Left vs. Right Bundle Branch Block in COVID-19 Patients: Distinct Clinical Presentations and Prognostic Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Protocol
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Health Profiles of COVID-19 Patients with LBBB and RBBB
3.2. Correlational Patterns of LBBB and RBBB in the Context of COVID-19
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikeda, T. Right bundle branch block: Current considerations. Curr. Cardiol. Rev. 2021, 17, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.Y.; Witt, C.M.; Oh, J.K.; Cha, Y.M. Left bundle branch block: Current and future perspectives. Circ. Arrhythm. Electrophysiol. 2020, 13, e008239. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, M.M.; Riis, J.; Bodker, K.W.; Hansen, S.M.; Nielsen, J.; Graff, C.; Kragholm, K.H. Associations between left bundle branch block with different PR intervals, QRS durations, heart rates, and the risk of heart failure: A register-based cohort study using ECG data from the primary care setting. Open Heart 2021, 8, e001425. [Google Scholar] [CrossRef]
- Stepan, M.D.; Cioboata, R.; Vintilescu, Ș.B.; Vasile, C.M.; Osman, A.; Ciolofan, M.S.; Popescu, M.; Petrovici, I.L.; Zavate, A.C. Pediatric functional abdominal pain disorders following COVID-19. Life 2022, 12, 509. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Ma, Y.T.; Zhang, J.Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef]
- Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Biondi-Zoccai, G.; Brown, T.S.; Der Nigoghossian, C.; Zidar, D.A.; Haythe, J.; et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J. Am. Coll. Cardiol. 2020, 75, 2352–2371. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, S.; Lee, C.S.; Byeon, S.H.; Kim, S.S.; Lee, S.W.; Kim, Y.J. Retinal vascular occlusion risks during the COVID-19 pandemic and after SARS-CoV-2 infection. Sci. Rep. 2023, 13, 16851. [Google Scholar] [CrossRef]
- Yang, J.M.; Moon, S.Y.; Lee, J.Y.; Agalliu, D.; Yon, D.K.; Lee, S.W. COVID-19 morbidity and severity in patients with age-related macular degeneration: A Korean nationwide cohort study. Am. J. Ophthalmol. 2021, 239, 159–169. [Google Scholar] [CrossRef]
- McCullough, S.A.; Goyal, P.; Krishnan, U.; Choi, J.J.; Safford, M.M.; Okin, P.M. Electrocardiographic findings in coronavirus disease-19: Insights on mortality and underlying myocardial processes. J. Card. Fail. 2020, 26, 626–632. [Google Scholar] [CrossRef]
- Magadum, A.; Kishore, R. Cardiovascular manifestations of COVID-19 infection. Cells 2020, 9, 2508. [Google Scholar] [CrossRef] [PubMed]
- Zuin, M.; Rigatelli, G.; Roncon, L.; Zuliani, G. Mortality risk in COVID-19 patients with right bundle branch block. Rev. Esp. Cardiol. (Engl. Ed.) 2021, 74, 1122. [Google Scholar] [CrossRef] [PubMed]
- Zuin, M.; Rigatelli, G.; Roncon, L.; Zuliani, G. Left bundle branch block and mortality in COVID-19 patients. Am. J. Cardiol. 2021, 153, 149. [Google Scholar] [CrossRef] [PubMed]
- Bannier, A.; Goldberg, J.; Otekpo, M.; Loison, J.; Gautier, J.; Annweiler, C.; GERIA-COVID study group. Left bundle branch blocks do not predict mortality in oldest-old patients hospitalized for COVID-19: The GERIA-COVID cohort study. Maturitas 2023, 169, 32–34. [Google Scholar] [CrossRef]
- Qayyum, S.N. A comprehensive review of applications of artificial intelligence in echocardiography. Curr. Probl. Cardiol. 2024, 49, 102250. [Google Scholar] [CrossRef]
- Pei, G.; Zhang, Z.; Peng, J.; Liu, L.; Zhang, C.; Yu, C.; Zhou, Y.; Xiao, Y.; Wang, J.; Liu, B.; et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J. Am. Soc. Nephrol. 2020, 31, 1157–1165. [Google Scholar] [CrossRef]
- McCullough, P.A.; Hassan, S.A.; Pallekonda, V.; Sandberg, K.R.; Nori, D.B.; Soman, S.S.; Bhatt, S.; Hudson, M.P.; Weaver, W.D. Bundle branch block patterns, age, renal dysfunction, and heart failure mortality. Int. J. Cardiol. 2005, 102, 303–308. [Google Scholar] [CrossRef]
- Pereira de Lima, E.; Moretti, R.C., Jr.; Pomini, K.T.; Laurindo, L.F.; Sloan, K.P.; Sloan, L.A.; Marques de Castro, M.V.; Baldi, E., Jr.; Ferraz, B.F.R.; Mazuqueli Pereira, E.S.B.; et al. Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways. Biology 2024, 13, 519. [Google Scholar] [CrossRef]
- Pavelescu, M.L.; Dinulescu, A.; Păsărică, A.S.; Dijmărescu, I.; Păcurar, D. Hematological profile, inflammatory markers, and serum liver enzymes in COVID-19 positive children vs. COVID-19 negative ones—A comparative study. Front. Pediatr. 2024, 12, 1334591. [Google Scholar] [CrossRef]
- Cioboata, R.; Nicolosu, D.; Streba, C.T.; Vasile, C.M.; Olteanu, M.; Nemes, A.; Gheorghe, A.; Calarasu, C.; Turcu, A.A. Post-COVID-19 syndrome based on disease form and associated comorbidities. Diagnostics 2022, 12, 2502. [Google Scholar] [CrossRef]
- Grelus, A.; Nica, D.V.; Miklos, I.; Belengeanu, V.; Ioiart, I.; Popescu, C. Clinical significance of measuring global hydroxymethylation of white blood cell DNA in prostate cancer: Comparison to PSA in a pilot exploratory study. Int. J. Mol. Sci. 2017, 18, 2465. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, I.; Batul, S.A.; Vijayaraman, P.; Needelman, B.; Choy, A.; Martinez, J.; Tung, R.; Khera, S.; Kini, A.; Sharma, S.; et al. ECG characteristics of “true” left bundle branch block: Insights from transcatheter aortic valve–related LBBB and His-Purkinje conduction system pacing–correctable LBBB. Heart Rhythm 2023, 20, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Popețiu, R.O.; Donath-Miklos, I.; Borta, S.M.; Rus, L.A.; Vîlcea, A.; Nica, D.V.; Pușchiță, M. Serum YKL-40 levels, leukocyte profiles, and acute exacerbations of advanced COPD. J. Clin. Med. 2023, 12, 6106. [Google Scholar] [CrossRef] [PubMed]
- Manea, D.; Ienciu, A.A.; Ștef, R.; Peț, I.; Șmuleac, L.; Grozea, I.; Cărăbeț, A.; Drăghici, G.A.; Nica, D.V. The “Sandwich” System: A Potential Solution for Protecting Overwintering Cornu aspersum Snails Reared in Semi-Intensive Heliciculture Farms in Colder Climates. Animals 2021, 11, 1420. [Google Scholar] [CrossRef]
- Haidar, L.; Bălteanu, M.A.; Georgescu, M.; Drăghici, G.A.; Laza, E.-A.; Șerb, A.-F.; Cioboată, R. Smoking and health profiles of hypertensive patients with COVID-19: An exploratory study of key physiological markers. J. Clin. Med. 2024, 13, 7245. [Google Scholar] [CrossRef]
- Suciu, M.; Gruia, A.T.; Nica, D.V.; Azghadi, S.M.; Mic, A.A.; Mic, F.A. Acetaminophen-induced liver injury: Implications for temporal homeostasis of lipid metabolism and eicosanoid signaling pathway. Chem. Biol. Interact. 2015, 242, 335–344. [Google Scholar] [CrossRef]
- Georgescu, M.; Drăghici, G.A.; Oancea, E.F.; Dehelean, C.A.; Şoica, C.; Vlăduţ, N.V.; Nica, D.V. Effects of cadmium sulfate on the brown garden snail Cornu aspersum: Implications for DNA methylation. Toxics 2021, 9, 306. [Google Scholar] [CrossRef]
- Prinzen, F.W.; Willemen, E.; Lumens, J. LBBB and high afterload: A dangerous liaison? Cardiovasc. Imaging 2019, 12, 978–980. [Google Scholar] [CrossRef]
- Hebert, K.; Quevedo, H.C.; Tamariz, L.; Dias, A.; Steen, D.L.; Colombo, R.A.; Franco, E.; Neistein, S.; Arcement, L.M. Prevalence of conduction abnormalities in a systolic heart failure population by race, ethnicity, and gender. Ann. Noninvasive Electrocardiol. 2012, 17, 107–115. [Google Scholar] [CrossRef]
- Rosenkranz, S.; Gibbs, J.S.R.; Wachter, R.; De Marco, T.; Vonk-Noordegraaf, A.; Vachiery, J.L. Left ventricular heart failure and pulmonary hypertension. Eur. Heart J. 2016, 37, 942–954. [Google Scholar] [CrossRef]
- Vachiéry, J.-L.; Tedford, R.J.; Rosenkranz, S.; Palazzini, M.; Lang, I.; Guazzi, M.; Coghlan, G.; Chazova, I.; De Marco, T. Pulmonary hypertension due to left heart disease. Eur. Respir. J. 2019, 53, 1801897. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.G.; Wu, S.L.; Wang, L.W.; Chen, S.H.; Yang, K.; Xiong, H.L.; Wang, G.D. Achieving Blood Pressure Control Targets Reduces the Risk of Left Bundle Branch Block in Patients with Hypertension. Am. J. Hypertens. 2024, 37, 143–149. [Google Scholar] [CrossRef]
- Kawji, M.M.; Glancy, D.L. Hypotension and Left Bundle Branch Block. Am. J. Cardiol. 2017, 119, 1292–1293. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.D. Profound independent effects of left bundle branch block and heart rate during supraventricular tachycardia. J. Interv. Card. Electrophysiol. 2005, 12, 223–225. [Google Scholar] [CrossRef]
- Gaba, P.; Pedrotty, D.; DeSimone, C.V.; Bonikowske, A.R.; Allison, T.G.; Kapa, S. Mortality in Patients with ight Bundle-Branch Block in the absence of cardiovascular disease. J. Am. Heart Assoc. 2020, 9, e017430. [Google Scholar] [CrossRef]
- Francia, P.; Balla, C.; Paneni, F.; Volpe, M. Left bundle-branch block—pathophysiology, prognosis, and clinical management. Clin. Cardiol. 2007, 30, 110–115. [Google Scholar] [CrossRef]
- Isackson, H.; Larsson, A.; Lipcsey, M.; Frithiof, V.O.R.I.P.; Flachskampf, F.A.; Hultström, V.O.R.I.P. Clinical Echocardiography Does Not Indicate Cardiac Dysfunction in Critically Ill COVID-19 Patients. 2021. Available online: https://www.medrxiv.org/content/10.1101/2021.07.23.21261025v1.full (accessed on 28 January 2025).
- Carpenito, M.; Fanti, D.; Mega, S.; Benfari, G.; Bono, M.C.; Rossi, A.; Ribichini, F.L.; Grigioni, F. The central role of left atrium in heart failure. Front. Cardiovasc. Med. 2021, 8, 704762. [Google Scholar] [CrossRef]
- Nagueh, S.F. Left ventricular diastolic function: Understanding pathophysiology, diagnosis, and prognosis with echocardiography. JACC Cardiovasc. Imaging 2020, 13 Pt2, 228–244. [Google Scholar] [CrossRef]
- Eliakim-Raz, N.; Prokupetz, A.; Gordon, B.; Shochat, T.; Grossman, A. Interventricular septum and posterior wall thickness are associated with higher systolic blood pressure. J. Clin. Hypertens. 2016, 18, 703–706. [Google Scholar] [CrossRef]
- Pérez-Riera, A.R.; Barbosa-Barros, R.; de Rezende Barbosa, M.P.; Daminello-Raimundo, R.; de Abreu, L.C.; Nikus, K. Left bundle branch block: Epidemiology, etiology, anatomic features, electrovectorcardiography, and classification proposal. Ann. Noninvasive Electrocardiol. 2019, 24, e12572. [Google Scholar] [CrossRef]
- Calle, S.; Kamoen, V.; De Buyzere, M.; De Pooter, J.; Timmermans, F. A strain-based staging classification of left bundle branch block-induced cardiac remodeling. Cardiovasc. Imaging 2021, 14, 1691–1702. [Google Scholar] [CrossRef]
- Lau, E.W.; Bonnemeier, H.; Baldauf, B. Left bundle branch block—Innocent bystander, silent menace, or both? Heart Rhythm 2024, 21, 555–561. [Google Scholar] [CrossRef]
- Nikoo, M.H.; Aslani, A.; Jorat, M.V. LBBB: State-of-the-art criteria. Int. Cardiovasc. Res. J. 2013, 7, 39–40. [Google Scholar]
- Palladino, M. Complete blood count alterations in COVID-19 patients: A narrative review. Biochem. Med. 2021, 31, 030501. [Google Scholar] [CrossRef]
- Haybar, H.; Pezeshki, S.M.S.; Saki, N. Evaluation of complete blood count parameters in cardiovascular diseases: An early indicator of prognosis? Exp. Mol. Pathol. 2019, 110, 104267. [Google Scholar] [CrossRef] [PubMed]
- Vîlcea, A.; Borta, S.M.; Popețiu, R.O.; Alexandra, R.L.; Pilat, L.; Nica, D.V.; Pușchiță, M. High ADMA is associated with worse health profile in heart failure patients hospitalized for episodes of acute decompensation. Medicina 2024, 60, 813. [Google Scholar] [CrossRef]
- Ali, S.; Zehra, A.; Khalid, M.U.; Hassan, M.; Shah, S.I.A. Role of C-reactive protein in disease progression, diagnosis, and management. Discoveries 2023, 11, e179. [Google Scholar] [CrossRef]
- Simeon, C.A.; Beega, G.F.; Abiola, S.A.; Wofuru, C.D.; Eze, C.C. Significance of inflammatory biomarkers in clinical diagnostics: Erythrocyte sedimentation rate versus other inflammatory biomarkers—A review. Int. J. Sci. Res. Arch. 2024, 12, 1980–1995. [Google Scholar] [CrossRef]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.7; Turtle, C.J.; Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Abd-Elsalam, A.S.; Almnifi, A.H.L.; SS, A.G.; Elsayed, A.G.; Elgendy, L.M. Left Bundle Branch Block in patients with novel coronavirus infection: Do you think it is a cause of death? MISJ-Int. J. Med. Res. Allied Sci. 2024, 2, 8–12. [Google Scholar]
- Wagner, J.; DuPont, A.; Larson, S.; Cash, B.; Farooq, A. Absolute lymphocyte count is a prognostic marker in COVID-19: A retrospective cohort review. Int. J. Lab. Hematol. 2020, 42, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, H.; Castanares-Zapatero, D.; Pierman, G.; Pothen, L.; De Greef, J.; Aboubakar Nana, F.; Rodriguez-Villalobos, H.; Belkhir, L.; Yombi, J.C. Validation of Neutrophil-to-Lymphocyte Ratio Cut-off Value Associated with High In-Hospital Mortality in COVID-19 Patients. Int. J. Gen. Med. 2021, 14, 2803–2810. [Google Scholar] [CrossRef]
- Simadibrata, D.M.; Calvin, J.; Wijaya, A.D.; Ibrahim, N.A.A. Neutrophil-to-lymphocyte ratio on admission to predict the severity and mortality of COVID-19 patients: A meta-analysis. Int. J. Clin. Pract. 2021, 75, e14596. [Google Scholar] [CrossRef] [PubMed]
- Núñez, J.; Miñana, G.; Bodí, V.; Núñez, E.; Sanchis, J.; Husser, O.; Llàcer, A. Low lymphocyte count and cardiovascular diseases. Curr. Med. Chem. 2011, 18, 3226–3233. [Google Scholar] [CrossRef] [PubMed]
- Škrha, J.; Šoupal, J.; Škrha, J.; Prázný, M. Glucose variability, HbA1c and microvascular complications. Rev. Endocr. Metab. Disord. 2016, 17, 103–110. [Google Scholar] [CrossRef]
- Movahed, M.R. Diabetes as a risk factor for cardiac conduction defects: A review. Diabetes Obes. Metab. 2007, 9, 276–281. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Cao, X.; Deng, R.; Ye, Y.; Fu, Z.; Zhang, Y.; Xu, H.; Zhou, Y.; Lu, Z.; et al. Red cell distribution width (RDW): A prognostic indicator of severe COVID-19. Ann. Transl. Med. 2020, 8, 1230. [Google Scholar] [CrossRef]
- Kurt, C.; Altunçekiç Yildirim, A. Contribution of erythrocyte sedimentation rate to predict disease severity and outcome in COVID-19 patients. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 6510952. [Google Scholar] [CrossRef]
- Jia, C.; Anderson, J.L.; Gruppen, E.G.; Lei, Y.; Bakker, S.J.; Dullaart, R.P.; Tietge, U.J. High-density lipoprotein anti-inflammatory capacity and incident cardiovascular events. Circulation 2021, 143, 1935–1945. [Google Scholar] [CrossRef]
- Masana, L.; Correig, E.; Ibarretxe, D.; Anoro, E.; Arroyo, J.A.; Jericó, C.; Figuera, L.; Miret, M.; Näf, S.; Pardo, A.; et al. Low HDL and high triglycerides predict COVID-19 severity. Sci. Rep. 2021, 11, 7217. [Google Scholar] [CrossRef]
- Chen, B.; Lu, C.; Gu, H.Q.; Li, Y.; Zhang, G.; Lio, J.; Luo, X.; Zhang, L.; Hu, Y.; Lan, X.; et al. Serum uric acid concentrations and risk of adverse outcomes in patients with COVID-19. Front. Endocrinol. 2021, 12, 633767. [Google Scholar] [CrossRef] [PubMed]
- Ali, N. Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19. J. Med. Virol. 2020, 92, 2409. [Google Scholar] [CrossRef]
- Mol, M.B.A.; Strous, M.T.A.; van Osch, F.H.M.; Vogelaar, F.J.; Barten, D.G.; Farchi, M.; Foudraine, N.A.; Gidron, Y. Heart-rate variability (HRV) predicts outcomes in COVID-19. PLoS ONE 2021, 16, e0258841. [Google Scholar] [CrossRef]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z.; et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Julious, S.A. Pilot studies in clinical research. Stat. Methods Med. Res. 2016, 25, 995–996. [Google Scholar] [CrossRef]
- Anthonisen, N.R. Retrospective studies. Can. Respir. J. 2009, 16, 117. [Google Scholar] [CrossRef]
- Zaidi, S.A.J.; Ghafoor, A.; Kim, J.; Abbas, Z.; Lee, S.W. HeartEnsembleNet: An innovative hybrid ensemble learning approach for cardiovascular risk prediction. Healthcare 2025, 13, 507. [Google Scholar] [CrossRef]
- Bae, Y.; Yon, D.K.; Lee, S.W. Cerebrovascular complications in spinal fusion surgery: A nationwide 8-year follow-up study in South Korea. Clin. Nurs. Res. 2024, 33, 220–230. [Google Scholar] [CrossRef]
Characteristic | Strata | LBBB | RBBB | p |
---|---|---|---|---|
Sex | Male | 28 (56%) | 23 (46%) | 0.424 |
Female | 22 (44%) | 27 (54%) | ||
Origin | Rural | 30 (60%) | 21 (42%) | 0.110 |
Urban | 20 (40%) | 29 (58%) | ||
Diabetes | Yes | 18 (36%) | 25 (50%) | 0.225 |
No | 32 (64%) | 25 (50%) | ||
Smoking | Yes | 37 (74%) | 31 (62%) | 0.284 |
No | 13 (26%) | 19 (38%) |
Characteristic | LBBB | RBBB | Reference Range |
---|---|---|---|
Age (years) | 70 (63; 71) | 71 (66; 79) | |
SBP (mm Hg) | 140 (120; 136) | 150 (140; 160) | 90–130 |
DBP (mm Hg) | 80 (75; 90) | 80 (79; 91) | 60–80 |
HR (bpm) | 88 (80; 108) | 90 (79; 110) | 60–100 |
EF (%) | 40 (30; 50) | 45 (40; 55) | 50–70 |
LAS (mm) | 42 (38; 48) | 43 (38; 46) | <41 |
LAD (mm) | 49.5 (44; 57) | 49.5 (43; 52) | 25–53 |
LVD (mm) | 53 (48; 58) | 49 (45; 53) | 39–59 |
IVSd (cm) | 1.2 (1; 1.3) | 1.1 (1; 1.2) | 0.6–1.2 |
PSAP (mm Hg) | 47 (37; 65) | 52 (45; 65) | <40 |
RDW-CV (%) | 15.10 (14.3; 16.1) | 14.5 (13.6; 16.4) | 11.5–15.4 |
RDW-SD (fL) | 46.7 (44.6; 50.2) | 44.9 (43.6; 50.2) | 39–46 |
Hemoglobin (g/dL) | 13.1 (11.8; 14.2) | 13 (11.6; 14.0) | 12.1–17.2 |
ALC (cells/µL) | 1715 (1120; 2260) | 1290 (810; 1820) | 1000–4800 |
ANC (cells/µL) | 6175 (4410; 7620) | 5070 (2970; 7140) | 2500–7000 |
ESR (mm/h) | 30 (18; 48) | 33 (18; 42) | 0–30 |
CRP (mg/L) | 14 (9; 22) | 10 (3; 20) | <10 |
Random glucose (mg/dL) | 129 (112; 165) | 133 (106; 174) | <200 |
HbA1c (%) | 6.6 (6; 7,8) | 6.85 (6.1; 7.9) | <6.5 |
Serum urea (mg/dL) | 47.15 (41; 69) | 54 (31; 65) | <49 |
Serum uric acid (mg/dL) | 7.8 (6.9; 10.3) | 9.1 (7; 10.4) | 3–7 |
Serum creatinine (mg/dL) | 1.09 (0.69; 1.35) | 0.95 (0.79; 1.50) | 0.6–1.3 |
Serum sodium (mmol/L) | 140 (137; 142) | 141 (137; 142) | 135–147 |
Serum potassium (mmol/L) | 4.3 (4; 4.7) | 4.15 (4; 4.3) | 3.6–5.2 |
Total cholesterol (mg/dL) | 150 (116; 181) | 153 (113; 187) | <200 |
LDL (mg/dL) | 92 (72; 134) | 103 (80; 130) | <130 |
HDL (mg/dL) | 41 (35; 49) | 39 (33; 49) | >40 |
Triglycerides (mg/dL) | 103 (88; 136) | 118 (83; 159) | <150 |
AST (UI/L) | 29 (21; 42) | 24 (19; 36) | 5–56 |
ALT (UI/L) | 27 (18; 39) | 20 (17; 24) | 9–40 |
Variable | Estimate | Chi-square | p |
---|---|---|---|
SBP | −0.240 | 6.29 | 0.012 * |
DBP | 0.139 | 0.88 | 0.347 |
HR | 0.004 | 0.03 | 0.872 |
EF | 0.107 | 0.52 | 0.471 |
LAS | 0.549 | 1.98 | 0.008 ** |
LAD | −0.216 | 2.25 | 0.133 |
LVD | 0.790 | 11.16 | 0.001 ** |
IVSd | 28.972 | 5.15 | 0.023 * |
PSAP | −0.039 | 0.28 | 0.596 |
RDW-CV | 0.580 | 1.41 | 0.236 |
RDW-SD | 0.591 | 7.77 | 0.005 ** |
Hemoglobin | 0.812 | 1.81 | 0.179 |
ALC | 2.349 | 22.06 | <0.001 *** |
ANC | 0.001 | 3.86 | 0.049 * |
ESR | −0.162 | 6.14 | 0.013 * |
CRP | 0.464 | 13.57 | <0.001 *** |
Random glucose | 0.078 | 6.02 | 0.014 ** |
HbA1c | −1.137 | 4.02 | 0.045 * |
Serum urea | −0.039 | 0.48 | 0.489 |
Serum uric acid | −0.549 | 2.19 | 0.139 |
Serum creatinine | 7.496 | 2.93 | 0.087 |
Serum sodium | 0.225 | 1.17 | 0.280 |
Serum potassium | 3.476 | 1.76 | 0.185 |
Total cholesterol | −0.014 | 0.14 | 0.713 |
LDL | 0.148 | 2.86 | 0.091 |
HDL | 0.026 | 0.35 | 0.552 |
Triglyceride | −0.010 | 0.22 | 0.642 |
AST | −0.092 | 1.79 | 0.181 |
ALT | 0.115 | 3.36 | 0.067 |
LBBB | RBBB | |||||
---|---|---|---|---|---|---|
LVD | ALC | CRP | LVD | ALC | CRP | |
SBP | 0.02 | −0.11 | 0.07 | 0.17 | 0.13 | −0.03 |
DBP | −0.26 * | −0.06 | −0.05 | −0.03 | 0.12 | 0.27 |
HR | −0.11 | 0.01 | −0.24 * | −0.03 | 0.03 | 0.53 |
EF | 0.06 | −0.02 | −0.01 | −0.33 | 0.14 | 0.14 |
LAS | 0.12 | −0.12 | −0.02 | −0.03 | 0.34 | −0.24 |
LAD | 0.05 | −0.02 | −0.21 | 0.15 | 0.31 | −0.19 |
LVD | 1.00 | −0.09 | −0.04 | 1.00 | 0.26 | −0.09 |
IVSd | 0.02 | −0.02 | 0.03 | −0.03 | 0.15 | 0.18 |
PSAP | 0.15 | −0.09 | −0.19 | −0.19 | 0.03 | 0.15 |
RDW-CV | −0.06 | −0.21 | −0.08 | −0.02 | −0.08 | 0.33 |
RDW-SD | 0.01 | −0.39 * | −0.04 | 0.22 | 0.11 | −0.03 |
Hemoglobin | −0.05 | 0.21 | −0.08 | 0.04 | 0.10 | −0.32 |
ALC | −0.09 | 1.00 | 0.27 | 0.15 | 1.00 | 0.07 |
ANC | 0.04 | 0.08 | −0.10 | 0.10 | 0.04 | −0.34 |
ESR | 0.04 | −0.23 * | 0.21 | 0.02 | 0.07 | 0.03 |
CRP | −0.04 | 0.21 | 1.00 | 0.12 | −0.21 | 1.00 |
Random glucose | −0.05 | −0.05 | −0.02 | −0.34 | −0.21 | 0.11 |
HbA1c | 0.11 | 0.20 | 0.21 | −0.07 | −0.12 | −0.02 |
Serum urea | 0.18 | −0.13 | 0.06 | −0.14 | −0.11 | 0.27 |
Serum uric acid | −0.06 | 0.31 ** | −0.03 | 0.06 | −0.38 | 0.21 |
Serum creatinine | 0.11 | 0.05 | 0.14 | 0.02 | −0.05 | 0.18 |
Serum sodium | −0.04 | 0.02 | −0.15 | −0.02 | −0.06 | 0.05 |
Serum potassium | 0.05 | −0.05 | −0.03 | −0.22 | −0.17 | 0.23 |
Total cholesterol | −0.11 | 0.09 | −0.04 | 0.15 | −015 | −0.15 |
LDL | −0.07 | 0.10 | −0.05 | −0.12 | 0.12 | −0.02 |
HDL | 0.09 | −0.29 * | 0.03 | 0.12 | −0.31 | −0.08 |
Triglyceride | −0.18 | 0.03 | −0.10 | 0.08 | 0.17 | −0.25 |
AST | −0.11 | 0.04 | −0.07 | −0.02 | −0.15 | 028 |
ALT | −0.21 | −0.05 | −0.15 | −0.12 | −0.12 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciurariu, E.; Balteanu, M.A.; Georgescu, M.; Drăghici, G.A.; Vlăsceanu, S.G.; Șerb, A.-F.; Cioboată, R. Left vs. Right Bundle Branch Block in COVID-19 Patients: Distinct Clinical Presentations and Prognostic Implications. J. Clin. Med. 2025, 14, 2310. https://doi.org/10.3390/jcm14072310
Ciurariu E, Balteanu MA, Georgescu M, Drăghici GA, Vlăsceanu SG, Șerb A-F, Cioboată R. Left vs. Right Bundle Branch Block in COVID-19 Patients: Distinct Clinical Presentations and Prognostic Implications. Journal of Clinical Medicine. 2025; 14(7):2310. https://doi.org/10.3390/jcm14072310
Chicago/Turabian StyleCiurariu, Elena, Mara Amalia Balteanu, Marius Georgescu, George Andrei Drăghici, Silviu Gabriel Vlăsceanu, Alina-Florina Șerb, and Ramona Cioboată. 2025. "Left vs. Right Bundle Branch Block in COVID-19 Patients: Distinct Clinical Presentations and Prognostic Implications" Journal of Clinical Medicine 14, no. 7: 2310. https://doi.org/10.3390/jcm14072310
APA StyleCiurariu, E., Balteanu, M. A., Georgescu, M., Drăghici, G. A., Vlăsceanu, S. G., Șerb, A.-F., & Cioboată, R. (2025). Left vs. Right Bundle Branch Block in COVID-19 Patients: Distinct Clinical Presentations and Prognostic Implications. Journal of Clinical Medicine, 14(7), 2310. https://doi.org/10.3390/jcm14072310