From Bench to Application: Evaluating the In Vitro and In Vivo Efficacy of a Polyhexamethylene Biguanide and Cross-Linked Hyaluronic Acid-Based Antiseptic Solution
Abstract
:1. Introduction
- In vitro to demonstrate its fungicidal or fungistatic activity against three clinically significant fungal isolates commonly responsible for fungal keratitis: Candida albicans, Aspergillus flavus, and Aspergillus fumigatus.
- In vitro to evaluate its comparative efficacy versus two commercial competitors in terms of bactericidal activity against the following five bacterial strains: *Staphylococcus aureus* ATCC 25923, *Staphylococcus aureus* ATCC 43300, *Staphylococcus epidermidis* ATCC 12228, *Pseudomonas aeruginosa* ATCC 27853, and *Escherichia coli* ATCC 25922.
- In vivo to analyze the ability of CORNEIAL MED® to reduce the bacterial load on the conjunctiva in a clinical setting, a crucial factor in preventing postoperative complications.
2. Materials and Methods
2.1. Fungicidal or Fungistatic Activity In Vitro
2.1.1. Experimental Setup
2.1.2. Preparation of Fungal Suspensions and Time-Kill Test
2.2. Bactericidal Activity In Vitro
2.2.1. Bacterial Strains
2.2.2. Preparation of Bacterial Suspensions and Bactericidal Activity Test
2.3. In Vivo
3. Results
3.1. Fungicidal or Fungistatic Activity In Vitro
3.1.1. Candida albicans
Time (h) | Itraconazole [Positive Control] | Corneial Med | Negative Control |
---|---|---|---|
0 | 500,000 | 500,000 | 500,000 |
2 | 172,000 | 370,000 | 560,000 |
4 | 54,000 | 350,000 | 890,000 |
8 | 12,500 | 278,000 | 810,000 |
12 | 5000 | 210,000 | 924,000 |
24 | <50 | 118,000 | 973,000 |
3.1.2. Aspergillus flavus
Time (h) | Itraconazole [Positive Control] | Corneial Med | Negative Control |
---|---|---|---|
0 | 500,000 | 500,000 | 500,000 |
2 | 364,000 | 560,000 | 590,000 |
4 | 128,000 | 627,000 | 719,000 |
8 | 54,000 | 721,000 | 912,000 |
12 | 9800 | 822,000 | 874,000 |
24 | <50 | 905,000 | 935,000 |
3.1.3. Aspergillus fumigatus
Time (h) | Itraconazole [Positive Control] | Corneial Med | Negative Control |
---|---|---|---|
0 | 500,000 | 500,000 | 500,000 |
2 | 259,000 | 412,000 | 576,000 |
4 | 119,000 | 325,000 | 647,000 |
8 | 27,500 | 375,000 | 794,000 |
12 | 9700 | 289,000 | 855,000 |
24 | <50 | 271,000 | 878,000 |
3.2. Bactericidal Activity In Vitro
3.3. In Vivo
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PHMB | Polyhexamethylene biguanide |
CFU | Colony-forming unit |
References
- Cabrera-Aguas, M.; Chidi-Egboka, N.; Kandel, H.; Watson, S.L. Antimicrobial resistance in ocular infection: A review. Clin. Exp. Ophthalmol. 2024, 52, 258–275. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, M.; Gatti, F.; Lockington, D.; Iaria, A.; Kaye, S.; Virgili, G.; Aragona, P.; Semeraro, F.; Romano, V. Antimicrobials and antiseptics: Lowering effect on ocular surface bacterial flora—A systematic review. Acta Ophthalmol. 2024, 102, e215–e228. [Google Scholar] [CrossRef] [PubMed]
- Rose, F.L.; Swain, G. Polymeric Diguanides. Great Britain Patent 702,268, 13 January 1954. [Google Scholar]
- Mashat, B.H. Polyhexamethylene biguanide hydrochloride: Features and applications. Br. J. Environ. Sci. 2016, 4, 49–55. [Google Scholar]
- Yanai, R.; Ueda, K.; Nishida, T.; Toyohara, M.; Mori, O. Effects of ionic and surfactant agents on the antimicrobial activity of polyhexamethylene biguanide. Eye Contact Lens 2011, 37, 85–89. [Google Scholar] [CrossRef]
- Messick, C.R.; Pendland, S.L.; Moshirfar, M.; Fiscella, R.G.; Losnedahl, K.J.; Schriever, C.A.; Schreckenberger, P.C. In-vitro activity of polyhexamethylene biguanide (PHMB) against fungal isolates associated with infective keratitis. J. Antimicrob. Chemother. 1999, 44, 297–298. [Google Scholar] [CrossRef]
- Gentile, A.; Gerli, S.; Di Renzo, G.C. A new non-invasive approach based on polyhexamethylene biguanide increases the regression rate of HPV infection. BMC Clin. Pathol. 2012, 12, 17. [Google Scholar] [CrossRef]
- Krebs, F.C.; Miller, S.R.; Ferguson, M.L.; Labib, M.; Rando, R.F.; Wigdahl, B. Polybiguanides, particularly polyethylene hexamethylene biguanide, have activity against human immunodeficiency virus type 1. Biomed. Pharmacother. 2005, 59, 438–445. [Google Scholar] [CrossRef]
- Alkharashi, M.; Lindsley, K.; Law, H.A.; Sikder, S. Medical interventions for acanthamoeba keratitis. Cochrane Database Syst. Rev. 2015, 2, CD010792. [Google Scholar] [CrossRef]
- Carrijo-Carvalho, L.C.; Sant’ana, V.P.; Foronda, A.S.; de Freitas, D.; de Souza Carvalho, F.R. Therapeutic agents and biocides for ocular infections by free-living amoebae of Acanthamoeba genus. Surv. Ophthalmol. 2017, 62, 203–218. [Google Scholar] [CrossRef]
- Niro, A.; Pignatelli, F.; Fallico, M.; Sborgia, A.; Passidomo, F.; Gigliola, S.; Nacucchi, A.; Sborgia, G.; Boscia, G.; Alessio, G.; et al. Polyhexamethylene biguanide hydrochloride (PHMB)-properties and application of an antiseptic agent. A narrative review. Eur. J. Ophthalmol. 2022, 33, 655–666. [Google Scholar] [CrossRef]
- Hansmann, F.; Kramer, A.; Ohgke, H.; Strobel, H.; Müller, M.; Geerling, G. Polyhexamethylbiguanid (PHMB) zur präoperativen antisepsis bei cataract operation. Ophthalmologe 2004, 101, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Speaker, M.G.; Milch, F.A.; Shah, M.K.; Eisner, W.; Kreiswirth, B.N. Role of External Bacterial Flora in the Pathogenesis of Acute Postoperative Endophthalmitis. Ophthalmology 1991, 98, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.biofta.com/products/corneial-med/ (accessed on 1 March 2025).
- Fallacara, A.; Vertuani, S.; Panozzo, G.; Pecorelli, A.; Valacchi, G.; Manfredini, S. Novel Artificial Tears Containing Cross-Linked Hyaluronic Acid: An In Vitro Re-Epithelialization Study. Molecules 2017, 22, 2104. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.creative-biolabs.com/drug-discovery/therapeutics/time-kill-analysis-for-fungi.htm (accessed on 1 March 2025).
- Pfaller, M.A.; Sheehan, D.J.; Rex, J.H. Determination of Fungicidal Activities against Yeasts and Molds: Lessons Learned from Bactericidal Testing and the Need for Standardization. Clin. Microbiol. Rev. 2004, 17, 268–280. [Google Scholar] [CrossRef]
- Berkelman, R.L.; Holland, B.W.; Anderson, R.L. Increased bactericidal activity of dilute preparations of povidone-iodine solutions. J. Clin. Microbiol. 1982, 15, 635–639. [Google Scholar] [CrossRef]
- Musumeci, R.; Bandello, F.; Martinelli, M.; Calaresu, E.; Cocuzza, C.E. In vitro bactericidal activity of 0.6% povidone-iodine eye drops formulation. Eur. J. Ophthalmol. 2019, 29, 673–677. [Google Scholar] [CrossRef]
- Rebong, R.A.; Santaella, R.M.; Goldhagen, B.E.; Majka, C.P.; Perfect, J.R.; Steinbach, W.J.; Afshari, N.A. Polyhexamethylene Biguanide and Calcineurin Inhibitors as Novel Antifungal Treatments for Aspergillus Keratitis. Investig. Opthalmol. Vis. Sci. 2011, 52, 7309–7315. [Google Scholar] [CrossRef]
- Ntow-Boahene, W.; Papandronicou, I.; Miculob, J.; Good, L. Fungal cell barriers and organelles are disrupted by polyhexamethylene biguanide (PHMB). Sci. Rep. 2023, 13, 2790. [Google Scholar] [CrossRef]
- Abdelghany, A.A.; D’oria, F.; Del Barrio, J.A.; Alio, J.L. The Value of Anterior Segment Optical Coherence Tomography in Different Types of Corneal Infections: An Update. J. Clin. Med. 2021, 10, 2841. [Google Scholar] [CrossRef]
- Fukuda, M.; Ohashi, H.; Matsumoto, C.; Mishima, S.; Shimomura, Y. Methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulasenegative Staphylococcus ocular surface infection efficacy of chloramphenicol eye drops. Cornea 2002, 21, S86–S89. [Google Scholar] [CrossRef]
- D’oria, F.; Buonamassa, R.; Rizzo, T.; Boscia, F.; Alessio, G.; Guerriero, S. Bacterial isolates and antimicrobial susceptibility pattern of ocular infection at a tertiary referral hospital in the South of Italy. Eur. J. Ophthalmol. 2023, 33, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Asbell, P.A.; Sanfilippo, C.M.; Pillar, C.M.; DeCory, H.H.; Sahm, D.F.; Morris, T.W. Antibiotic resistance among ocular pathogens in the United States: Five-year results from the antibiotic resistance monitoring in ocular microorganisms (ARMOR) surveillance study. JAMA Ophthalmol. 2015, 133, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Werthén, M.; Davoudi, M.; Sonesson, A.; Nitsche, D.P.; Mörgelin, M.; Blom, K.; Schmidtchen, A. Pseudomonas aeruginosa-induced infection and degradation of human wound fluid and skin proteins ex vivo are eradicated by a synthetic cationic polymer. J. Antimicrob. Chemother. 2004, 54, 772–779. [Google Scholar] [CrossRef]
- Thibodeaux, B.A.; Caballero, A.R.; Marquart, M.E.; Tommassen, J.; O’Callaghan, R.J. Corneal Virulence of Pseudomonas aeruginosa Elastase B and Alkaline Protease Produced by Pseudomonas putida. Curr. Eye Res. 2007, 32, 373–386. [Google Scholar] [CrossRef]
- Allen, M.J.; White, G.F.; Morby, A.P. The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology 2006, 152, 989–1000. [Google Scholar] [CrossRef]
Strain | Product | 0 s | 15 s | 30 s | 1 min | 2 min | 4 min |
---|---|---|---|---|---|---|---|
Staphylococcus aureus ATCC 25923 (methicillin-sensitive) | CORNEIAL MED | >103 | 127 ± 12 | 51 ± 7 | 0 | 0 | 0 |
IODIM | >103 | 107 ± 10 | 41 ± 5 | 0 | 0 | 0 | |
OZODROP | >103 | 144 ± 15 | 62 ± 10 | 9 ± 2 | 0 | 0 | |
Staphylococcus aureus ATCC 43300 (methicillin-resistant) | CORNEIAL MED | >103 | 148 ± 32 | 58 ± 8 | 7 ± 3 | 0 | 0 |
IODIM | >103 | 129 ± 19 | 52 ± 6 | 5 ± 2 | 0 | 0 | |
OZODROP | >103 | 159 ± 20 | 62 ± 11 | 10 ± 4 | 0 | 0 | |
Staphylococcus epidermidis ATCC 12228 (methicillin-sensitive) | CORNEIAL MED | >103 | 195 ± 38 | 105 ± 11 | 5 ± 2 | 0 | 0 |
IODIM | >103 | 186 ± 34 | 87 ± 19 | 0 | 0 | 0 | |
OZODROP | >103 | 204 ± 42 | 101 ± 29 | 11 ± 5 | 0 | 0 | |
Pseudomonas aeruginosa ATCC 27853 | CORNEIAL MED | >103 | 311 ± 35 | 84 ± 19 | 10 ± 2 | 0 | 0 |
IODIM | >103 | 378 ± 38 | 115 ± 21 | 41 ± 13 | 4 ± 2 | 0 | |
OZODROP | >103 | 451 ± 47 | 188 ± 32 | 63 ± 20 | 5 ± 2 | 0 | |
Escherichia coli ATCC 25922 | CORNEIAL MED | >103 | 1103 ± 87 | 408 ± 42 | 102 ± 24 | 11 ± 4 | 0 |
IODIM | >103 | 1071 ± 84 | 515 ± 47 | 299 ± 24 | 47 ± 11 | 5 ± 3 | |
OZODROP | >103 | 1267 ± 95 | 712 ± 39 | 341 ± 29 | 78 ± 20 | 8 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Oria, F.; Petruzzella, G.; D’Ambrosio, E.; Pignatelli, F.; Addabbo, G.; Alessio, G. From Bench to Application: Evaluating the In Vitro and In Vivo Efficacy of a Polyhexamethylene Biguanide and Cross-Linked Hyaluronic Acid-Based Antiseptic Solution. J. Clin. Med. 2025, 14, 2745. https://doi.org/10.3390/jcm14082745
D’Oria F, Petruzzella G, D’Ambrosio E, Pignatelli F, Addabbo G, Alessio G. From Bench to Application: Evaluating the In Vitro and In Vivo Efficacy of a Polyhexamethylene Biguanide and Cross-Linked Hyaluronic Acid-Based Antiseptic Solution. Journal of Clinical Medicine. 2025; 14(8):2745. https://doi.org/10.3390/jcm14082745
Chicago/Turabian StyleD’Oria, Francesco, Giovanni Petruzzella, Enzo D’Ambrosio, Francesco Pignatelli, Giuseppe Addabbo, and Giovanni Alessio. 2025. "From Bench to Application: Evaluating the In Vitro and In Vivo Efficacy of a Polyhexamethylene Biguanide and Cross-Linked Hyaluronic Acid-Based Antiseptic Solution" Journal of Clinical Medicine 14, no. 8: 2745. https://doi.org/10.3390/jcm14082745
APA StyleD’Oria, F., Petruzzella, G., D’Ambrosio, E., Pignatelli, F., Addabbo, G., & Alessio, G. (2025). From Bench to Application: Evaluating the In Vitro and In Vivo Efficacy of a Polyhexamethylene Biguanide and Cross-Linked Hyaluronic Acid-Based Antiseptic Solution. Journal of Clinical Medicine, 14(8), 2745. https://doi.org/10.3390/jcm14082745