Comparison of All-Suture Anchors and Metal Anchors in Arthroscopic Rotator Cuff Repair: Short-Term Clinical Outcomes and Anchor Pullout Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection, Surgical Technique and Postoperative Rehabilitation
2.2. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chebbi, P.; Kishore, M.M.; Palanivelu, M. Functional outcome of non-operative management in chronic supraspinatus tear among geriatric population: A prospective study. Int. J. Orthop. Sci. 2020, 6, 416–419. [Google Scholar] [CrossRef]
- Agarwalla, A.; Cvetanovich, G.L.; Gowd, A.K.; Romeo, A.A.; Cole, B.J.; Verma, N.N.; Forsythe, B. Epidemiological Analysis of Changes in Clinical Practice for Full-Thickness Rotator Cuff Tears From 2010 to 2015. Orthop. J. Sports Med. 2019, 7, 2325967119845912. [Google Scholar] [CrossRef] [PubMed]
- Sciarretta, F.V.; Moya, D.; List, K. Current trends in rehabilitation of rotator cuff injuries. SICOT J. 2023, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhao, J.; Qiu, H.; Huang, Y. Comparison of arthroscopic single-row and double-row repair in the treatment of rotator cuff tears: A protocol of cohort analysis. Medicine 2020, 99, e21030. [Google Scholar] [CrossRef]
- Vonhoegen, J.; John, D.; Hagermann, C. Osteoconductive resorption characteristics of a novel biocomposite suture anchor material in rotator cuff repair. J. Orthop. Surg. Res. 2019, 14, 12. [Google Scholar] [CrossRef]
- Dhawan, A.; Ghodadra, N.; Karas, V.; Salata, M.J.; Cole, B.J. Complications of bioabsorbable suture anchors in the shoulder. Am. J. Sports Med. 2012, 40, 1424–1430. [Google Scholar] [CrossRef]
- Dhinsa, B.S.; Bhamra, J.S.; Aramberri-Gutierrez, M.; Kochhar, T. Mid-term clinical outcome following rotator cuff repair using all-suture anchors. J. Clin. Orthop. Trauma 2019, 10, 241–243. [Google Scholar] [CrossRef]
- Memon, K.A.; Dimock, R.; Bernasconi, A.; Sobti, A.; Consigliere, P.; Imam, M.A.; Narvani, A.A. Clinical and Radiological Outcomes of Rotator Cuff Repairs Using All-Suture Anchors as Medial Row Anchors. Arch. Bone Jt. Surg. 2021, 9, 527–535. [Google Scholar] [CrossRef]
- Yan, H.; Zhao, L.; Wang, J.; Lin, L.; Wang, H.; Wang, C.; Yu, Y.; Lu, M.; Xu, T. An All-Suture Anchor Offers Equivalent Clinical Performance to an Established Solid Suture Anchor in the Arthroscopic Repair of Rotator Cuff Tears: A Prospective, Randomized, Multicenter Trial with 12-Month Follow-Up. Arthroscopy 2024, 40, 265–276. [Google Scholar] [CrossRef]
- Piatti, M.; Gorla, M.; Alberio, F.; Omeljaniuk, R.J.; Rigamonti, L.; Gaddi, D.; Turati, M.; Bigoni, M. Comparison of all-suture anchors with metallic anchors in arthroscopic cuff repair: Structural and functional properties and clinical suitability. J. Orthop. 2023, 39, 66–69. [Google Scholar] [CrossRef]
- Feldman, J.J.; Ostrander, B.; Ithurburn, M.P.; Fleisig, G.S.; Tatum, R.; Ochsner, M.G.; Ryan, M.K.; Rothermich, M.A.; Emblom, B.A.; Dugas, J.R.; et al. The Relationship Between All-Suture and Solid Medial-Row Anchors and Patient-Reported Outcomes for Double-Row Suture Bridge Rotator Cuff Repair. Orthop. J. Sports Med. 2024, 12, 23259671241262264. [Google Scholar] [CrossRef] [PubMed]
- Loeb, A.E.; Ostrander, B.; Ithurburn, M.P.; Fleisig, G.S.; Arceo, C.; Brockington, D.; Tatum, R.; Feldman, J.J.; Ryan, M.K.; Rothermich, M.A.; et al. Outcomes of Double-Row Rotator Cuff Repair Using a Novel All-Suture Soft Anchor Medial Row. Orthop. J. Sports Med. 2023, 11, 23259671231192134. [Google Scholar] [CrossRef] [PubMed]
- Van der Bracht, H.; Van den Langenbergh, T.; Pouillon, M.; Verhasselt, S.; Verniers, P.; Stoffelen, D. Rotator cuff repair with all-suture anchors: A midterm magnetic resonance imaging evaluation of repair integrity and cyst formation. J. Shoulder Elb. Surg. 2018, 27, 2006–2012. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Rhee, S.M.; Cho, N.S. Perianchor cyst formation in all-suture anchor after rotator cuff repair: An evaluation of anchor insertion angle. J. Shoulder Elb. Surg. 2022, 31, 1831–1839. [Google Scholar] [CrossRef]
- Matijakovich, D.; Solomon, D.; Benitez, C.L.; Huang, H.H.; Poeran, J.; Berger, N.; Lebaschi, A.; Seneviratne, A. Long-term follow-up of perianchor cyst formation after rotator cuff repair. JSES Int. 2021, 5, 863–868. [Google Scholar] [CrossRef]
- Thiébat, G.; Capitani, P.; de Girolamo, L.; Orfei, C.P.; Facchini, F.; Schoenhuber, H.; Viganò, M. The Effect of Three Different Suture Anchors for Rotator Cuff Repair on Primary Cultures of Human Bone Marrow Mesenchymal Stem Cells. Joints 2018, 6, 100–103. [Google Scholar] [CrossRef]
- Ergun, S.; Akgun, U.; Barber, F.A.; Karahan, M. The Clinical and Biomechanical Performance of All-Suture Anchors: A Systematic Review. Arthrosc. Sports Med. Rehabil. 2020, 2, e263–e275. [Google Scholar] [CrossRef]
- Trofa, D.P.; Bixby, E.C.; Fleischli, J.E.; Saltzman, B.M. All-Suture Anchors in Orthopaedic Surgery: Design, Rationale, Biomechanical Data, and Clinical Outcomes. J. Am. Acad. Orthop. Surg. 2021, 29, e950–e960. [Google Scholar] [CrossRef]
- Ntalos, D.; Huber, G.; Sellenschloh, K.; Saito, H.; Puschel, K.; Morlock, M.M.; Frosch, K.H.; Klatte, T.O. All-suture anchor pullout results in decreased bone damage and depends on cortical thickness. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 2212–2219. [Google Scholar] [CrossRef]
- Cofield, R.H. Rotator cuff disease of the shoulder. J. Bone Jt. Surg. 1985, 67, 974–979. [Google Scholar] [CrossRef]
- Patte, D. Classification of rotator cuff lesions. Clin. Orthop. Relat. Res. 1990, 254, 81–86. [Google Scholar] [CrossRef]
- Fuchs, B.; Weishaupt, D.; Zanetti, M.; Hodler, J.; Gerber, C. Fatty degeneration of the muscles of the rotator cuff: Assessment by computed tomography versus magnetic resonance imaging. J. Shoulder Elb. Surg. 1999, 8, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Goutallier, D.; Postel, J.-M.; Bernageau, J.; Lavau, L.; Voisin, M.-C. Fatty Muscle Degeneration in Cuff Ruptures: Pre- and Postoperative Evaluation by CT Scan. Clin. Orthop. Relat. Res. 1994, 304, 78–83. [Google Scholar] [CrossRef]
- Di Gennaro, S.; Lecce, D.; Tarantino, A.; De Cupis, M.; Bassetti, E.; Scarnera, P.; Ciminello, E.; Calvisi, V. Arthroscopic repair of rotator cuff injury with bioabsorbable suture anchor vs. all-suture anchor: A non-inferiority study. BMC Musculoskelet. Disord. 2022, 23, 1098. [Google Scholar] [CrossRef]
- Goschka, A.M.; Hafer, J.S.; Reynolds, K.A.; Aberle, N.S., II; Baldini, T.H.; Hawkins, M.J.; McCarty, E.C. Biomechanical comparison of traditional anchors to all-suture anchors in a double-row rotator cuff repair cadaver model. Clin. Biomech. 2015, 30, 808–813. [Google Scholar] [CrossRef]
- Barber, F.A.; Herbert, M.A. All-Suture Anchors: Biomechanical Analysis of Pullout Strength, Displacement, and Failure Mode. Arthroscopy 2017, 33, 1113–1121. [Google Scholar] [CrossRef]
- Bernardoni, E.D.; Frank, R.M.; Veera, S.S.; Waterman, B.R.; Griffin, J.W.; Shewman, E.F.; Cole, B.J.; Romeo, A.A.; Verma, N.N. Biomechanical Analysis of Medial-Row All-Suture Suture Anchor Fixation for Rotator Cuff Repair in a Pair-Matched Cadaveric Model. Arthroscopy 2019, 35, 1370–1376. [Google Scholar] [CrossRef]
- Yang, Y.S.; Shih, C.A.; Fang, C.J.; Huang, T.T.; Hsu, K.L.; Kuan, F.C.; Su, W.R.; Hong, C.K. Biomechanical comparison of different suture anchors used in rotator cuff repair surgery-all-suture anchors are equivalent to other suture anchors: A systematic review and network meta-analysis. J. Exp. Orthop. 2023, 10, 45. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, J.W.; Kim, T.K.; Kweon, S.H.; Kang, H.J.; Kim, S.J.; Park, J.S. Is the arthroscopic suture bridge technique suitable for full-thickness rotator cuff tears of any size? Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 2138–2146. [Google Scholar] [CrossRef]
- Rosso, C.; Weber, T.; Dietschy, A.; de Wild, M.; Muller, S. Three anchor concepts for rotator cuff repair in standardized physiological and osteoporotic bone: A biomechanical study. J. Shoulder Elb. Surg. 2020, 29, e52–e59. [Google Scholar] [CrossRef]
- Ock, J.; Seo, J.; Koh, K.H.; Kim, N. Comparing the biomechanical properties of conventional suture and all-suture anchors using patient-specific and realistic osteoporotic and non-osteoporotic phantom using 3D printing. Sci. Rep. 2023, 13, 20976. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Sun, L.; Gao, H.; Sheng, H.; Feng, X.; Yang, X.; Li, J.; Kong, Q.; Hao, Y.; Feng, S.; et al. Rotator cuff repair with all-suture anchor enhances biomechanical properties and tendon-bone integration in a rabbit model. Heliyon 2024, 10, e37707. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.-K.; Hsu, K.-L.; Kuan, F.-C.; Wang, P.-H.; Hsu, C.-C.; Yeh, M.-L.; Su, W.-R. When deadman theory meets footprint decortication: A suture anchor biomechanical study. J. Orthop. Surg. Res. 2019, 14, 157. [Google Scholar] [CrossRef] [PubMed]
- Skaliczki, G.; Paladini, P.; Merolla, G.; Campi, F.; Porcellini, G. Early anchor displacement after arthroscopic rotator cuff repair. Int. Orthop. 2015, 39, 915–920. [Google Scholar] [CrossRef]
- Postl, L.K.; Ahrens, P.; Beirer, M.; Crönlein, M.; Imhoff, A.B.; Foehr, P.; Burgkart, R.; Braun, C.; Kirchhoff, C. Pull-out stability of anchors for rotator cuff repair is also increased by bio-absorbable augmentation: A cadaver study. Arch. Orthop. Trauma Surg. 2016, 136, 1153–1158. [Google Scholar] [CrossRef]
- Ruder, J.A.; Dickinson, E.Y.; Peindl, R.D.; Habet, N.A.; Trofa, D.P.; Fleischli, J.E. Cyclic and Load-to-Failure Properties of All-Suture Anchors in Human Cadaveric Shoulder Glenoid Bone. Arthroscopy 2019, 35, 1954–1959.e1954. [Google Scholar] [CrossRef]
Groups (n/%) | ||||
---|---|---|---|---|
MA | ASA | Total | p Value | |
Follow-up (months) | 22.49 (28) | 20.61 (22) | 21.61 (24) | |
Mean (Range) | 0.144 a | |||
Age (years) | ||||
Mean (range) | 58.24 (41) | 56.45 (47) | 57.39 (47) | 0.288 b |
Sex | ||||
Female | 45 (51) | 44 (49) | 89 (62) | 0.485 c |
Male | 30 (57) | 23 (43) | 53 (38) | |
Dominance of Affected Side | ||||
Dominant | 66 (88) | 53 (79) | 119 (84) | |
Non-dominant | 9 (12) | 14 (21) | 23 (16) | 0.151 c |
Tear Size-Cofield | ||||
Small (<1 cm) | 42 (56) | 32 (48) | 74 (52) | |
Medium (1–3 cm) | 25 (33) | 29 (43) | 54 (38) | 0.475 c |
Large (3–5 cm) | 8 (11) | 6 (9) | 14 (10) | |
Tear Retraction-Patte | ||||
Grade I | 58 (77) | 56 (84) | 114 (80) | |
Grade II | 17 (23) | 11 (16) | 28 (20) | 0.350 c |
Grade III | 0 (0) | 0 (0) | 0(0) | |
Tear Type | ||||
Traumatic | 13 (17) | 15 (22) | 28 (20) | 0.450 c |
Degenerative | 62 (83) | 52 (78) | 114 (80) | |
Preoperative Fuchs Classification | ||||
Grade I | 61 (81) | 58 (87) | 119 (84) | |
Grade II | 11 (15) | 7 (10) | 18 (13) | 0.706 d |
Grade III | 3 (4) | 2 (3) | 5 (3) | |
Amount of Medial Row Anchors | ||||
1 anchor | 51 (68) | 46 (69) | 97 (68) | |
2 anchors | 23 (31) | 19 (28) | 42 (30) | 0.781 d |
3 anchors | 1 (1) | 2 (3) | 3 (2) | |
Repair Technique | ||||
Single-row | 51 (68) | 45 (67) | 96 (68) | |
Double-row | 24 (32) | 22 (33) | 46 (32) | 0.915 c |
Total | 75 (100) | 67 (100) | 142 (100) |
Groups | |||
---|---|---|---|
MA, Mean (SD) [Median] | ASA, Mean (SD) [Median] | p Value a | |
75 | 67 | ||
Preoperative Outcomes | |||
Preoperative CM | 44.23 [45] | 47.37 [47] | 0.046 b |
Preoperative DASH | 70.47 (10.59) | 68.09 (9.65) | 0.166 |
Preoperative VAS | 7.51 [7.80] | 7.22 [7.50] | 0.155 b |
Postoperative outcomes | |||
Postoperative CM | 75.64 (6.49) | 78.40 (7.59) | 0.065 b |
Postoperative DASH | 8.57 (5.61) | 9.75 (5.56) | 0.214 |
Postoperative VAS | 1.38 [1.50] | 1.59 [1.70] | 0.115 b |
Difference | |||
Difference DASH | 61.89 (11.77) | 58.34 (10.57) | 0.062 |
Difference CM | 31.41 (10.24) | 31.03 (10.81) | 0.829 |
Difference VAS | 6.14 (1.69) | 5.63 (1.60) | 0.066 |
Groups | |||
---|---|---|---|
MA, Mean (SD) | ASA, Mean (SD) | p Value a | |
Preoperative ROM | |||
Elevation | 130.5 (16.4) | 134.6 (24.0) | 0.243 b |
Abduction | 110.7 (25.1) | 113 (26.1) | 0.567 |
Internal Rotation | 3.73 (1.1) | 3.96 (1.0) | 0.215 |
External Rotation | 52.5 (16.0) | 55.4 (14.3) | 0.269 |
Postoperative ROM | |||
Elevation | 153.1 (19.0) | 153.6 (20.9) | 0.878 |
Abduction | 141.9 (28.3) | 148.1 (22.4) | 0.149 b |
Internal Rotation | 4.6 [4] | 5.0 [5] | 0.076 c |
External Rotation | 66.5 (14.0) | 70.5 (12.6) | 0.082 b |
Difference ROM | |||
Elevation | 22.5 (21.2) | 19.0 (26.8) | 0.384 b |
Abduction | 31.2 (28.3) | 34.9 (32.9) | 0.473 |
Internal Rotation | 0.9 (1.8) | 1.0 (1.4) | 0.541 b |
External Rotation | 14.0 (12.6) | 15.1 (16.1) | 0.661 |
Groups | ||||
---|---|---|---|---|
MA (%) | ASA (%) | Age/Mean | p Value | |
n | 75 | 67 | ||
No Complication | 68 (91) | 67(100) | 56.80 | |
Intraoperative Anchor Pullout | 7 (9) | 0 (0) | 68.86 | 0.014 a |
0.002 b |
Patient | Sex | Age | Side | Dominant Side | Tear Type | Fuchs Grade | Patte Retraction Grade | Tear Size | Repair Type | Medial Row Anchor Number |
---|---|---|---|---|---|---|---|---|---|---|
1 | Female | 70 | Right | Yes | Degenerative | Grade I | Grade I | Small | Single-row | 1 |
2 | Male | 78 | Right | Yes | Degenerative | Grade I | Grade I | Small | Single-row | 1 |
3 | Female | 69 | Right | Yes | Degenerative | Grade I | Grade I | Medium | Single-row | 1 |
4 | Male | 70 | Left | Yes | Degenerative | Grade I | Grade I | Medium | Single-row | 1 |
5 | Female | 64 | Right | Yes | Degenerative | Grade I | Grade I | Medium | Double-row | 2 |
6 | Female | 70 | Right | Yes | Degenerative | Grade III | Grade I | Medium | Single-row | 2 |
7 | Male | 61 | Right | Yes | Degenerative | Grade III | Grade II | Large | Single-row | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keçeci, T.; Polat, Y.; Şahin, A.A.; Alparslan, M.; Sipahioğlu, S.; Çıraklı, A. Comparison of All-Suture Anchors and Metal Anchors in Arthroscopic Rotator Cuff Repair: Short-Term Clinical Outcomes and Anchor Pullout Risk. J. Clin. Med. 2025, 14, 2619. https://doi.org/10.3390/jcm14082619
Keçeci T, Polat Y, Şahin AA, Alparslan M, Sipahioğlu S, Çıraklı A. Comparison of All-Suture Anchors and Metal Anchors in Arthroscopic Rotator Cuff Repair: Short-Term Clinical Outcomes and Anchor Pullout Risk. Journal of Clinical Medicine. 2025; 14(8):2619. https://doi.org/10.3390/jcm14082619
Chicago/Turabian StyleKeçeci, Tolga, Yusuf Polat, Abdullah Alper Şahin, Murat Alparslan, Serkan Sipahioğlu, and Alper Çıraklı. 2025. "Comparison of All-Suture Anchors and Metal Anchors in Arthroscopic Rotator Cuff Repair: Short-Term Clinical Outcomes and Anchor Pullout Risk" Journal of Clinical Medicine 14, no. 8: 2619. https://doi.org/10.3390/jcm14082619
APA StyleKeçeci, T., Polat, Y., Şahin, A. A., Alparslan, M., Sipahioğlu, S., & Çıraklı, A. (2025). Comparison of All-Suture Anchors and Metal Anchors in Arthroscopic Rotator Cuff Repair: Short-Term Clinical Outcomes and Anchor Pullout Risk. Journal of Clinical Medicine, 14(8), 2619. https://doi.org/10.3390/jcm14082619