Evaluation of the Utility of Hybrid PET/MR Neuroimaging in Inflammatory Demyelination and Encephalitis
Abstract
:1. Introduction
2. Materials and Methods
3. Summary of MRI Techniques and Sequences Useful in Neuroimaging of Inflammatory Demyelination and Encephalitis
4. Inflammatory Demyelinating Diseases of the Central Nervous System
4.1. Multiple Sclerosis
4.1.1. Demyelination
Scale | Radiotracer (Binding) | Quantitative Metric | Location of Tracer Uptake | Correlation | Research | |
---|---|---|---|---|---|---|
neuroinflammation | ||||||
disability | EDSS | 11C-PBR28 (TSPO) | SUVR | cortex, thalamus, hippocampus, basal ganglia, NAWM, WM lesions | positive | Herranz et al. (2016) [41] |
cortical lesions | Herranz et al. (2020) [19] | |||||
meningeal/parameningeal tissue | Herranz et al. (2024) [42] | |||||
cerebellar lesions and NAWM, cNAGM | Barletta et al. (2020) [43] | |||||
(R)-[11C]PK11195 (TSPO) | VT | cortical GM, cerebellar cortex, corpus callosum, caudatum, total T2-lesion, thalamus, NAWM | Pitombeira et al. (2022) [36] | |||
9-HPT | (R)-[11C]PK11195 (TSPO) | VT | cortical GM, cerebellar cortex, corpus callosum, caudatum, T2- lesions, NAWM | positive | Pitombeira et al. (2022) [36] | |
cognitive impairment | SDMT | 11C-PBR28 (TSPO) | SUVR | thalamus, hippocampus, NAWM | negative | Herranz et al. (2016) [41] |
cortical lesions | Herranz et al. (2020) [19] | |||||
cerebellar NAWM | Barletta et al. (2020) [43] | |||||
(R)-[11C]PK11195 (TSPO) | VT | corpus callosum | Pitombeira et al. (2022) [36] | |||
CVLT-II BVMT-R | 11C-PBR28 (TSPO) | SUVR | temporal and occipital cortex, cingulate, prefrontal cortex, thalamus | negative | Herranz et al. (2016) [41] | |
demyelination | ||||||
disability | EDSS | 11C-PIB (myelin, β -amyloid) | DVR | corpus callosum, caudate, total T2-lesion | negative | Pitombeira et al. (2022) [36] |
9-HPT | 11C-PIB (myelin, β -amyloid) | DVR | RRMS group only caudate, lesions, corpus callosum | negative | Campanholo et al. (2022) [38] | |
25-FWT | [18F]florbetapir (myelin, β -amyloid) | DVR | RRMS group T1/T2 lesions | negative | Carotenuto et al. (2020) [34] | |
11C-PIB (myelin, β -amyloid) | DVR | RRMS group only lesions | negative | Campanholo et al. (2022) [38] | ||
cognitive impairment | SDMT | 11C-PIB (myelin, β -amyloid) | DVR | corpus callosum | positive | Pitombeira et al. (2022) [36] |
EF/IPS (SDMT+PASAT+WLG) | 11C-PIB (myelin, β -amyloid) | DVR | RRMS group only caudate, thalamus, corpus callosum, cortical GM, WM, NAWM | positive | Campanholo et al. (2022) [38] |
4.1.2. Neuroinflammation
4.1.3. Summary
4.2. Acute Disseminated Encephalomyelitis
5. Encephalitis
5.1. Autoimmune Encephalitis
5.2. Viral Encephalitis
5.3. Parasitic Encephalitis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hartung, T.; Bartels, F.; Kuchling, J.; Krohn, S.; Leidel, J.; Mantwill, M.; Wurdack, K.; Yogeshwar, S.; Scheel, M.; Finke, C. MRI findings in autoimmune encephalitis. Rev. Neurol. 2024, 180, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Hemond, C.C.; Bakshi, R. Magnetic Resonance Imaging in Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a028969. [Google Scholar] [CrossRef] [PubMed]
- Louapre, C. Conventional and advanced MRI in multiple sclerosis. Rev. Neurol. 2018, 174, 391–397. [Google Scholar] [CrossRef]
- Ganzetti, M.; Wenderoth, N.; Mantini, D. Whole brain myelin mapping using T1- and T2-weighted MR imaging data. Front. Hum. Neurosci. 2014, 8, 671. [Google Scholar] [CrossRef]
- Widmann, G.; Henninger, B.; Kremser, C.; Jaschke, W. MRI Sequences in Head & Neck Radiology—State of the Art. RoFo 2017, 189, 413–422. [Google Scholar]
- Tourbah, A.; Deschamps, R.; Stievenart, J.L.; Lopez, A.; Iba-Zizen, M.T.; Lyon-Caen, O.; Cabanis, E.A. Magnetic resonance imaging using FLAIR pulse sequence in white matter diseases. J. Neuroradiol. 1996, 23, 217–222. [Google Scholar]
- Kimura, M.; Azuma, Y.; Taguchi, S.; Takagi, M.; Mori, H.; Shimomura, Y.; Niwa, J.-I.; Doyu, M.; Okumura, A. Subcortical infarction in a young adult with Hunter syndrome. Brain Dev. 2022, 44, 343–346. [Google Scholar] [CrossRef]
- Raji, C.A.; Benzinger, T.L.S. The Value of Neuroimaging in Dementia Diagnosis. Continuum 2022, 28, 800–821. [Google Scholar] [CrossRef]
- Nelson, F.; Poonawalla, A.; Hou, P.; Wolinsky, J.S.; Narayana, P.A. 3D MPRAGE improves classification of cortical lesions in multiple sclerosis. Mult. Scler. 2008, 14, 1214–1219. [Google Scholar] [CrossRef]
- Mannelli, L.; Nougaret, S.; Vargas, H.A.; Do, R.K. Advances in diffusion-weighted imaging. Radiol. Clin. N. Am. 2015, 53, 569–581. [Google Scholar] [CrossRef]
- Yoshida, S.; Oishi, K.; Faria, A.V.; Mori, S. Diffusion tensor imaging of normal brain development. Pediatr. Radiol. 2013, 43, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Vandermosten, M.; Boets, B.; Wouters, J.; Ghesquière, P. A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neurosci. Biobehav. Rev. 2012, 36, 1532–1552. [Google Scholar] [CrossRef]
- Solowij, N.; Zalesky, A.; Lorenzetti, V.; Yücel, M. Chapter 40—Chronic Cannabis Use and Axonal Fiber Connectivity. In Handbook of Cannabis and Related Pathologies; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2017; pp. 391–400. [Google Scholar]
- Seiler, S.; Ropele, S.; Schmidt, R. Magnetization transfer imaging for in vivo detection of microstructural tissue changes in aging and dementia: A short literature review. J. Alzheimers Dis. 2014, 42 (Suppl. S3), S229–S237. [Google Scholar] [CrossRef]
- Bellmann-Strobl, J.; Stiepani, H.; Wuerfel, J.; Bohner, G.; Paul, F.; Warmuth, C.; Aktas, O.; Wandinger, K.P.; Zipp, F.; Klingebiel, R. MR spectroscopy (MRS) and magnetisation transfer imaging (MTI), lesion load and clinical scores in early relapsing remitting multiple sclerosis: A combined cross-sectional and longitudinal study. Eur. Radiol. 2009, 19, 2066–2074. [Google Scholar] [CrossRef]
- Filippi, M.; Brück, W.; Chard, D.; Fazekas, F.; Geurts, J.J.G.; Enzinger, C.; Hametner, S.; Kuhlmann, T.; Preziosa, P.; Rovira, À.; et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2019, 18, 198–210. [Google Scholar] [CrossRef]
- Gracien, R.; Reitz, S.C.; Hof, S.; Fleischer, V.; Zimmermann, H.; Droby, A.; Steinmetz, H.; Zipp, F.; Deichmann, R.; Klein, J.C. Assessment of cortical damage in early multiple sclerosis with quantitative T2 relaxometry. NMR Biomed. 2016, 29, 444–450. [Google Scholar] [CrossRef]
- Chavhan, G.B.; Babyn, P.S.; Thomas, B.; Shroff, M.M.; Haacke, E.M. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 2009, 29, 1433–1449. [Google Scholar] [CrossRef]
- Herranz, E.; Louapre, C.; Treaba, C.A.; Govindarajan, S.T.; Ouellette, R.; Mangeat, G.; Loggia, M.L.; Cohen-Adad, J.; Klawiter, E.C.; Sloane, J.A.; et al. Profiles of cortical inflammation in multiple sclerosis by (11)C-PBR28 MR-PET and 7 Tesla imaging. Mult. Scler. 2020, 26, 1497–1509. [Google Scholar] [CrossRef]
- Haller, S.; Haacke, E.M.; Thurnher, M.M.; Barkhof, F. Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications. Radiology 2021, 299, 3–26. [Google Scholar] [CrossRef]
- Höftberger, R.; Lassmann, H. Inflammatory demyelinating diseases of the central nervous system. Handb. Clin. Neurol. 2017, 145, 263–283. [Google Scholar]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017, 13, 25–36. [Google Scholar] [CrossRef]
- Garg, N.; Smith, T.W. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 2015, 5, e00362. [Google Scholar] [CrossRef]
- Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol. 2018, 31, 752–759. [Google Scholar] [CrossRef]
- Katz Sand, I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol. 2015, 28, 193–205. [Google Scholar] [CrossRef]
- Doshi, A.; Chataway, J. Multiple sclerosis, a treatable disease. Clin. Med. 2016, 16 (Suppl. S6), s53–s59. [Google Scholar] [CrossRef]
- Belwal, P.; Singh, S. Deep Learning techniques to detect and analysis of multiple sclerosis through MRI: A systematic literature review. Comput. Biol. Med. 2025, 185, 109530. [Google Scholar] [CrossRef]
- Haki, M.; Al-Biati, H.A.; Al-Tameemi, Z.S.; Ali, I.S.; Al-Hussaniy, H.A. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment. Medicine 2024, 103, e37297. [Google Scholar] [CrossRef]
- Bodini, B.; Veronese, M.; García-Lorenzo, D.; Battaglini, M.; Poirion, E.; Chardain, A.; Freeman, L.; Louapre, C.; Tchikviladze, M.; Papeix, C.; et al. Dynamic Imaging of Individual Remyelination Profiles in Multiple Sclerosis. Ann. Neurol. 2016, 79, 726–738. [Google Scholar] [CrossRef]
- Niccolini, F.; Su, P.; Politis, M. PET in multiple sclerosis. Clin. Nucl. Med. 2015, 40, e46–e52. [Google Scholar] [CrossRef]
- Bao, W.; Xie, F.; Zuo, C.; Guan, Y.; Huang, Y.H. PET Neuroimaging of Alzheimer’s Disease: Radiotracers and Their Utility in Clinical Research. Front. Aging Neurosci. 2021, 13, 624330. [Google Scholar] [CrossRef] [PubMed]
- Auvity, S.; Tonietto, M.; Caillé, F.; Bodini, B.; Bottlaender, M.; Tournier, N.; Kuhnast, B.; Stankoff, B. Repurposing radiotracers for myelin imaging: A study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol,11C-MeDAS, and 11C-PiB. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Carotenuto, A.; Giordano, B.; Dervenoulas, G.; Wilson, H.; Veronese, M.; Chappell, Z.; Polychronis, S.; Pagano, G.; Mackewn, J.; Turkheimer, F.E.; et al. [(18)F]Florbetapir PET/MR imaging to assess demyelination in multiple sclerosis. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 366–378. [Google Scholar] [CrossRef]
- Zhang, M.; Ni, Y.; Zhou, Q.; He, L.; Meng, H.; Gao, Y.; Huang, X.; Meng, H.; Li, P.; Chen, M.; et al. 18F-florbetapir PET/MRI for quantitatively monitoring myelin loss and recovery in patients with multiple sclerosis: A longitudinal study. EClinicalMedicine 2021, 37, 100982. [Google Scholar] [CrossRef]
- Pitombeira, M.S.; Koole, M.; Campanholo, K.R.; Souza, A.M.; Duran, F.L.S.; Solla, D.J.F.; Mendes, M.F.; Pereira, S.L.A.; Rimkus, C.M.; Busatto, G.F.; et al. Innate immune cells and myelin profile in multiple sclerosis: A multi- tracer PET/MR study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4551–4566. [Google Scholar] [CrossRef]
- Gentili, L.; Capuano, R.; Gaetani, L.; Fiacca, A.; Bisecco, A.; D’Ambrosio, A.; Mancini, A.; Guercini, G.; Tedeschi, G.; Parnetti, L.; et al. Impact of post-contrast MRI in the definition of active multiple sclerosis. J. Neurol. Sci. 2022, 440, 120338. [Google Scholar] [CrossRef]
- Campanholo, K.; Pitombeira, M.S.; Rimkus, C.; Mendes, M.; Apóstolos-Pereira, S.; Filho, G.B.; Callegaro, D.; Buchpiguel, C.; Duran, F.; Faria, D.D.P. Myelin imaging measures as predictors of cognitive impairment in MS patients: A hybrid PET-MRI study. Mult. Scler. Relat. Disord. 2022, 57, 103331. [Google Scholar] [CrossRef]
- Lipp, I.; Jones, D.K.; Bells, S.; Sgarlata, E.; Foster, C.; Stickland, R.; Davidson, A.E.; Tallantyre, E.C.; Robertson, N.P.; Wise, R.G.; et al. Comparing MRI metrics to quantify white matter microstructural damage in multiple sclerosis. Hum. Brain Mapp. 2019, 40, 2917–2932. [Google Scholar] [CrossRef]
- York, E.N.; Thrippleton, M.J.; Meijboom, R.; Hunt, D.P.J.; Waldman, A.D. Quantitative magnetization transfer imaging in relapsing-remitting multiple sclerosis: A systematic review and meta-analysis. Brain Commun. 2022, 4, fcac088. [Google Scholar] [CrossRef]
- Herranz, E.; Giannì, C.; Louapre, C.; Treaba, C.A.; Govindarajan, S.T.; Ouellette, R.; Loggia, M.L.; Sloane, J.A.; Madigan, N.; Izquierdo-Garcia, D.; et al. Neuroinflammatory component of gray matter pathology in multiple sclerosis. Ann. Neurol. 2016, 80, 776. [Google Scholar] [CrossRef]
- Herranz, E.; Treaba, C.A.; Barletta, V.T.; Mehndiratta, A.; Ouellette, R.; Sloane, J.A.; Ionete, C.; Babu, S.; Mastantuono, M.; Magon, S.; et al. Characterization of cortico-meningeal translocator protein expression in multiple sclerosis. Brain. 2024, 147, 2566–2578. [Google Scholar] [CrossRef] [PubMed]
- Barletta, V.T.; Herranz, E.; Treaba, C.A.; Ouellette, R.; Mehndiratta, A.; Loggia, M.L.; Klawiter, E.C.; Ionete, C.; Jacob, S.A.; Mainero, C. Evidence of diffuse cerebellar neuroinflammation in multiple sclerosis by (11)C-PBR28 MR-PET. Mult. Scler. 2020, 26, 668–678. [Google Scholar] [CrossRef]
- Du, S.; Yuan, C.; Zhou, Q.; Huang, X.; Meng, H.; Chen, M.; Wang, H.; Huang, Q.; Xiang, S.; Qian, D.; et al. Deep learning-based PET/MR radiomics for the classification of annualized relapse rate in multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 75, 104750. [Google Scholar] [CrossRef]
- Zhou, R.; Ji, B.; Kong, Y.; Qin, L.; Ren, W.; Guan, Y.; Ni, R. PET Imaging of Neuroinflammation in Alzheimer’s Disease. Front. Immunol. 2021, 12, 739130. [Google Scholar] [CrossRef]
- Tommasin, S.; Giannì, C.; Treaba, C.A.; Herranz, E.; Barletta, V.; Loggia, M.L.; Pantano, P.; Mainero, C. The association between white matter chronic inflammation and degeneration in multiple sclerosis: A combined 11C-PBR28 PET-MRI study. Mult. Scler. Relat. Disord. 2025, 96, 106350. [Google Scholar] [CrossRef]
- Oreja-Guevara, C.; Martínez-Yélamos, S.; Eichau, S.; Llaneza, M.Á.; Martín-Martínez, J.; Peña-Martínez, J.; Meca-Lallana, V.; Alonso-Torres, A.M.; Moral-Torres, E.; Río, J.; et al. Beyond lines of treatment: Embracing early high-efficacy disease-modifying treatments for multiple sclerosis management. Ther. Adv. Neurol. Disord. 2024, 17, 17562864241284372. [Google Scholar] [CrossRef]
- Esposito, S.; Di Pietro, G.M.; Madini, B.; Mastrolia, M.V.; Rigante, D. A spectrum of inflammation and demyelination in acute disseminated encephalomyelitis (ADEM) of children. Autoimmun. Rev. 2015, 14, 923–929. [Google Scholar] [CrossRef]
- Javed, A.; Khan, O. Acute disseminated encephalomyelitis. Handb. Clin. Neurol. 2014, 123, 705–717. [Google Scholar]
- Zhang, M.; Liu, J.; Li, B.; Chen, S. F-florbetapir PET/MRI for quantitatively monitoring demyelination and remyelination in acute disseminated encephalomyelitis. EJNMMI Res. 2019, 9, 96. [Google Scholar] [CrossRef]
- Lohaus, N.; Mader, C.; Jelcic, I.; Reimann, R.; Huellner, M.W. Acute Disseminated Encephalomyelitis in FET PET/MR. Clin. Nucl. Med. 2022, 47, e137–e139. [Google Scholar] [CrossRef]
- Ellul, M.; Solomon, T. Acute encephalitis—Diagnosis and management. Clin. Med. 2018, 18, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Meng, H.; Zhou, Q.; Chunyu, H.; He, L.; Meng, H.; Wang, H.; Wang, Y.; Sun, C.; Xi, Y.; et al. Microglial Activation Imaging Using 18F-DPA-714 PET/MRI for Detecting Autoimmune Encephalitis. Radiology 2024, 310, e230397. [Google Scholar] [CrossRef] [PubMed]
- Nissen, M.S.; Ryding, M.; Meyer, M.; Blaabjerg, M. Autoimmune Encephalitis: Current Knowledge on Subtypes, Disease Mechanisms and Treatment. CNS Neurol. Disord. Drug Targets 2020, 19, 584–598. [Google Scholar] [CrossRef]
- Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.; Cortese, I.; Dale, R.C.; Gelfand, J.M.; Geschwind, M.; et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016, 15, 391–404. [Google Scholar] [CrossRef]
- Sanvito, F.; Pichiecchio, A.; Paoletti, M.; Rebella, G.; Resaz, M.; Benedetti, L.; Massa, F.; Morbelli, S.; Caverzasi, E.; Asteggiano, C.; et al. Autoimmune encephalitis: What the radiologist needs to know. Neuroradiology 2024, 66, 653–675. [Google Scholar] [CrossRef]
- Aydos, U.; Arhan, E.; Akdemir, Ü.Ö.; Akbaş, Y.; Aydin, K.; Atay, L.Ö.; Serdaroğlu, A. Utility of brain fluorodeoxyglucose PET in children with possible autoimmune encephalitis. Nucl. Med. Commun. 2020, 41, 800–809. [Google Scholar] [CrossRef]
- Meng, H.; He, L.; Chunyu, H.; Zhou, Q.; Wang, J.; Qu, Q.; Hai, W.; Zhang, Y.; Li, B.; Zhang, M.; et al. 18F-DPA714 PET/MRI as a potential imaging tool for detecting possible antibody-negative autoimmune encephalitis: A prospective study. J. Neurol. 2024, 271, 7592–7604. [Google Scholar] [CrossRef]
- Dalmau, J.; Graus, F. Diagnostic criteria for autoimmune encephalitis: Utility and pitfalls for antibody-negative disease. Lancet Neurol. 2023, 22, 529–540. [Google Scholar] [CrossRef]
- Deuschl, C.; Rüber, T.; Ernst, L.; Fendler, W.P.; Kirchner, J.; Mönninghoff, C.; Herrmann, K.; Quesada, C.M.; Forsting, M.; Elger, C.E.; et al. 18F-FDG-PET/MRI in the diagnostic work-up of limbic encephalitis. PLoS ONE 2020, 15, e0227906. [Google Scholar] [CrossRef]
- Gallus, M.; Roll, W.; Dik, A.; Barca, C.; Zinnhardt, B.; Hicking, G.; Mueller, C.; Naik, V.N.; Anstötz, M.; Krämer, J.; et al. Translational imaging of TSPO reveals pronounced innate inflammation in human and murine CD8 T cell-mediated limbic encephalitis. Sci. Adv. 2023, 9, eabq7595. [Google Scholar] [CrossRef]
- Taneja, S.; Suri, V.; Ahuja, A.; Jena, A. Simultaneous 18F- FDG PET/MRI in Autoimmune Limbic Encephalitis. Indian J. Nucl. Med. 2018, 33, 174–176. [Google Scholar] [PubMed]
- Tamayo Carabaño, D.; Acevedo Bañez, I.; Lojo Ramírez, J.A.; García Morillo, J.S.; García Solís, D.; Jiménez-Hoyuela García, J.M. F-FDG PET for the diagnosis and assessment of treatment response of autoimmune limbic encephalitis. Rev. Esp. Med. Nucl. Imagen Mol. 2023, 42, 196–197. [Google Scholar] [CrossRef] [PubMed]
- Crimì, F.; Camporese, G.; Lacognata, C.; Fanelli, G.; Cecchin, D.; Zoccarato, M. Ovarian Teratoma or Uterine Malformation? PET/MRI as a Novel Useful Tool in NMDAR Encephalitis. In Vivo 2018, 32, 1231–1233. [Google Scholar] [CrossRef]
- Day, B.K.; Eisenman, L.; Black, J.; Maccotta, L.; Hogan, R.E. A case study of voltage-gated potassium channel antibody-related limbic encephalitis with PET/MRI findings. Epilepsy Behav. Case Rep. 2015, 4, 23–26. [Google Scholar] [CrossRef]
- Meng, H.; Zhou, Q.; Chen, S. Anti-Ma encephalitis masquerading as Wernicke encephalopathy. J. Clin. Neurosci. 2020, 79, 160–162. [Google Scholar] [CrossRef]
- Roll, W.; Bauer, J.; Dik, A.; Mueller, C.; Backhaus, P.; Räuber, S.; Zinnhardt, B.; Gallus, M.; Wimberley, C.; Körtvelyessy, P.; et al. [18F]DPA-714-PET-MRI reveals pronounced innate immunity in human anti-LGI1 and anti-CASPR2 limbic encephalitis. J. Neurol. 2024, 271, 3653–3659. [Google Scholar] [CrossRef]
- Cecchin, D.; Zoccarato, M.; Anglani, M. Case 39: Limbic Encephalitis. In Clinical Nuclear Medicine in Neurology: An Atlas of Challenging Cases; Springer International Publishing: Cham, Switzerland, 2021; pp. 199–202. [Google Scholar]
- Shen, R.; Shen, D.; Zhou, Q.; Zhang, M.; Chen, S. Antibody-mediated autoimmune encephalitis evaluated by. Brain Behav. Immun. Health 2022, 26, 100535. [Google Scholar] [CrossRef]
- Vacchiano, V.; Giannoccaro, M.P.; Napolitano, R.P.; Liguori, R.; Allegri, V.; Rinaldi, R.; Spinardi, L. Combined brain positron emission tomography/magnetic resonance imaging in GABAA receptor encephalitis. Eur. J. Neurol. 2019, 26, e88–e89. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, X.; Meng, H.; Zhang, M.; Chen, S. Anti-dipeptidyl-peptidase-like protein 6 encephalitis, a rare cause of reversible rapid progressive dementia and insomnia. J. Neuroimmunol. 2020, 339, 577114. [Google Scholar] [CrossRef]
- Schillaci, O.; Chiaravalloti, A.; Travascio, L.; Floris, R.; Simonetti, G. 18F-FDG PET/MR in herpes simplex virus encephalitis: A case study. Rev. Esp. Med. Nucl. Imagen Mol. 2014, 33, 249–250. [Google Scholar]
- Pompanin, S.; Cecchin, D.; Cagnin, A. Opsoclonus-myoclonus syndrome in HIV encephalitis: Treatment and PET/MRI functional changes. Rev. Neurol. 2022, 178, 268–269. [Google Scholar] [CrossRef] [PubMed]
- Moreira, I.; Vilas-Boas, I.; Cassiano Neves, M. Paraneoplastic Opsoclonus-Myoclonus Syndrome as a Rare Presentation of Small-Cell Lung Cancer. Cureus 2022, 14, e32066. [Google Scholar] [CrossRef]
- Koziorowska-Gawron, E.; Koszewicz, M.; Bladowska, J.; Ejma, M.; Budrewicz, S. Opsoclonus-myoclonus syndrome with severe clinical course and beneficial outcome: A case report. Medicine 2021, 100, e25261. [Google Scholar] [CrossRef]
- Oh, S.Y.; Kim, J.S.; Dieterich, M. Update on opsoclonus-myoclonus syndrome in adults. J. Neurol. 2019, 266, 1541–1548. [Google Scholar] [CrossRef]
- Oh, S.Y.; Boegle, R.; Eulenburg, P.Z.; Ertl, M.; Kim, J.S.; Dieterich, M. Longitudinal multi-modal neuroimaging in opsoclonus-myoclonus syndrome. J. Neurol. 2017, 264, 512–519. [Google Scholar] [CrossRef]
- Timmers, E.R.; Klamer, M.R.; Marapin, R.S.; Lammertsma, A.A.; de Jong, B.M.; Dierckx, R.A.J.O.; Tijssen, M.A.J. [18F]FDG PET in conditions associated with hyperkinetic movement disorders and ataxia: A systematic review. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1954–1973. [Google Scholar] [CrossRef]
- Jolepalem, P.; Wong, C.Y. Neurocysticercosis on 18F-FDG PET/MRI: Co-registered Images. Clin. Nucl. Med. 2014, 39, e110–e113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawadzki, R.; Naumowicz, M.; Zalewska, M.; Zajkowska, J.; Kubas, B. Evaluation of the Utility of Hybrid PET/MR Neuroimaging in Inflammatory Demyelination and Encephalitis. J. Clin. Med. 2025, 14, 2736. https://doi.org/10.3390/jcm14082736
Zawadzki R, Naumowicz M, Zalewska M, Zajkowska J, Kubas B. Evaluation of the Utility of Hybrid PET/MR Neuroimaging in Inflammatory Demyelination and Encephalitis. Journal of Clinical Medicine. 2025; 14(8):2736. https://doi.org/10.3390/jcm14082736
Chicago/Turabian StyleZawadzki, Radosław, Maciej Naumowicz, Magdalena Zalewska, Joanna Zajkowska, and Bożena Kubas. 2025. "Evaluation of the Utility of Hybrid PET/MR Neuroimaging in Inflammatory Demyelination and Encephalitis" Journal of Clinical Medicine 14, no. 8: 2736. https://doi.org/10.3390/jcm14082736
APA StyleZawadzki, R., Naumowicz, M., Zalewska, M., Zajkowska, J., & Kubas, B. (2025). Evaluation of the Utility of Hybrid PET/MR Neuroimaging in Inflammatory Demyelination and Encephalitis. Journal of Clinical Medicine, 14(8), 2736. https://doi.org/10.3390/jcm14082736