Systemic Responses Towards Oxy-Inflammation, Hormones, and Mood in Breast Cancer Survivors: Preliminary Evidences from Dragon Boat Endurance Race
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Sample Collection
2.4. Biomarkers
2.4.1. ROS Detection by Electron Paramagnetic Resonance
2.4.2. Total Antioxidant Capacity (TAC)
2.4.3. Oxidative Damage in Urine
2.4.4. Quantification of Inflammatory Markers in Saliva
2.4.5. No Metabolites (Nitrite and Nitrate) in Urine
2.4.6. Appetite Hormones
2.4.7. Creatinine, and Neopterin in Urine
2.4.8. Uric Acid and Electrolytes
2.4.9. Psychometric and Physical Scale
2.5. Statistical Analysis
3. Results
3.1. Basal Biomarkers Concentration
3.2. Oxy-Inflammation and Total Antioxidant Post-Race Capacity
3.3. Nitrite and Nitrate Post-Race Concentration
3.4. Creatinine, Neopterin, and Electrolytes Post-Race
3.5. Post-Race Appetite Hormones
3.6. Psychometric and Physical Scales in BCS
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCS | Breast Cancer Survivors |
BMI | Body Mass Index |
DBP | Diastolic Blood Pressure |
EORTC | European Organization for Research and Treatment of Cancer |
EPR | Electron Paramagnetic Resonance |
HPLC | High-pressure Liquid Chromatography |
HR | Heart Rate |
IL-6 | Interleukin-6 |
NO | Nitric Oxide |
NOx | Nitric Oxide metabolites |
OxS | Oxidative Stress |
POMS | Profile of Mood States |
QLQ-C30 | Quality of Life Group Core-30 |
QoL | Quality of Life |
SBP | Systolic Blood Pressure |
ROS | Reactive Oxygen Species |
RPE | Perceived Exertion scale |
TAC | Total Antioxidant Capacity |
TQR | Total Quality of Recovery |
TNFα | Tumor Necrosis Factor-alfa |
VAS | Visual Analog Scale |
8-iso-PGF2α | 8-isoprostane-PGF2alfa |
8-OH-dG | 8-Hydroxy-2′-deoxyguanosine |
References
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cabrera, M.C.; Domenech, E.; Vina, J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic. Biol. Med. 2008, 44, 126–131. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Mrakic-Sposta, S.; Gussoni, M.; Montorsi, M.; Porcelli, S.; Vezzoli, A. Assessment of a standardized ROS production profile in humans by electron paramagnetic resonance. Oxid. Med. Cell Longev. 2012, 2012, 973927. [Google Scholar] [CrossRef] [PubMed]
- Guerrerom, C.; Collado-Boiram, E.; Martinez-Navarrom, I.; Hernandom, B.; Hernandom, C.; Balinom, P.; Muriachm, M. Impact of Plasma Oxidative Stress Markers on Post-race Recovery in Ultramarathon Runners: A Sex and Age Perspective Overview. Antioxidants 2021, 10, 355. [Google Scholar] [CrossRef] [PubMed]
- Margaritelis, N.V.; Paschalis, V.; Theodorou, A.A.; Kyparos, A.; Nikolaidis, M.G. Redox basis of exercise physiology. Redox Biol. 2020, 35, 101499. [Google Scholar]
- Cabral-Santos, C.; de Lima Junior, E.A.; Fernandes, I.; Pinto, R.Z.; Rosa-Neto, J.C.; Bishop, N.C.; Lira, F.S. Interleukin-10 re-sponses from acute exercise in healthy subjects: A systematic review. J. Cell. Physiol. 2019, 234, 9956–9965. [Google Scholar] [CrossRef]
- Hacker, S.; Keck, J.; Reichel, T.; Eder, K.; Ringseis, R.; Kruger, K.; Kruger, B. Biomarkers in Endurance Exercise: Individualized Regulation and Predictive Value. Transl. Sports Med. 2023, 2023, 6614990. [Google Scholar] [CrossRef]
- King, N.A.; Tremblay, A.; Blundell, J.E. Effects of exercise on appetite control: Implications for energy balance. Med. Sci. Sports Exerc. 1997, 29, 1076–1089. [Google Scholar] [CrossRef]
- Blundell, J.E.; Gibbons, C.; Caudwell, P.; Finlayson, G.; Hopkins, M. Appetite control and energy balance: Impact of exercise. Obes. Rev. 2015, 16, 67–76. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLO-BOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Browall, M.; Mijwel, S.; Rundqvist, H.; Wengstrom, Y. Physical Activity During and After Adjuvant Treatment for Breast Cancer: An Integrative Review of Women’s Experiences. Integr. Cancer Ther. 2018, 17, 16–30. [Google Scholar] [CrossRef]
- Iacorossi, L.; Gambalunga, F.; De Domenico, R.; Serra, V.; Marzo, C.; Carlini, P. Qualitative study of patients with metastatic prostate cancer to adherence of hormone therapy. Eur. J. Oncol. Nur. 2019, 38, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Forbes, D.; Forbes, S.C.; Blake, C.M.; Thiessen, E.J.; Forbes, S. Exercise programs for people with dementia. Cochrane Database Syst. Rev. 2015, 2015, CD006489. [Google Scholar]
- Zanetti, O.; Binetti, G.; Magni, E.; Rozzini, L.; Bianchetti, A.; Trabucchi, M. Procedural memory stimulation in Alzheimer’s disease: Impact of a training programme. Acta Neurol. Scand. 1997, 95, 152–157. [Google Scholar] [CrossRef]
- McKenzie, D.C. Abreast in a boat—A race against breast cancer. CMAJ 1998, 159, 376–378. [Google Scholar] [PubMed]
- McCausland, L.L. Dragon boat racing: Life after breast cancer treatment. Am. J. Nurs. 2010, 110, 48–54. [Google Scholar] [CrossRef]
- Tomasello, B.; Malfa, G.A.; Strazzzianti, A.; Gangi, S.; Di Giacomo, C.; Basile, F.; Renis, M. Effects of physical activity on systemic oxidative/DNA status in breast cancer survivors. Oncol. Lett. 2017, 13, 441–448. [Google Scholar] [CrossRef]
- Giacon, T.A.; Bosco, G.; Vezzoli, A.; Dellanoce, C.; Cialoni, D.; Paganini, M.; Mrakic-Sposta, S. Oxidative stress and motion sickness in one crew during competitive offshore sailing. Sci. Rep. 2022, 12, 1142. [Google Scholar] [CrossRef]
- Giacon, T.A.; Mrakic-Sposta, S.; Bosco, G.; Vezzoli, A.; Dellanoce, C.; Campisi, M.; Narici, M.; Paganini, M.; Foing, B.; Ko-Lodziejczyk, A.; et al. Environmental study and stress-related biomarkers modifications in a crew during analog astronaut mission EMMPOL 6. Eur. J. Appl. Physiol. 2024, 125, 209–221. [Google Scholar] [CrossRef]
- Moretti, S.; Mrakic-Sposta, S.; Roncoroni, L.; Vezzoli, A.; Dellanoce, C.; Monguzzi, E.; Branchi, F.; Ferretti, F.; Lombardo, V.; Doneda, L.; et al. Oxidative stress as a biomarker for monitoring treated celiac disease. Clin. Transl. Gas-Troenterol. 2018, 9, 157. [Google Scholar]
- Mrakic-Sposta, S.; Vezzoli, A.; Garetto, G.; Paganini, M.; Camporesi, E.; Giacon, T.A.; Dellanoce, C.; Agrimi, J.; Bosco, G. Hyperbaric Oxygen Therapy Counters Oxidative Stress/Inflammation-Driven Symptoms in Long COVID-19 Patients: Pre-liminary Outcomes. Metabolites 2023, 13, 1032. [Google Scholar] [CrossRef] [PubMed]
- Micarelli, A.; Mrakic-Sposta, S.; Micarelli, B.; Malacrida, S.; Misici, I.; Carbini, V.; Iennaco, I.; Caputo, S.; Vezzoli, A.; Alessandrini, M. Smell Impairment in Stage I-II Obesity: Correlation with Biochemical Regulators and Clinical Aspects. Laryngoscope 2022, 132, 2028–2035. [Google Scholar] [CrossRef] [PubMed]
- Van Andel, E.; Vogel, S.W.N.; Bijlenga, D.; Kalsbeek, A.; Beekman, A.T.F.; Kooij, J.J.S. Effects of Chronotherapeutic Interventions in Adults with ADHD and Delayed Sleep Phase Syndrome (DSPS) on Regulation of Appetite and Glucose Metabolism. J. Atten. Disord. 2024, 28, 1653–1667. [Google Scholar] [CrossRef]
- Mrakic-Sposta, S.; Vezzoli, A.; Rizzato, A.; Della Noce, C.; Malacrida, S.; Montorsi, M.; Paganini, M.; Cancellara, P.; Bosco, G. Oxidative stress assessment in breath-hold diving. Eur. J. Appl. Physiol. 2019, 119, 2449–2456. [Google Scholar]
- Brizzolari, A.; Bosco, G.; Vezzoli, A.; Dellanoce, C.; Barassi, A.; Paganini, M.; Cialoni, D.; Mrakic-Sposta, S. Seasonal Oxy-Inflammation and Hydration Status in Non-Elite Freeskiing Racer: A Pilot Study by Non-Invasive Analytic Method. Int. J. Environ. Res. Public Health 2023, 20, 3157. [Google Scholar]
- Kentta, G.; Hassmen, P. Overtraining and recovery. A conceptual model. Sports Med. 1998, 26, 1–16. [Google Scholar]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; Urhausen, A. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med. Sci. Sports Exerc. 2013, 45, 186–205. [Google Scholar] [CrossRef]
- Elmagd, M.A. General psychological factors affecting physical performance and sports. Int. J. Sports Health Phys. Educ. 2016, 3, 255–264. [Google Scholar] [CrossRef]
- Iersel, T.V.; Courville, J.; Doorne, C.V.; Koster, R.A.; Fawcett, C. The Patient Motivation Pyramid and Patient-Centricity in Early Clinical Development. Curr. Rev. Clin. Exp. Pharmacol. 2022, 17, 8–17. [Google Scholar]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C.J.M.; et al. The European Organisation for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Fayers, P.M.; Aaronson, N.K.; Bjordal, K.; Groenvold, M.; Curran, D.; Bottomley, A.; On Behalf of the EORTC Quality of Life Group. The EORTC QLQ-C30 Scoring Manual, 3rd ed.; European Organisation for Research and Treatment of Cancer: Brussels, Belgium, 2001. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Vezzoli, A.; Mrakic-Sposta, S.; Montorsi, M.; Porcelli, S.; Vago, P.; Cereda, F.; Longo, S.; Maggio, M.; Narici, M. Moderate Intensity Resistive Training Reduces Oxidative Stress and Improves Muscle Mass and Function in Older Individuals. Antioxidants 2019, 8, 431. [Google Scholar] [CrossRef]
- Biswas, P.; Dellanoce, C.; Vezzoli, A.; Mrakic-Sposta, S.; Malnati, M.; Beretta, A.; Accinni, R. Antioxidant Activity with Increased Endogenous Levels of Vitamin C, E and A Following Dietary Supplementation with a Combination of Gluta-thione and Resveratrol Precursors. Nutrients 2020, 12, 3224. [Google Scholar] [CrossRef] [PubMed]
- Vezzoli, A.; Mrakic-Sposta, S.; Dellanoce, C.; Montorsi, M.; Vietti, D.; Ferrero, M.E. Chelation Therapy Associated with Antioxidant Supplementation Can Decrease Oxidative Stress and Inflammation in Multiple Sclerosis: Preliminary Results. Antioxidants 2023, 12, 1338. [Google Scholar] [CrossRef]
- Joaquim, A.; Leao, I.; Antunes, P.; Capela, A.; Viamonte, S.; Alves, A.J.; Helguero, L.A.; Macedo, A. Impact of physical exercise programs in breast cancer survivors on health-related quality of life, physical fitness, and body composition: Evidence from systematic reviews and meta-analyses. Front. Oncol. 2022, 12, 955505. [Google Scholar] [CrossRef]
- Jeongseon, K.; Wook, J.C.; Seung, H.J. The Effects of Physical Activity on Breast Cancer Survivors after Diagnosis. J. Cancer Prev. 2013, 18, 193. [Google Scholar]
- Gòmez, A.M.; Martinez, C.; Fiuza-Luces, C.; Herrero, F.; Perez, M.; Madero, L.; Ruiz, J.R.; Lucia, A.; Ramìrez, M. Exercise training and cytokines in breast cancer survivors. Int. Sports Med. 2011, 32, 461–467. [Google Scholar] [CrossRef]
- Schmidt, T.; Weisser, B.; Dürkop, J.; Jonat, W.; Van Mackelenbergh, M.; Röcken, C.; Mundhenke, C. Comparing Endurance and Resistance Training with Standard Care during Chemo-therapy for Patients with Primary Breast Cancer. Anticancer Res. 2015, 35, 5623–5629. [Google Scholar]
- Bailey, D.M.; Young, I.S.; McEneny, J.; Lawrenson, L.; Kim, J.; Barden, J.; Richardson, R.S. Regulation of free radical outflow from an isolated muscle bed in exercising humans. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H1689–H1699. [Google Scholar]
- Turner, J.E.; Hodges, N.J.; Bosch, J.A.; Aldred, S. Prolonged depletion of antioxidant capacity after ultraendurance exercise. Med. Sci. Sports Exerc. 2011, 43, 1770–1776. [Google Scholar] [PubMed]
- Mrakic-Sposta, S.; Vezzoli, A.; D’Alessandro, F.; Paganini, M.; Dellanoce, C.; Cialoni, D.; Bosco, G. Change in Oxidative Stress Biomarkers During 30 Days in Saturation Dive: A Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 7118. [Google Scholar]
- Rutlen, C.; Rutlen, D.L. Is Endurance Exercise Safe? The Myth of Pheidippides. South Med. J. 2019, 112, 210–214. [Google Scholar] [PubMed]
- Dharshini, L.C.P.; Rasmi, R.R.; Kathirvelan, C.; Kumar, K.M.; Saradhadevi, K.M.; Sakthivel, K.M. Regulatory Components of Oxidative Stress and Inflammation and Their Complex Interplay in Carcinogenesis. Appl. Biochem. Biotechnol. 2023, 195, 2893–2916. [Google Scholar]
- Lennicke, C.; Cocheme, H.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 2021, 81, 3691–3707. [Google Scholar]
- Ghafoor, D.D. Correlation between oxidative stress markers and cytokines in different stages of breast cancer. Cytokine 2023, 161, 156082. [Google Scholar]
- Schneider, C.M.; Jonat, W.; Wesch, D.; Oberg, H.H.; Adam-Klages, S.; Keller, L.; Rocken, C.; Mundhenke, C. Impact of exercise on immune function in breast cancer survivors. Cancer 2012, 118, 3552–3560. [Google Scholar]
- Thomas, B.; Bipath, P.; Viljoen, M. Comparison between plasma neopterin and the urine neopterin: Creatinine ratio as inflammatory biomarkers. Afr. Health Sci. 2019, 19, 2407–2413. [Google Scholar]
- Powers, S.K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M.P.; Hyatt, H. Exercise-induced oxidative stress: Friend or foe? J. Sport Health Sci. 2020, 9, 415–425. [Google Scholar]
- Lee, T.T.; Li, T.L.; Ko, B.J.; Chien, L.H. Effect of Acute High-Intensity Interval Training on Immune Function and Oxidative Stress in Canoe/Kayak Athletes. Biology 2023, 12, 1144. [Google Scholar] [CrossRef]
- Mrakic-Sposta, S.; Gussoni, M.; Moretti, S.; Pratali, L.; Giardini, G.; Tacchini, P.; Dellanoce, C.; Tonacci, A.; Mastorci, F.; Borghini, A.; et al. Effects of Mountain Ultra-Marathon Running on ROS Production and Oxidative Damage by Micro-Invasive Analytic Techniques. PLoS ONE 2015, 10, e0141780. [Google Scholar] [CrossRef] [PubMed]
- Vezzoli, A.; Dellanoce, C.; Mrakic-Sposta, S.; Montorsi, M.; Moretti, S.; Tonini, A.; Pratali, L.; Accinni, R. Oxidative Stress Assessment in Response to Ultraendurance Exercise: Thiols Redox Status and ROS Production according to Duration of a Competitive Race. Oxid. Med. Cell. Longev. 2016, 2016, 6439037. [Google Scholar] [CrossRef] [PubMed]
- Gussoni, M.; Moretti, S.; Vezzoli, A.; Genitoni, V.; Giardini, G.; Balestra, C.; Bosco, G.; Pratali, L.; Spagnolo, E.; Montorsi, M.; et al. Effects of Electrical Stimulation on Delayed Onset Muscle Soreness (DOMS): Evidences from Laboratory and In-Field Studies. J. Funct. Morphol. Kinesiol. 2023, 8, 146. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, J.S.; Caldwell, H.G.; Lossius, L.O.; Melin, A.K.; Gliemann, L.; Bangsbo, J.; Hellsten, Y. Low energy availability increases immune cell formation of reactive oxygen species and impairs exercise performance in female endurance athletes. Redox Biol. 2024, 75, 103250. [Google Scholar] [CrossRef]
- Beckman, J.S.; Koppenol, W.H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am. J. Physiol. 1996, 271, C1424–C1437. [Google Scholar] [CrossRef]
- Shimomura, Y.; Honda, T.; Shiraki, M.; Murakami, T.; Sato, J.; Kobayashi, H.; Mawatari, K.; Obayashi, M.; Harris, R.A. Branched-chain amino acid catabolism in exercise and liver disease. J. Nutr. 2006, 136, 250S–253S. [Google Scholar] [CrossRef]
- Calles-Escandon, J.; Cunningham, J.J.; Snyder, P.; Jacob, R.; Huszar, G.; Loke, J.; Felig, P. Influence of exercise on urea, creatinine, and 3-methylhistidine excretion in normal human subjects. Am. J. Physiol. 1984, 246, E334–E338. [Google Scholar] [CrossRef]
- Bucht, H.; Ek, J.; Eliasch, H.; Holmgren, A.; Josephson, B.; Werko, L. The effect of exercise in the recumbent position on the re-nal circulation and sodium excretion in normal individuals. Acta Physiol. Scand. 1953, 28, 95–100. [Google Scholar] [CrossRef]
- Kattus, A.A.; Sinclair-Smith, B. The effect of exercise on the renal mechanism of electrolyte excretion in normal subjects. Bull. Johns Hopkins Hosp. 1949, 84, 344–368. [Google Scholar]
- Castenfors, J. Renal function during exercise. With special reference to exercise proteinuria and the release of renin. Acta Physiol. Scand. Suppl. 1967, 293, 1–44. [Google Scholar]
- Walker, W.G.; Dickerman, H.; Jost, L.J. Mechanism of Lysine-Induced Kaliuresis. Am. J. Physiol. 1964, 206, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A.; Guttman, H.N. Trace Minerals and Exercise. In Exercise, Nutrition, and Energy Metabolism; Macmillan: New York, NY, USA, 1988. [Google Scholar]
- Suzuki, M. Study on the diagnostic indices in renal function after exercise- Effects of exercise intensity on urinary concentrating ability after exercise in healthy male volunteers. Tokyo Jikeikai Med. J. 1987, 102, 89–105. [Google Scholar]
- Baker, L.B.; De Chavez, P.J.D.; Ungaro, C.T.; Sopena, B.C.; Nuccio, R.P.; Reimel, A.J.; Barnes, K.A. Exercise intensity effects on total sweat electrolyte losses and regional vs. whole-body sweat [Na(+)], [Cl(−)], and [K(+)]. Eur. J. Appl. Physiol. 2019, 119, 361–375. [Google Scholar] [PubMed]
- Potter, J.D.; Robertson, S.P.; Johnson, J.D. Magnesium and the regulation of muscle contraction. Fed. Proc. 1981, 40, 2653–2656. [Google Scholar]
- Maier, J.A.; Castiglioni, S.; Locatelli, L.; Zocchi, M.; Mazur, A. Magnesium and inflammation: Advances and perspectives. Semin. Cell Dev. Biol. 2021, 115, 37–44. [Google Scholar] [CrossRef]
- Zheltova, A.A.; Kharitonova, M.V.; Iezhitsa, I.N.; Spasov, A.A. Magnesium deficiency and oxidative stress: An update. BioMedicine 2016, 6, 20. [Google Scholar]
- Purcell, S.A.; Melanson, E.L.; Afghahi, A.; Borges, V.F.; Sinelli, I.; Cornier, M.A. The effects of resistance exercise on appetite sensations, appetite related hormones and energy intake in hormone receptor-positive breast cancer survivors. Appetite 2023, 182, 106426. [Google Scholar]
- Kawano, H.; Mineta, M.; Asaka, M.; Miyashita, M.; Numao, S.; Gando, Y.; Ando, T.; Sakamoto, S.; Higuchi, M. Effects of different modes of exercise on appetite and appetite-regulating hormones. Appetite 2013, 66, 26–33. [Google Scholar]
- Kraemer, R.R.; Chu, H.; Castracane, V.D. Leptin and exercise. Exp. Biol. Med. 2002, 227, 701–708. [Google Scholar]
- Ray, H.A.; Verhoef, M.J. Dragon boat racing and health-related quality of life of breast cancer survivors: A mixed methods evaluation. BMC Complement. Altern. Med. 2013, 13, 205. [Google Scholar]
- Carretti, G.; Dabraio, A.; Manetti, M.; Marini, M. Biofeedback-Based Proprioceptive Training to Improve Functional Prereq-uisites of Dragon Boating in Breast Cancer Survivors. Eur. J. Investig. Health Psychol. Educ. 2024, 14, 1351–1368. [Google Scholar] [PubMed]
- Herrero-Zapirain, I.; Alvarez-Pardo, S.; Castaneda-Babarro, A.; Moreno-Villanueva, A.; Mielgo-Ayuso, J.F. The Effect of Dragon Boating on the Quality of Life for Breast Cancer Survivors: A Systematic Review. Healthcare 2024, 12, 1290. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Cheong, M.; Wang, Y.; Wang, X.; Zhang, Q.; Li, M.; Lei, S. Impact of Functional Training on Functional Movement and Athletic Performance in College Dragon Boat Athletes. Int. J. Environ Res. Public Health 2023, 20, 3897. [Google Scholar] [CrossRef] [PubMed]
- Moro, T.; Casolo, A.; Bordignon, V.; Sampieri, A.; Schiavinotto, G.; Vigo, L.; Ghisi, M.; Paoli, A.; Cerea, S. Keep calm and keep rowing: The psychophysical effects of dragon boat program in breast cancer survivors. Support. Care Cancer 2024, 32, 218. [Google Scholar]
- Shirreffs, S.M.; Maughan, R.J. Whole body sweat collection in humans: An improved method with preliminary data on electrolyte content. J. Appl. Physiol. 1997, 82, 336–341. [Google Scholar]
- Constantinescu, M.; Hilman, B.C. The Sweat Test for Quantitation of Electrolytes: A Challenge in Precision. Lab. Med. 1996, 27, 472–477. [Google Scholar]
Subjects n = 15 | Mean ± SD |
---|---|
Age (years) | 55.73 ± 4.96 |
Body weight (kg) | 65.27 ± 12.60 |
Height (cm) | 163.3 ± 4.2 |
BMI (kg.m−2) | 24.43 ± 4.30 |
Diagnosis age (years) | 46.9 ± 5.6 |
Histopathological Characterization: | |
IDC | 86% (n = 13) |
DCIS | 13% (n = 2) |
Years after surgery | 8.8 ± 4.9 |
Axillary lymph node dissection | 46.7% (n = 7) |
Chemotherapy | 53.3% (n = 8) |
Targeted drugs | 26.7% (n = 4) |
Hormone therapy | 73.3% (n = 11) |
Radiotherapy | 66.7% (n = 10) |
Ongoing therapy | 33.3% (n = 5) hormone therapy (Aromatase inhibitors, 2.5 mg/die) 6.7% (n = 1) other therapies (Levothyroxine for Hypothyroidism) |
Metastases | 0% |
Recurrences | 6.7% (n = 1) |
Experience on dragon boat (years) | Range 2–5 |
Parameter | Pre-Race | Post-Race | p Value | Δ% |
---|---|---|---|---|
Urea (mg/dL) | 721.3 ± 291.3 | 823.0 ± 480.7 | n.s. | +14 |
Na (mmol/L) | 78.5 ± 35.8 | 62.0 ± 41.3 | * | −21 |
K (mmol/L) | 67.3 ± 36.5 | 47.2 ± 34.2 | * | −30 |
Cl (mmol/L) | 87.3 ± 30.8 | 64.1 ± 37.8 | ** | −27 |
P (mg/dL) | 64.1 ± 32.6 | 50.9 ± 43.5 | ns | −21 |
Mg (mg/dL) | 8.4 ± 5.2 | 8.3 ± 8.2 | * | −1 |
Ca (mg/dL) | 13.1 ± 9.3 | 10.9 ± 6.7 | ns | −17 |
Life Enhancement Sub-Scale | |
---|---|
| 3.6 ± 0.5 |
| 2.3 ± 0.7 |
| 3.1 ± 0.9 |
| 3.1 ± 1.0 |
| 2.5 ± 0.5 |
| 3.0 ± 0.9 |
| 3.0 ± 0.9 |
| 3.0 ± 0.9 |
Physical performance sub-scale | |
| 3.6 ± 0.6 |
| 3.1 ± 0.5 |
| 3.3 ± 0.6 |
| 2.7 ± 0.5 |
| 3.2 ± 0.5 |
| 2.9 ± 0.5 |
| 3.1 ± 0.5 |
| 2.3 ± 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montorsi, M.; Vezzoli, A.; Mrakic Sposta, F.; Gussoni, M.; Brizzolari, A.; Bosco, G.; Dellanoce, C.; Barassi, A.; Picconi, B.; Ranuncoli, C.; et al. Systemic Responses Towards Oxy-Inflammation, Hormones, and Mood in Breast Cancer Survivors: Preliminary Evidences from Dragon Boat Endurance Race. J. Clin. Med. 2025, 14, 2532. https://doi.org/10.3390/jcm14072532
Montorsi M, Vezzoli A, Mrakic Sposta F, Gussoni M, Brizzolari A, Bosco G, Dellanoce C, Barassi A, Picconi B, Ranuncoli C, et al. Systemic Responses Towards Oxy-Inflammation, Hormones, and Mood in Breast Cancer Survivors: Preliminary Evidences from Dragon Boat Endurance Race. Journal of Clinical Medicine. 2025; 14(7):2532. https://doi.org/10.3390/jcm14072532
Chicago/Turabian StyleMontorsi, Michela, Alessandra Vezzoli, Federica Mrakic Sposta, Maristella Gussoni, Andrea Brizzolari, Gerardo Bosco, Cinzia Dellanoce, Alessandra Barassi, Barbara Picconi, Cristina Ranuncoli, and et al. 2025. "Systemic Responses Towards Oxy-Inflammation, Hormones, and Mood in Breast Cancer Survivors: Preliminary Evidences from Dragon Boat Endurance Race" Journal of Clinical Medicine 14, no. 7: 2532. https://doi.org/10.3390/jcm14072532
APA StyleMontorsi, M., Vezzoli, A., Mrakic Sposta, F., Gussoni, M., Brizzolari, A., Bosco, G., Dellanoce, C., Barassi, A., Picconi, B., Ranuncoli, C., & Mrakic Sposta, S. (2025). Systemic Responses Towards Oxy-Inflammation, Hormones, and Mood in Breast Cancer Survivors: Preliminary Evidences from Dragon Boat Endurance Race. Journal of Clinical Medicine, 14(7), 2532. https://doi.org/10.3390/jcm14072532