Re-Evaluating Platelet-Rich Plasma Dosing Strategies in Sports Medicine: The Role of the “10 Billion Platelet Dose” in Optimizing Therapeutic Outcomes—A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
“Platelet-rich plasma”, “PRP”, “osteoarthritis”, “tendinopathy”, “muscle injuries”, “leukocyte-rich PRP”, “leukocyte-poor PRP”, “platelet dose”, and “red blood cell contamination”.
2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
- -
- Peer-reviewed articles published in English.
- -
- Studies discussing PRP composition, preparation, and clinical application in OA or tendinopathy.
- -
- Reports providing quantitative or qualitative data on platelet concentration, leukocyte content, or PRP efficacy.
2.2.2. Exclusion Criteria
- -
- Case reports, opinion pieces, or non-peer-reviewed literature.
- -
- Studies focusing on acute injuries or conditions unrelated to OA or tendinopathy.
- -
- Papers that lack detailed descriptions of PRP preparation, platelet composition, or treatment outcomes.
2.3. Analysis Approach
- -
- Study design, methodology, and inclusion criteria.
- -
- PRP preparation protocols, including platelet dosing, leukocyte composition (LP-PRP vs. leukocyte-rich PRP—LR-PRP), red blood cell contamination, and activation methods.
- -
- Reported outcomes, including pain relief, functional improvements, and biological effects on musculoskeletal tissues.
3. The Platelet Dose in PRP Therapy: A Key Determinant of Efficacy
3.1. Variability in PRP Systems and the Need for Standardization
3.2. The Impact of Platelet Dose on PRP Efficacy
3.2.1. Defining the Minimum Effective Platelet Dose
- -
- 2.8 billion platelets (4 mL PRP) vs. 5.6 billion platelets (8 mL PRP).
- -
- Both groups showed clinical improvement, but patients receiving the higher platelet dose exhibited superior pain and function outcomes over six months.
3.2.2. Validating the 4 Billion Platelet Threshold
- -
- Outcome Measures in Rheumatology-Osteoarthritis Research Society International (OMERACT-OARSI) responder rates of 68.9% at 3 months, 72.7% at 6 months, and 70.6% at 12 months.
- -
- Significant improvements in Visual Analogic Scale (VAS) and Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores.
- -
- The KL2 group showed the best results in pain reduction and WOMAC scores at 6 months.
- -
- The study concluded that high-dose neutrophil-depleted PRP is effective for KL1-3 (KL 3: multiple osteophytes, definite joint space narrowing, mild bone sclerosis) knee OA, potentially relieving symptoms for up to a year and slowing disease progression.
- -
- 28 PRP treatment arms (90%) with doses >5.5 billion platelets reported significant clinical improvements.
- -
- Studies with ≤2.3 billion platelets failed to demonstrate therapeutic benefits (p < 0.01).
- -
- The review identified an ideal cumulative dose of 10 billion platelets across multiple injections for optimal efficacy.
3.3. PRP Efficacy Across Different Musculoskeletal Conditions
3.4. Discussion: The Future of Platelet Dose Standardization in PRP Therapy
- -
- -
- -
- Need for patient-specific approaches: The optimal platelet dose may vary depending on the treated condition, the patient’s age, and the severity of the pathology [7].
4. The Platelet Dose and Analgesic Effect
4.1. Platelet Dose and Its Role in Pain Modulation
- -
- Injury type and tissue composition (e.g., cartilage vs. tendon vs. muscle).
- -
- Route of administration (intra-articular vs. intramuscular vs. perineural).
- -
- PRP activation method (exogenous activation vs. endogenous platelet activation).
- -
- Leukocyte concentration (LP-PRP vs. LR-PRP).
4.2. Clinical Evidence Supporting PRP’s Analgesic Effects
- -
- Kuffler et al. [64] studied PRP for neuropathic pain in patients with damaged and unrepaired nerves. They observed that PRP-treated patients experienced progressive pain relief over three weeks, with some patients reporting pain elimination for over six years.
- -
- A systematic review by Johal et al. [40] concluded that PRP consistently reduces pain across multiple orthopedic indications, reinforcing its role in pain management.
- -
- Yoshida et al. [65] explored PRP’s analgesic properties in a rat model, demonstrating that a platelet concentration of 1.0 × 106/μL resulted in complete pain relief. In contrast, a 50% lower concentration produced significantly less pain reduction.
4.3. LP-PRP vs. LR-PRP: Which Provides Better Pain Relief?
5. To Be or Not to Be Rich: Leukocyte-Poor Platelet-Rich Plasma (LP-PRP) vs. Leukocyte-Rich Platelet-Rich Plasma (LR-PRP)
5.1. The Debate over Leukocyte Enrichment in PRP
- -
- Riboh et al. [11] conducted a meta-analysis of six RCTs and three prospective studies (1055 patients). They found that LP-PRP resulted in significantly better WOMAC scores than hyaluronic acid and placebo, whereas LR-PRP did not improve substantially.
- -
- A meta-analysis of 24 RCTs [12] confirmed that LP-PRP provides greater pain relief than LR-PRP in knee OA.
- -
- A recent double-blind RCT [68] involving 132 patients found no difference between LP-PRP and LR-PRP in clinical outcomes, though LR-PRP provided no additional benefits.
5.2. Neutrophils vs. Monocytes: Understanding Leukocyte Function in PRP
- -
5.3. PBMNC-Enriched PRP: A Novel Approach to Enhance PRP Efficacy
- -
- -
- -
5.4. Clinical Evidence for PBMNC-Enriched PRP in OA Treatment
- -
- De Matthaeis et al. [37] conducted a retrospective clinical trial in KL1-3 knee OA using a high-dose, neutrophil-poor, PBMNC-enriched PRP formulation (12 billion platelets over three injections, two weeks apart). The study reported the following:OMERACT-OARSI responder rates of 68.9% (3 months), 72.7% (6 months), and 70.6% (12 months).Significant improvements in VAS and WOMAC scores compared to baseline.
- -
- Saita et al. [89] confirmed similar results using PBMNC-enriched PRP for knee OA.
5.5. Discussion: Optimizing PRP Formulations for Clinical Success
- -
- LP-PRP is preferable for intra-articular treatments, especially OA, due to its anti-inflammatory properties.
- -
- Monocyte-enriched PRP may enhance tissue repair by promoting M2 macrophage-driven regeneration.
- -
- Neutrophil-rich PRP (LR-PRP) should be used cautiously, as excessive inflammation may hinder healing under certain conditions.
- -
- Identifying the ideal balance between leukocyte subtypes (monocytes vs. neutrophils) in PRP formulations.
- -
- Standardizing PRP preparation protocols to improve reproducibility across clinical studies.
- -
- Exploring PBMNC-enriched PRP as a potential next-generation orthobiologic therapy.
6. Red vs. Yellow PRP: The Impact of Red Blood Cell Contamination
6.1. Why Red Blood Cells Should Be Minimized in PRP
- -
- Hemolysis: RBCs break down, releasing hemoglobin, hemin, and iron, which can trigger oxidative stress, inflammation, and immune suppression [91].
- -
- Cytotoxicity: Joint Hemosiderin accumulation has been linked to cartilage damage [93].
- -
- Eryptosis: A process similar to apoptosis in RBCs, eryptosis leads to the release of macrophage migration inhibitory factor, which inhibits monocyte/macrophage recruitment, stem cell migration, and fibroblast proliferation [91].
- -
- Microvascular dysfunction: RBC degradation products lead to vasoconstriction and impaired circulation, which may hinder tissue healing [91].
6.2. PRP Preparation Techniques and RBC Contamination
- Leukocyte-poor, RBC-free PRP systems separate and discard RBCs while preserving a high platelet yield. However, they often produce lower platelet concentrations (<400,000 platelets/μL) and total doses (<2 billion platelets). Some require a second centrifugation (double-spin method) to increase platelet concentration.
- -
- Low blood volume draws (10–20 mL) often result in lower platelet recovery.
- -
7. Essential Traits and Minimal Clinical Platelet Dose of Point of Care PRP Device
7.1. Why Platelet Dose Must Be Reported in PRP Studies
- -
- Platelet yield (recovery rate): The percentage of platelets collected from whole blood into the final PRP product.
- -
- -
- None of the devices achieved 90% platelet recovery; some collected more RBCs than platelets.
- -
- Devices with higher platelet yields often had higher RBC and leukocyte contamination.
7.2. The Impact of PRP Device Selection on Platelet Dose and RBC Contamination
- -
- -
- -
8. Activated vs. Non-Activated PRP: Influence on Growth Factor Release
8.1. Mechanisms of PRP Activation
- -
- Exogenous activation: Addition of calcium chloride, calcium gluconate, or autologous thrombin.
- -
- Endogenous activation: Contact with human type I collagen or exposure to tissue microenvironments.
- -
- -
8.2. Clinical Studies on Activated vs. Non-Activated PRP
9. The Influence of Gender and Age on PRP Composition
9.1. Gender Differences in PRP Composition
- -
- Male PRP: Higher levels of Platelet-derived growth factor-BB (PDGF-BB), Vascular endothelial growth factor (VEGF), and Transforming growth factor-beta 1 (TGF-β1), along with pro-inflammatory cytokines (IL-1β, IRAP, TNF-α).
- -
- Female PRP: Lower levels of pro-inflammatory cytokines, but no significant difference in overall platelet concentration.
9.2. Age-Related Differences in PRP Efficacy
9.3. Gender Differences in PRP Clinical Outcomes
- -
- Women had a higher success rate (59.6%) than men (50.9%).
- -
- Despite experiencing more severe symptoms initially, women showed more significant symptom improvement, leading to similar long-term outcomes between genders.
10. Discussion
10.1. Platelet Dose and PRP Efficacy
10.2. PRP and Pain Modulation
10.3. Leukocyte Content: LP-PRP vs. LR-PRP
10.4. Red Blood Cell (RBC) Contamination in PRP
10.5. PRP Activation: Exogenous vs. Endogenous Activation
10.6. Gender- and Age-Related Variability in PRP Composition and Response
10.7. Future Directions
- -
- Standardize PRP dosing protocols to improve clinical consistency.
- -
- Investigate monocyte-enriched PRP for its regenerative potential.
- -
- Optimize PRP activation strategies for sustained growth factor release.
- -
- Address demographic variations in PRP composition and response.
11. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Everts, P.; Onishi, K.; Jayaram, P.; Lana, J.F.; Mautner, K. Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int. J. Mol. Sci. 2020, 21, 7794. [Google Scholar] [CrossRef] [PubMed]
- Everts, P.A.; Mazzola, T.; Mautner, K.; Randelli, P.S.; Podesta, L. Modifying Orthobiological PRP Therapies Are Imperative for the Advancement of Treatment Outcomes in Musculoskeletal Pathologies. Biomedicines 2022, 10, 2933. [Google Scholar] [CrossRef]
- Everts, P.A.; Lana, J.F.; Onishi, K.; Buford, D.; Peng, J.; Mahmood, A.; Fonseca, L.F.; van Zundert, A.; Podesta, L. Angiogenesis and Tissue Repair Depend on Platelet Dosing and Bioformulation Strategies Following Orthobiological Platelet-Rich Plasma Procedures: A Narrative Review. Biomedicines 2023, 11, 1922. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.J.; Belk, J.W.; Wharton, B.R.; McCarthy, T.P.; McCarty, E.C.; Dragoo, J.L.; Frank, R.M. Most Orthopaedic Platelet-Rich Plasma Investigations Don’t Report Protocols and Composition: An Updated Systematic Review. Arthrosc. J. Arthrosc. Relat. Surg. 2024, 41, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M.G. Editorial Commentary: Published Literature on Platelet-Rich Plasma Is Extensive but Flawed in Methodology. Arthroscopy 2024, 41, 835–836. [Google Scholar] [CrossRef]
- Berrigan, W.A.; Bailowitz, Z.; Park, A.; Reddy, A.; Liu, R.; Lansdown, D. A Greater Platelet Dose May Yield Better Clinical Outcomes for Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis: A Systematic Review. Arthrosc. J. Arthrosc. Relat. Surg. 2024, 41, 809–817. [Google Scholar] [CrossRef]
- Berrigan, W.; Tao, F.; Kopcow, J.; Park, A.L.; Allen, I.; Tahir, P.; Reddy, A.; Bailowitz, Z. The Effect of Platelet Dose on Outcomes after Platelet Rich Plasma Injections for Musculoskeletal Conditions: A Systematic Review and Meta-Analysis. Curr. Rev. Musculoskelet Med. 2024, 17, 570–588. [Google Scholar] [CrossRef]
- Gupta, A.; Jeyaraman, M.; Potty, A.G. Leukocyte-Rich vs. Leukocyte-Poor Platelet-Rich Plasma for the Treatment of Knee Osteoarthritis. Biomedicines 2023, 11, 414. [Google Scholar] [CrossRef]
- Di Martino, A.; Boffa, A.; Andriolo, L.; Romandini, I.; Altamura, S.A.; Cenacchi, A.; Roverini, V.; Zaffagnini, S.; Filardo, G. Leukocyte-Rich versus Leukocyte-Poor Platelet-Rich Plasma for the Treatment of Knee Osteoarthritis: A Double-Blind Randomized Trial. Am. J. Sports Med. 2022, 50, 609–617. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Cao, S.; Han, Y.; Shao, J.; Fu, Q.; Wang, B.; Wu, J.; Xiang, D.; Liu, Z.; et al. Clinical Efficacy of Intra-Articular Injection with P-PRP Versus That of L-PRP in Treating Knee Cartilage Lesion: A Randomized Controlled Trial. Orthop. Surg. 2023, 15, 740–749. [Google Scholar] [CrossRef]
- Riboh, J.C.; Saltzman, B.M.; Yanke, A.B.; Fortier, L.; Cole, B.J. Effect of Leukocyte Concentration on the Efficacy of Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis. Am. J. Sports Med. 2016, 44, 792–800. [Google Scholar] [CrossRef]
- Xiong, Y.; Gong, C.; Peng, X.; Liu, X.; Su, X.; Tao, X.; Li, Y.; Wen, Y.; Li, W. Efficacy and Safety of Platelet-Rich Plasma Injections for the Treatment of Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Med. 2023, 10, 1204144. [Google Scholar] [CrossRef]
- Gupta, A.; Potty, A.G.; Maffulli, N. Editorial: Regenerative Biologics for Musculoskeletal Injuries. Front. Pain. Res. 2024, 5, 1400548. [Google Scholar] [CrossRef]
- Laver, L.; Filardo, G.; Sanchez, M.; Magalon, J.; Tischer, T.; Abat, F.; Bastos, R.; Cugat, R.; Iosifidis, M.; Kocaoglu, B.; et al. The Use of Injectable Orthobiologics for Knee Osteoarthritis: A European ESSKA-ORBIT Consensus. Part 1-Blood-Derived Products (Platelet-Rich Plasma). Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 783–797. [Google Scholar] [CrossRef]
- Lana, J.F.; Macedo, A.; Ingrao, I.L.G.; Huber, S.C.; Santos, G.S.; Santana, M.H.A. Leukocyte-Rich PRP for Knee Osteoarthritis: Current Concepts. J. Clin. Orthop. Trauma. 2019, 10, S179–S182. [Google Scholar] [CrossRef]
- Lana, J.F.; Huber, S.C.; Purita, J.; Tambeli, C.H.; Santos, G.S.; Paulus, C.; Annichino-Bizzacchi, J.M. Leukocyte-Rich PRP versus Leukocyte-Poor PRP—The Role of Monocyte/Macrophage Function in the Healing Cascade. J. Clin. Orthop. Trauma. 2019, 10, S7–S12. [Google Scholar] [CrossRef]
- Chuang, C.H.; Kuo, C.C.; Chiang, Y.F.; Lee, P.Y.; Wang, F.H.; Hsieh, C.Y.; Shen, C.I.; Chung, Y.H.; Der Lee, K.; Wu, S.F.; et al. Enriched Peripheral Blood-Derived Mononuclear Cells for Treating Knee Osteoarthritis. Cell Transpl. Transplant. 2023, 32. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Chen, J.; Heng, B.C.; Jiang, Y.; Hu, X.; Ge, Z. Macrophages Promote Cartilage Regeneration in a Time- and Phenotype-Dependent Manner. J. Cell Physiol. 2022, 237, 2258–2270. [Google Scholar] [CrossRef]
- Kanda, K.; Asawa, Y.; Inaki, R.; Fujihara, Y.; Hoshi, K.; Hikita, A. Requirement of Direct Contact between Chondrocytes and Macrophages for the Maturation of Regenerative Cartilage. Sci. Rep. 2021, 11, 22476. [Google Scholar] [CrossRef]
- Fernandes, T.L.; Gomoll, A.H.; Lattermann, C.; Hernandez, A.J.; Bueno, D.F.; Amano, M.T. Macrophage: A Potential Target on Cartilage Regeneration. Front. Immunol. 2020, 11, 111. [Google Scholar] [CrossRef]
- Chisari, E.; Rehak, L.; Khan, W.S.; Maffulli, N. Tendon Healing Is Adversely Affected by Low-Grade Inflammation. J. Orthop. Surg. Res. 2021, 16, 700. [Google Scholar] [CrossRef] [PubMed]
- Chisari, E.; Rehak, L.; Khan, W.S.; Maffulli, N. The Role of the Immune System in Tendon Healing: A Systematic Review. Br. Med. Bull. 2020, 133, 49–54. [Google Scholar] [CrossRef]
- Chisari, E.; Rehak, L.; Khan, W.S.; Maffulli, N. Tendon Healing in Presence of Chronic Low Level Inflammation. Br. Med. Bullettin 2020, 97, 97–116. [Google Scholar]
- Graiet, H.; Lokchine, A.; Francois, P.; Velier, M.; Grimaud, F.; Loyens, M.; Berda-Haddad, Y.; Veran, J.; Dignat-George, F.; Sabatier, F.; et al. Use of Platelet-Rich Plasma in Regenerative Medicine: Technical Tools for Correct Quality Control. BMJ Open Sport. Exerc. Med. 2018, 4. [Google Scholar] [CrossRef]
- Oh, J.H.; Kim, W.O.O.; Park, K.U.; Roh, Y.H. Comparison of the Cellular Composition and Cytokine-Release Kinetics of Various Platelet-Rich Plasma Preparations. Am. J. Sports Med. 2015, 43, 3062–3070. [Google Scholar] [CrossRef] [PubMed]
- Castillo, T.N.; Pouliot, M.A.; Kim, H.J.; Dragoo, J.L. Comparison of Growth Factor and Platelet Concentration from Commercial Platelet-Rich Plasma Separation Systems. Am. J. Sports Med. 2011, 39, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Fadadu, P.P.; Mazzola, A.J.; Hunter, C.W.; Davis, T.T. Review of Concentration Yields in Commercially Available Platelet-Rich Plasma (PRP) Systems: A Call for PRP Standardization. Reg. Anesth. Pain Med. 2019, 44, 652–659. [Google Scholar] [CrossRef]
- Magalon, J.; Chateau, A.L.; Bertrand, B.; Louis, M.L.; Silvestre, A.; Giraudo, L.; Veran, J.; Sabatier, F. DEPA Classification: A Proposal for Standardising PRP Use and a Retrospective Application of Available Devices. BMJ Open Sport. Exerc. Med. 2016, 2. [Google Scholar] [CrossRef]
- Oudelaar, B.W.; Peerbooms, J.C.; Huis in ‘t Veld, R.; Vochteloo, A.J.H. Concentrations of Blood Components in Commercial Platelet-Rich Plasma Separation Systems: A Review of the Literature. Am. J. Sports Med. 2019, 47, 479–487. [Google Scholar] [CrossRef]
- Dejnek, M.; Witkowski, J.; Moreira, H.; Płaczkowska, S.; Morasiewicz, P.; Reichert, P.; Królikowska, A. Content of Blood Cell Components, Inflammatory Cytokines and Growth Factors in Autologous Platelet-Rich Plasma Obtained by Various Methods. World J. Orthop. 2022, 13, 587–602. [Google Scholar] [CrossRef]
- Harrison, T.E.; Bowler, J.; Cheng, C.-I.; Reeves, K.D. Optimizing Platelet-Rich Plasma: Spin Time and Sample Source. Bioengineering 2023, 10, 1270. [Google Scholar] [CrossRef]
- Magalon, J.; Bausset, O.; Serratrice, N.; Giraudo, L.; Aboudou, H.; Veran, J.; Magalon, G.; Dignat-Georges, F.; Sabatier, F. Characterization and Comparison of 5 Platelet-Rich Plasma Preparations in a Single-Donor Model. Arthroscopy 2014, 30, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Kushida, S.; Kakudo, N.; Morimoto, N.; Hara, T.; Ogawa, T.; Mitsui, T.; Kusumoto, K. Platelet and Growth Factor Concentrations in Activated Platelet-Rich Plasma: A Comparison of Seven Commercial Separation Systems. J. Artif. Organs 2014, 17, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Prost, D.; Bardot, T.; Baud, A.; Calvo, A.; Aumont, S.; Collado, H.; Borne, J.; Rajon, O.; Ponsot, A.; Malaterre, A.; et al. Long Term Improvement of Knee Osteoarthritis after Injection of Single High/Very High Volume of Very Pure PRP: A Retrospective Analysis of Patients Optimally Managed in Dedicated Centers. Regen. Ther. 2024, 25, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Guillibert, C.; Charpin, C.; Raffray, M.; Benmenni, A.; Dehaut, F.X.; El Ghobeira, G.; Giorgi, R.; Magalon, J.; Arniaud, D. Single Injection of High Volume of Autologous Pure PRP Provides a Significant Improvement in Knee Osteoarthritis: A Prospective Routine Care Study. Int. J. Mol. Sci. 2019, 20, 1327. [Google Scholar] [CrossRef]
- Guenoun, D.; Magalon, J.; de Torquemada, I.; Vandeville, C.; Sabatier, F.; Champsaur, P.; Jacquet, C.; Ollivier, M. Treatment of Degenerative Meniscal Tear with Intrameniscal Injection of Platelets Rich Plasma. Diagn. Interv. Imaging 2020, 101, 169–176. [Google Scholar] [CrossRef]
- De Matthaeis, A.; Bianchi, M.; Putzulu, R.; Maccauro, G. High-Dose Neutrophil-Depleted Platelet-Rich Plasma Therapy for Knee Osteoarthritis: A Retrospective Study. J. Clin. Med. 2024, 13, 4816. [Google Scholar] [CrossRef]
- Sasaki, G.H. The Effects of Lower vs Higher Cell Number of Platelet-Rich Plasma (PRP) on Hair Density and Diameter in Androgenetic Alopecia (AGA): A Randomized, Double-Blinded, Placebo, Parallel-Group Half-Scalp IRB-Approved Study. Aesthet. Surg. J. 2021, 41, NP1659–NP1672. [Google Scholar] [CrossRef]
- Mende, E.; Love, R.J.; Young, J.-L. A Comprehensive Summary of the Meta-Analyses and Systematic Reviews on Platelet-Rich Plasma Therapies for Knee Osteoarthritis. Mil. Med. 2024. [Google Scholar] [CrossRef]
- Johal, H.; Khan, M.; Yung, S.-H.P.; Dhillon, M.S.; Fu, F.H.; Bedi, A.; Bhandari, M. Impact of Platelet-Rich Plasma Use on Pain in Orthopaedic Surgery: A Systematic Review and Meta-Analysis. Sports Health 2019, 11, 355–366. [Google Scholar] [CrossRef]
- Bansal, H.; Leon, J.; Pont, J.L.; Wilson, D.A.; Bansal, A.; Agarwal, D.; Preoteasa, I. Platelet-Rich Plasma (PRP) in Osteoarthritis (OA) Knee: Correct Dose Critical for Long Term Clinical Efficacy. Sci. Rep. 2021, 11, 3971. [Google Scholar] [CrossRef]
- Patel, S.; Gahlaut, S.; Thami, T.; Chouhan, D.K.; Jain, A.; Dhillon, M.S. Comparison of Conventional Dose Versus Superdose Platelet-Rich Plasma for Knee Osteoarthritis: A Prospective, Triple-Blind, Randomized Clinical Trial. Orthop. J. Sports Med. 2024, 12. [Google Scholar] [CrossRef]
- Nouri, F.; Babaee, M.; Peydayesh, P.; Esmaily, H.; Raeissadat, S.A. Comparison between the Effects of Ultrasound Guided Intra-Articular Injections of Platelet-Rich Plasma (PRP), High Molecular Weight Hyaluronic Acid, and Their Combination in Hip Osteoarthritis: A Randomized Clinical Trial. BMC Musculoskelet. Disord. 2022, 23, 856. [Google Scholar] [CrossRef]
- Berger, D.R.; Centeno, C.J.; Steinmetz, N.J. Platelet Lysates from Aged Donors Promote Human Tenocyte Proliferation and Migration in a Concentration-Dependent Manner. Bone Jt. Res. 2019, 8, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.L.; Paterson, K.L.; Metcalf, B.R.; Duong, V.; Eyles, J.; Kasza, J.; Wang, Y.; Cicuttini, F.; Buchbinder, R.; Forbes, A.; et al. Effect of Intra-Articular Platelet-Rich Plasma vs Placebo Injection on Pain and Medial Tibial Cartilage Volume in Patients With Knee Osteoarthritis: The RESTORE Randomized Clinical Trial. JAMA 2021, 326, 2021–2030. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, Z.; Liao, B.; Song, Z.; Xiao, T.; Zhu, P. Sodium Hyaluronate and Platelet-Rich Plasma for Partial-Thickness Rotator Cuff Tears. Med. Sci. Sports Exerc. 2019, 51, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Alessio-Mazzola, M.; Repetto, I.; Biti, B.; Trentini, R.; Formica, M.; Felli, L. Autologous US-Guided PRP Injection versus US-Guided Focal Extracorporeal Shock Wave Therapy for Chronic Lateral Epicondylitis: A Minimum of 2-Year Follow-up Retrospective Comparative Study. J. Orthop. Surg. 2018, 26. [Google Scholar] [CrossRef]
- Lim, W.; Park, S.H.; Kim, B.; Kang, S.W.; Lee, J.W.; Moon, Y.L. Relationship of Cytokine Levels and Clinical Effect on Platelet-Rich Plasma-Treated Lateral Epicondylitis. J. Orthop. Res. 2018, 36, 913–920. [Google Scholar] [CrossRef]
- Fitzpatrick, J.; Bulsara, M.K.; O’Donnell, J.; McCrory, P.R.; Zheng, M.H. The Effectiveness of Platelet-Rich Plasma Injections in Gluteal Tendinopathy: A Randomized, Double-Blind Controlled Trial Comparing a Single Platelet-Rich Plasma Injection With a Single Corticosteroid Injection. Am. J. Sports Med. 2018, 46, 933–939. [Google Scholar] [CrossRef]
- Thompson, G.; Pearson, J.F. No Attributable Effects of PRP on Greater Trochanteric Pain Syndrome. N. Z. Med. J. 2019, 132, 22–32. [Google Scholar]
- Scott, A.; LaPrade, R.F.; Harmon, K.G.; Filardo, G.; Kon, E.; Della Villa, S.; Bahr, R.; Moksnes, H.; Torgalsen, T.; Lee, J.; et al. Platelet-Rich Plasma for Patellar Tendinopathy: A Randomized Controlled Trial of Leukocyte-Rich PRP or Leukocyte-Poor PRP Versus Saline. Am. J. Sports Med. 2019, 47, 1654–1661. [Google Scholar] [CrossRef]
- Rodas, G.; Soler-Rich, R.; Rius-Tarruella, J.; Alomar, X.; Balius, R.; Orozco, L.; Masci, L.; Maffulli, N. Effect of Autologous Expanded Bone Marrow Mesenchymal Stem Cells or Leukocyte-Poor Platelet-Rich Plasma in Chronic Patellar Tendinopathy (With Gap >3 Mm): Preliminary Outcomes After 6 Months of a Double-Blind, Randomized, Prospective Study. Am. J. Sports Med. 2021, 49, 1492–1504. [Google Scholar] [CrossRef] [PubMed]
- Erroi, D.; Sigona, M.; Suarez, T.; Trischitta, D.; Pavan, A.; Vulpiani, M.C.; Vetrano, M. Conservative Treatment for Insertional Achilles Tendinopathy: Platelet-Rich Plasma and Focused Shock Waves. A Retrospective Study. Muscles Ligaments Tendons J. 2017, 7, 98–106. [Google Scholar] [CrossRef]
- Usuelli, F.G.; Grassi, M.; Maccario, C.; Vigano’, M.; Lanfranchi, L.; Alfieri Montrasio, U.; de Girolamo, L. Intratendinous Adipose-Derived Stromal Vascular Fraction (SVF) Injection Provides a Safe, Efficacious Treatment for Achilles Tendinopathy: Results of a Randomized Controlled Clinical Trial at a 6-Month Follow-Up. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 2000–2010. [Google Scholar] [CrossRef] [PubMed]
- Vale, D.; Pereira, A.; Andrade, J.P.; Castro, J.P.; Vale, D.A.; Pereira, A.; Andrade, J.P.; Castro, J.P. The Role of Platelet-Rich Plasma Injection for Muscle Strains in Athletes. Cureus 2024, 16. [Google Scholar] [CrossRef]
- Raum, G.; Kenyon, C.; Bowers, R. Platelet-Poor versus Platelet-Rich Plasma for the Treatment of Muscle Injuries. Curr. Sports Med. Rep. 2024, 23, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Belk, J.W.; Kraeutler, M.J.; Houck, D.A.; Goodrich, J.A.; Dragoo, J.L.; McCarty, E.C. Platelet-Rich Plasma Versus Hyaluronic Acid for Knee Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am. J. Sports Med. 2021, 49, 249–260. [Google Scholar] [CrossRef]
- Everts, P.A.; Devilee, R.J.J.; Brown Mahoney, C.; Van Erp, A.; Oosterbos, C.J.M.; Stellenboom, M.; Knape, J.T.A.; Van Zundert, A. Exogenous Application of Platelet-Leukocyte Gel during Open Subacromial Decompression Contributes to Improved Patient Outcome. A Prospective Randomized Double-Blind Study. Eur. Surg. Res. 2008, 40, 203–210. [Google Scholar] [CrossRef]
- Lin, M.T.; Wei, K.C.; Wu, C.H. Effectiveness of Platelet-Rich Plasma Injection in Rotator Cuff Tendinopathy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diagnostics 2020, 10, 189. [Google Scholar] [CrossRef]
- Urits, I.; Smoots, D.; Franscioni, H.; Patel, A.; Fackler, N.; Wiley, S.; Berger, A.A.; Kassem, H.; Urman, R.D.; Manchikanti, L.; et al. Injection Techniques for Common Chronic Pain Conditions of the Foot: A Comprehensive Review. Pain. Ther. 2020, 9, 145–160. [Google Scholar] [CrossRef]
- Fu, C.J.; Sun, J.B.; Bi, Z.G.; Wang, X.M.; Yang, C.L. Evaluation of Platelet-Rich Plasma and Fibrin Matrix to Assist in Healing and Repair of Rotator Cuff Injuries: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2017, 31, 158–172. [Google Scholar] [CrossRef]
- Verhaegen, F.; Brys, P.; Debeer, P. Rotator Cuff Healing after Needling of a Calcific Deposit Using Platelet-Rich Plasma Augmentation: A Randomized, Prospective Clinical Trial. J. Shoulder Elb. Surg. 2016, 25, 169–173. [Google Scholar] [CrossRef]
- Jain, D.; Goyal, T.; Verma, N.; Paswan, A.K.; Dubey, R.K. Intradiscal Platelet-Rich Plasma Injection for Discogenic Low Back Pain and Correlation with Platelet Concentration: A Prospective Clinical Trial. Pain. Med. 2020, 21, 2719–2725. [Google Scholar] [CrossRef] [PubMed]
- Kuffler, D.P. Platelet-Rich Plasma Promotes Axon Regeneration, Wound Healing, and Pain Reduction: Fact or Fiction. Mol. Neurobiol. 2015, 52, 990–1014. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Funasaki, H. Optimal Platelet Concentration for the Therapeutic Effect of Autologous Neutrophil-Reduced Platelet Rich Plasma in a Rat Model of Achilles Tendinopathy. Muscles Ligaments Tendons J. 2020, 10, 612–621. [Google Scholar] [CrossRef]
- Marín Fermín, T.; Scarlat, M.M.; Laupheimer, M.W. Would You Have an Injection without Knowing Its Formula? New Challenges in Platelet-Rich Plasma Therapy. Int. Orthop. 2022, 46, 2179. [Google Scholar] [CrossRef] [PubMed]
- Marín Fermín, T.; Calcei, J.G.; Della Vedova, F.; Martinez Cano, J.P.; Arias Calderon, C.; Imam, M.A.; Khoury, M.; Laupheimer, M.W.; D’Hooghe, P. Review of Dohan Eherenfest et al. (2009) on “Classification of Platelet Concentrates: From Pure Platelet-Rich Plasma (P-PRP) to Leucocyte- and Platelet-Rich Fibrin (L-PRF)”. J. ISAKOS 2024, 9, 215–220. [Google Scholar] [CrossRef]
- Romandini, I.; Boffa, A.; Di Martino, A.; Andriolo, L.; Cenacchi, A.; Sangiorgi, E.; Orazi, S.; Pizzuti, V.; Zaffagnini, S.; Filardo, G. Leukocytes Do Not Influence the Safety and Efficacy of Platelet-Rich Plasma Injections for the Treatment of Knee Osteoarthritis: A Double-Blind Randomized Controlled Trial. Am. J. Sports Med. 2024, 52, 3212–3222. [Google Scholar] [CrossRef]
- Fedorova, N.V.; Ksenofontov, A.L.; Serebryakova, M.V.; Stadnichuk, V.I.; Gaponova, T.V.; Baratova, L.A.; Sud’ina, G.F.; Galkina, S.I. Neutrophils Release Metalloproteinases during Adhesion in the Presence of Insulin, but Cathepsin G in the Presence of Glucagon. Mediat. Inflamm. 2018, 2018, 1574928. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Wu, H.; Hogan, M.C.V.; Wang, J.H.C. The Differential Effects of Leukocyte-Containing and Pure Platelet-Rich Plasma (PRP) on Tendon Stem/Progenitor Cells—Implications of PRP Application for the Clinical Treatment of Tendon Injuries. Stem Cell Res. Ther. 2015, 6, 173. [Google Scholar] [CrossRef]
- Forbes, S.J.; Rosenthal, N. Preparing the Ground for Tissue Regeneration: From Mechanism to Therapy. Nat. Med. 2014, 20, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Hopper, N.M.; Wardale, J.; Rushton, N. Mononuclear Cells Enhance Cell Migration out of Human Articular Cartilage. J. Tissue Eng. Regen. Med. 2012, 6, 279. [Google Scholar]
- Hopper, N.; Wardale, J.; Brooks, R.; Power, J.; Rushton, N. Peripheral Blood Mononuclear Cells Enhance Cartilage Repair in in Vivo Osteochondral Defect Model. PLoS ONE 2015, 10, e0133937. [Google Scholar] [CrossRef] [PubMed]
- Scala, P.; Rehak, L.; Giudice, V.; Ciaglia, E.; Puca, A.A.; Della Porta, G.; Maffulli, N. Stem Cell and Macrophage Roles in Skeletal Muscle Regenerative Medicine. Int. J. Mol. Sci. 2021, 221, 867. [Google Scholar] [CrossRef]
- Caravaggio, F.; Depalmi, F.; Antonelli, M. Treatment of Achilles Tendon Partial Injuries with Injection of Peripheral Blood Mononuclear Cells (PB-MNCs): A Case Series. Eur. J. Transl. Myol. 2022, 32, 10768. [Google Scholar] [CrossRef]
- Caravaggio, F.; Antonelli, M.; Depalmi, F. Regenerative Medicine: Potential Applications for Foot and Ankle Disorders. Lo Scalpello - Otodi Educ. 2021, 35, 117–128. [Google Scholar] [CrossRef]
- Chen, Y.R.; Yan, X.; Yuan, F.Z.; Ye, J.; Xu, B.B.; Zhou, Z.X.; Mao, Z.M.; Guan, J.; Song, Y.F.; Sun, Z.W.; et al. The Use of Peripheral Blood-Derived Stem Cells for Cartilage Repair and Regeneration In Vivo: A Review. Front. Pharmacol. 2020, 11, 404. [Google Scholar] [CrossRef]
- Zhu, Y.; Fu, W. Peripheral Blood-Derived Stem Cells for the Treatment of Cartilage Injuries: A Systematic Review. Front. Bioeng. Biotechnol. 2022, 10, 956614. [Google Scholar] [CrossRef] [PubMed]
- Blomgran, P.; Hammerman, M.; Blomgran, R.; Aspenberg, P. Role of Macrophages during Early Achilles Tendon Healing. Muscles Ligaments Tendons J. 2021, 11, 15–21. [Google Scholar] [CrossRef]
- Scala, P.; Manzo, P.; Lamparelli, E.P.; Lovecchio, J.; Ciardulli, M.C.; Giudice, V.; Selleri, C.; Giordano, E.; Rehak, L.; Maffulli, N.; et al. Peripheral Blood Mononuclear Cells Contribute to Myogenesis in a 3D Bioengineered System of Bone Marrow Mesenchymal Stem Cells and Myoblasts. Front. Bioeng. Biotechnol. 2023, 10, 1075715. [Google Scholar] [CrossRef]
- Schilling, J. Macrophages Fuel Skeletal Muscle Regeneration. Immunometabolism 2021, 3, e210013. [Google Scholar] [CrossRef]
- Rodriguez, A.; Martín, J.; Ginesta, X.; Hotter, G. Macrophage Therapy Activates Endogenous Muscle Stem Cells and Accelerates Muscle Regeneration Adrián Castillo M2RLAB. Preprint. [CrossRef]
- Juhas, M.; Abutaleb, N.; Wang, J.T.; Ye, J.; Shaikh, Z.; Sriworarat, C.; Qian, Y.; Bursac, N. Incorporation of Macrophages into Engineered Skeletal Muscle Enables Enhanced Muscle Regeneration. Nat. Biomed. Eng. 2018, 2, 942–954. [Google Scholar] [CrossRef]
- Montesano, P.; Palermi, S.; Massa, B.; Mazzeo, F. From “Sliding” to “Winding” Filaments Theory: A Narrative Review of Mechanisms behind Skeletal Muscle Contraction. J. Hum. Human. Sport. Exerc. 2020, 15, S806–S814. [Google Scholar] [CrossRef]
- Rehak, L.; Giurato, L.; Meloni, M.; Panunzi, A.; Manti, G.M.; Uccioli, L. The Immune-Centric Revolution in the Diabetic Foot: Monocytes and Lymphocytes Role in Wound Healing and Tissue Regeneration—A Narrative Review. J. Clin. Med. 2022, 11, 889. [Google Scholar] [CrossRef]
- Arnold, L.; Henry, A.; Poron, F.; Baba-Amer, Y.; Van Rooijen, N.; Plonquet, A.; Gherardi, R.K.; Chazaud, B. Inflammatory Monocytes Recruited after Skeletal Muscle Injury Switch into Antiinflammatory Macrophages to Support Myogenesis. J. Exp. Med. 2007, 204, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Schlundt, C.; Fischer, H.; Bucher, C.H.; Rendenbach, C.; Duda, G.N.; Schmidt-Bleek, K. The Multifaceted Roles of Macrophages in Bone Regeneration: A Story of Polarization, Activation and Time. Acta Biomater 2021, 133, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.B.; Chen, Z.X.; Liu, Z.; Qian, X.Y.; Ge, Y.Z.; Zhang, H.Y.; Xu, W.T.; Shan, L.T.; Zhao, D.B. PBMC-Mediated Modulation of Macrophage Polarization in RAW264.7 Cells through STAT1/STAT6 Signaling Cascades. Int. Immunopharmacol. 2024, 138, 112651. [Google Scholar] [CrossRef]
- Saita, Y.; Kobayashi, Y.; Nishio, H.; Wakayama, T.; Fukusato, S.; Uchino, S.; Momoi, Y.; Ikeda, H.; Kaneko, K. Predictors of Effectiveness of Platelet-Rich Plasma Therapy for Knee Osteoarthritis: A Retrospective Cohort Study. J. Clin. Med. 2021, 10, 4514. [Google Scholar] [CrossRef]
- Yoshida, R.; Murray, M.M. Peripheral Blood Mononuclear Cells Enhance the Anabolic Effects of Platelet-Rich Plasma on Anterior Cruciate Ligament Fibroblasts. J. Orthop. Res. 2013, 31, 29–34. [Google Scholar] [CrossRef]
- Everts, P.A.; Malanga, G.A.; Paul, R.V.; Rothenberg, J.B.; Stephens, N.; Mautner, K.R. Assessing Clinical Implications and Perspectives of the Pathophysiological Effects of Erythrocytes and Plasma Free Hemoglobin in Autologous Biologics for Use in Musculoskeletal Regenerative Medicine Therapies. A Review. Regen. Ther. 2019, 11, 56. [Google Scholar] [CrossRef]
- Gupta, A.; Maffulli, N.; Jain, V.K. Red Blood Cells in Platelet-Rich Plasma: Avoid If at All Possible. Biomedicines 2023, 11, 2425. [Google Scholar] [CrossRef] [PubMed]
- Braun, H.J.; Kim, H.J.; Chu, C.R.; Dragoo, J.L. The Effect of Platelet-Rich Plasma Formulations and Blood Products on Human Synoviocytes. Am. J. Sports Med. 2014, 42, 1204–1210. [Google Scholar] [CrossRef]
- Palermi, S.; Gnasso, R.; Belviso, I.; Iommazzo, I.; Vecchiato, M.; Marchini, A.; Corsini, A.; Vittadini, F.; Demeco, A.; De Luca, M.; et al. Stem Cell Therapy in Sports Medicine: Current Applications, Challenges and Future Perspectives. J. Basic. Clin. Physiol. Pharmacol. 2023, 34, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.L.; Vavken, P.; Murray, M.M. Erythrocytes Inhibit Ligament Fibroblast Proliferation in a Collagen Scaffold. J. Orthop. Res. 2011, 29, 1361–1366. [Google Scholar] [CrossRef]
- Harrison, S.; Vavken, P.; Kevy, S.; Jacobson, M.; Zurakowski, D.; Murray, M.M. Platelet Activation by Collagen Provides Sustained Release of Anabolic Cytokines. Am. J. Sports Med. 2011, 39, 729–734. [Google Scholar] [CrossRef]
- Patel, H.; Pundkar, A.; Shrivastava, S.; Chandanwale, R.; Jaiswal, A.M. A Comprehensive Review on Platelet-Rich Plasma Activation: A Key Player in Accelerating Skin Wound Healing. Cureus 2023, 15. [Google Scholar] [CrossRef] [PubMed]
- Roh, Y.H.; Kim, W.; Park, K.U.; Oh, J.H. Cytokine-Release Kinetics of Platelet-Rich Plasma According to Various Activation Protocols. Bone Jt. Res. 2016, 5, 37. [Google Scholar] [CrossRef]
- Han, B.; Woodell-May, J.; Ponticiello, M.; Yang, Z.; Nimni, M. The Effect of Thrombin Activation of Platelet-Rich Plasma on Demineralized Bone Matrix Osteoinductivity. J. Bone Jt. Surg. Am. 2009, 91, 1459–1470. [Google Scholar] [CrossRef]
- Mishra, A.; Woodall, J.; Vieira, A. Treatment of Tendon and Muscle Using Platelet-Rich Plasma. Clin. Sports Med. 2009, 28, 113–125. [Google Scholar] [CrossRef]
- Xiong, G.; Lingampalli, N.; Koltsov, J.C.B.; Leung, L.L.; Bhutani, N.; Robinson, W.H.; Chu, C.R. Men and Women Differ in the Biochemical Composition of Platelet-Rich Plasma. Am. J. Sports Med. 2017, 46, 409. [Google Scholar] [CrossRef]
- Sánchez, M.; Jorquera, C.; de Dicastillo, L.L.; Martínez, N.; Espregueira-Mendes, J.; Vergés, J.; Azofra, J.; Delgado, D. Women Show a Positive Response to Platelet-Rich Plasma despite Presenting More Painful Knee Osteoarthritis than Men. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 2516–2525. [Google Scholar] [CrossRef] [PubMed]
- Nishio, H.; Saita, Y.; Kobayashi, Y.; Takaku, T.; Fukusato, S.; Uchino, S.; Wakayama, T.; Ikeda, H.; Kaneko, K. Platelet-Rich Plasma Promotes Recruitment of Macrophages in the Process of Tendon Healing. Regen. Ther. 2020, 14, 262–270. [Google Scholar] [CrossRef] [PubMed]
PRP System | Blood Volume (mL) | ACD (mL) | PRP Volume (mL) | Plts Enrichment Factor (Average) | Platelet Recovery Efficiency (%) Mean Value | Platelet Concentration (×106/µL) Mean Value | Platelet Dose (Billions Plts) Mean Value | Centrifugation | RBC Contamination | PRP Type | Neutrophils | PBMNC | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Magellan | 25–60 | 4–6 | 3–6 | 5.5 x | 65 | 780 | 5.4 | Double spin | yes | LR-PRP | yes | yes | [24,25,27,28,30] |
Mini GPS III | 27 | 3 | 3.0 | 4 X | 49.2 | 1015 | 2.8 | Double spin | yes | LR-PRP | yes | yes | [29,31,33] |
GPS II | 55 | 5 | 6 | 2.3 X | 22.9 | 1076 | 3.6 | Double spin | yes | LR-PRP | yes | yes | [26,27,28,29,30] |
Smartprep Terumo | 60 | 6 | 7–10 | 4 X | 65 | 720 | 4.9 | Double spin | yes | LR-PRP | yes | yes | [28,30] |
Hy Tissue 20 Fidia | 18 | 2 | Single spin 4–8 mL Double spin 2–3 mL | 2–3X | 83.5 75–81 | 288–497 863–968 | 2-2.5 2.4-2.9 | Single spin Double spin | no no | LP-PRP | no no | no no | [34,35,36], internal data |
Arthrex ACP | 13 | 2 | 3 2–5 4 4.8 | 1.3 X | 29.5 | 357–390 357 372 | 1.25 | Single spin | no | LP-PRP | no | no | [12,24,26,28,29,30,31,32,33] |
Tropocells 22 Estar Medical | 20 | 2 (buffered pH 7.4) | 4.0 | 5 X | 85 | 1080 | 4 | Single spin | no | LP-PRP | no | Yes | [37,38] |
RegenLab BCT | 8 | 1 | 3 | 0.95 X 0.59 X | 82 | 142.5 | 1.35 | Single spin | no | LP-PRP | no | no | [20,21,28,29,30,32,33] |
Endoret BTI | 9 | 1 | 2 | 1.3 | 48 | 150 | 1 | Single spin | no | LP-PRP | no | no | [28,30] |
Parameter | Recommendation | LoE |
---|---|---|
Platelet dose in OA | Aim for 5–10 billion platelets per injection for optimal efficacy | 1A |
Minimum platelet dose threshold | PRP doses below 4 billion platelets per injection are ineffective | 1A |
Cumulative platelet dose | Total dose of 10+ billion platelets across multiple injections improves outcomes | 2A |
LP-PRP vs. LR-PRP for OA | LP-PRP is preferred for intra-articular injections due to lower inflammation | 1A |
Leukocyte concentration in PRP | Neutrophil-rich PRP may prolong inflammation, while monocyte-enriched PRP may enhance healing | 2A |
PBMNC-enriched PRP | PBMNC-enriched PRP may provide superior tissue regeneration | 2B |
RBC contamination | PRP should be as RBC-free as possible to avoid cytotoxic effects | 1A |
PRP activation method | Endogenous activation (via tissue contact) promotes sustained growth factor release | 2A |
PRP for pain modulation | Higher platelet doses (>4 billion) enhance PRP’s analgesic effects | 2A |
Gender differences in PRP | Male PRP has higher pro-inflammatory cytokines, while female PRP has a more balanced regenerative profile | 2B |
Age-related PRP variability | Older patients may require PRP formulations with enhanced IGF-1 support | 2B |
Standardization of PRP devices | Clinicians should report platelet dose rather than just platelet concentration | 1A |
Optimizing PRP for different conditions | PRP formulations should be personalized based on tissue type and patient demographic | 2B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corsini, A.; Perticarini, L.; Palermi, S.; Bettinsoli, P.; Marchini, A. Re-Evaluating Platelet-Rich Plasma Dosing Strategies in Sports Medicine: The Role of the “10 Billion Platelet Dose” in Optimizing Therapeutic Outcomes—A Narrative Review. J. Clin. Med. 2025, 14, 2714. https://doi.org/10.3390/jcm14082714
Corsini A, Perticarini L, Palermi S, Bettinsoli P, Marchini A. Re-Evaluating Platelet-Rich Plasma Dosing Strategies in Sports Medicine: The Role of the “10 Billion Platelet Dose” in Optimizing Therapeutic Outcomes—A Narrative Review. Journal of Clinical Medicine. 2025; 14(8):2714. https://doi.org/10.3390/jcm14082714
Chicago/Turabian StyleCorsini, Alessandro, Loris Perticarini, Stefano Palermi, Pierfrancesco Bettinsoli, and Andrea Marchini. 2025. "Re-Evaluating Platelet-Rich Plasma Dosing Strategies in Sports Medicine: The Role of the “10 Billion Platelet Dose” in Optimizing Therapeutic Outcomes—A Narrative Review" Journal of Clinical Medicine 14, no. 8: 2714. https://doi.org/10.3390/jcm14082714
APA StyleCorsini, A., Perticarini, L., Palermi, S., Bettinsoli, P., & Marchini, A. (2025). Re-Evaluating Platelet-Rich Plasma Dosing Strategies in Sports Medicine: The Role of the “10 Billion Platelet Dose” in Optimizing Therapeutic Outcomes—A Narrative Review. Journal of Clinical Medicine, 14(8), 2714. https://doi.org/10.3390/jcm14082714