index of Plasma and the Castelli Risk Index I and II in Cardiovascular Disease. Cureus 2024, 16, e74644. [Google Scholar] [CrossRef]
- Rabiee Rad, M.; Ghasempour Dabaghi, G.; Darouei, B.; Amani-Beni, R. The association of atherogenic index of plasma with cardiovascular outcomes in patients with coronary artery disease: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2024, 23, 119. [Google Scholar]
- Onen, S.; Taymur, I. Evidence for the atherogenic index of plasma as a potential biomarker for cardiovascular disease in schizophrenia. J. Psychopharmacol. 2021, 35, 1120–1126. [Google Scholar]
SCH-N (n: 20) Median (Q1–Q3) Mean ± SD | SCH-R (n: 23) Median (Q1–Q3) Mean ± SD | HC (n: 21) Median (Q1–Q3) Mean ± SD | p | P1 | P2 | P3 | |
---|---|---|---|---|---|---|---|
Age | 51.25 ± 8.65 | 44.83 ± 10.20 | 38.29 ± 14.34 | 0.007 * | 0.205 | 0.002 | 0.181 |
(Male) n (%) | 17 (85.0%) | 16 (69.6%) | 19 (90.5%) | 0.204 € | |||
(Female) n (%) | 3 (15.0%) | 7 (30.4%) | 2 (9.5%) | ||||
BMI | 27.90 (24.3–30.08) | 28.0 (24.5–32.0) | 27.5 (24.05–31.20) | 0.874 β | |||
Olanzapine Or Clozapine/Other antipsychotics | 11(55%) | 21(91.3%) | 0.006 γ | ||||
Age of onset of disease | 23.68 ± 6.35 | 25.78 ± 10.05 | 0.435 * | ||||
illness duration | 27.70 ± 9.14 | 18.17 ± 8.56 | 0.001 * | ||||
Depot antipsychotic n (%) | 7 (35.0%) | 10 (43.5%) | 0.571 γ | ||||
Antidepressant n (%) | 9 (45.0%) | 12 (52.2%) | 0.639 γ | ||||
Mood stabilizer n (%) | 5 (25.0%) | 6 (26.1%) | 0.935 γ |
SCH-N (n: 20) Median (Q1–Q3) Mean ± SD | SCH-R (n: 23) Median (Q1–Q3) Mean ± SD | HC(n: 21) Median (Q1–Q3) Mean ± SD | p | P1 | P2 | P3 | |
---|---|---|---|---|---|---|---|
Glucose (mg/dL) | 83.5 (77.5–93.5) | 89.0 (84.0–101.0) | 92.0 (83.0–100.5) | 0.069 β | |||
TC (mg/dL) | 190.0 (158.5–234.8) | 200.0 (170.0–208.0) | 171.0 (139.0–190.0) | 0.075 β | |||
HDLc (mg/dL) | 50.30 ± 11.20 | 45.65 ± 7.86 | 49.10 ± 10.38 | 0.276 * | |||
LDLc (mg/dL) | 117.01 ± 34.03 | 120.76 ± 33.3 | 104.09 ± 31.44 | 0.227 * | |||
Triglyceride (mg/dL) | 118.0 (92.3–148.3) | 143.0 (117.0–177.0) | 85.0 (65.5–120.5) | <0.001 β | 0.309 | 0.069 | <0.001 |
TyG Index | 4.62 ± 0.21 | 4.78 ± 0.29 | 4.49 ± 0.21 | <0.001 * | 0.110 | 0.257 | <0.001 |
AIP | 0.39 ± 0.18 | 0.53 ± 0.22 | 0.26 ± 0.19 | <0.001 * | 0.078 | 0.086 | <0.001 |
CRI-I | 3.90 ± 0.74 | 4.40 ± 0.90 | 3.52 ± 0.58 | <0.001 * | 0.104 | 0.339 | <0.001 |
CRI-II | 2.36 ± 0.62 | 2.67 ± 0.71 | 2.13 ± 0.49 | 0.018 * | 0.316 | 0.689 | 0.015 |
AC | 2.90 ± 0.74 | 3.40 ± 0.90 | 2.52 ± 0.58 | <0.001 * | 0.104 | 0.339 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imre, O.; Imre, G.; Mustu, M.; Acat, O.; Kocabas, R. Cardiovascular Disease Markers in Schizophrenia During Negative Symptoms and Remission Periods. J. Clin. Med. 2025, 14, 2288. https://doi.org/10.3390/jcm14072288
Imre O, Imre G, Mustu M, Acat O, Kocabas R. Cardiovascular Disease Markers in Schizophrenia During Negative Symptoms and Remission Periods. Journal of Clinical Medicine. 2025; 14(7):2288. https://doi.org/10.3390/jcm14072288
Chicago/Turabian StyleImre, Okan, Gurkan Imre, Mehmet Mustu, Omer Acat, and Rahim Kocabas. 2025. "Cardiovascular Disease Markers in Schizophrenia During Negative Symptoms and Remission Periods" Journal of Clinical Medicine 14, no. 7: 2288. https://doi.org/10.3390/jcm14072288
APA StyleImre, O., Imre, G., Mustu, M., Acat, O., & Kocabas, R. (2025). Cardiovascular Disease Markers in Schizophrenia During Negative Symptoms and Remission Periods. Journal of Clinical Medicine, 14(7), 2288. https://doi.org/10.3390/jcm14072288