Hemoglobin-to-Creatinine Ratio Predicts One-Year Adverse Clinical Outcomes in ST-Elevation Myocardial Infarction: Retrospective and Propensity Score Matched Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Sources
2.2. Study Variables
2.3. Hemoglobin-to-Creatinine Ratio
2.4. Study Endpoints
2.5. Statistical Analysis
3. Results
3.1. Hemoglobin-to-Creatinine Ratio Cut-Off Determination
3.2. Baseline Characteristics by Hemoglobin-to-Creatinine Ratio Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Rymer, J.A.; Rao, S.V. Anemia and coronary artery disease: Pathophysiology, prognosis, and treatment. Coron. Artery Dis. 2018, 29, 161–167. [Google Scholar] [CrossRef]
- Lawler, P.R.; Filion, K.B.; Dourian, T.; Atallah, R.; Garfinkle, M.; Eisenberg, M.J. Anemia and mortality in acute coronary syndromes: A systematic review and meta-analysis. Am. Heart J. 2013, 165, 143–153.e145. [Google Scholar] [CrossRef] [PubMed]
- Szummer, K.; Lundman, P.; Jacobson, S.H.; Schon, S.; Lindback, J.; Stenestrand, U.; Wallentin, L.; Jernberg, T.; Swedeheart. Relation between renal function, presentation, use of therapies and in-hospital complications in acute coronary syndrome: Data from the SWEDEHEART register. J. Intern. Med. 2010, 268, 40–49. [Google Scholar] [CrossRef]
- Carson, J.L.; Brooks, M.M.; Hebert, P.C.; Goodman, S.G.; Bertolet, M.; Glynn, S.A.; Chaitman, B.R.; Simon, T.; Lopes, R.D.; Goldsweig, A.M.; et al. Restrictive or Liberal Transfusion Strategy in Myocardial Infarction and Anemia. N. Engl. J. Med. 2023, 389, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Sarnak, M.J.; Amann, K.; Bangalore, S.; Cavalcante, J.L.; Charytan, D.M.; Craig, J.C.; Gill, J.S.; Hlatky, M.A.; Jardine, A.G.; Landmesser, U.; et al. Chronic Kidney Disease and Coronary Artery Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 74, 1823–1838. [Google Scholar] [CrossRef] [PubMed]
- Washam, J.B.; Herzog, C.A.; Beitelshees, A.L.; Cohen, M.G.; Henry, T.D.; Kapur, N.K.; Mega, J.L.; Menon, V.; Page, R.L., 2nd; Newby, L.K.; et al. Pharmacotherapy in chronic kidney disease patients presenting with acute coronary syndrome: A scientific statement from the American Heart Association. Circulation 2015, 131, 1123–1149. [Google Scholar] [CrossRef]
- Shechter, A.; Shiyovich, A.; Skalsky, K.; Gilutz, H.; Plakht, Y. Interaction between anemia and renal dysfunction in relation to long-term survival following acute myocardial infarction. Clin. Res. Cardiol. 2024, 113, 1692–1706. [Google Scholar] [CrossRef]
- Matsue, Y.; Matsumura, A.; Abe, M.; Ono, M.; Seya, M.; Nakamura, T.; Iwatsuka, R.; Mizukami, A.; Setoguchi, M.; Nagahori, W.; et al. Prognostic implications of chronic kidney disease and anemia after percutaneous coronary intervention in acute myocardial infarction patients. Heart Vessel. 2013, 28, 19–26. [Google Scholar] [CrossRef]
- Takeuchi, M.; Dohi, T.; Takahashi, N.; Endo, H.; Doi, S.; Kato, Y.; Okai, I.; Iwata, H.; Okazaki, S.; Isoda, K.; et al. The prognostic implications of chronic kidney disease and anemia on long-term outcomes in patients undergoing percutaneous coronary intervention. Heart Vessel. 2021, 36, 1117–1124. [Google Scholar] [CrossRef]
- Numasawa, Y.; Inohara, T.; Ishii, H.; Yamaji, K.; Kohsaka, S.; Sawano, M.; Kodaira, M.; Uemura, S.; Kadota, K.; Amano, T.; et al. Association of the Hemoglobin to Serum Creatinine Ratio with In-Hospital Adverse Outcomes after Percutaneous Coronary Intervention among Non-Dialysis Patients: Insights from a Japanese Nationwide Registry (J-PCI Registry). J. Clin. Med. 2020, 9, 3612. [Google Scholar] [CrossRef] [PubMed]
- Demir, M.; Kahraman, F.; Sen, T.; Astarcioglu, M.A. The relationship of the hemoglobin to serum creatinine ratio with long-term mortality in patients with acute coronary syndrome: A retrospective study. Medicine 2023, 102, e35636. [Google Scholar] [CrossRef]
- Camci, S.; Kinik, M.; Ari, S.; Ari, H.; Melek, M.; Bozat, T. The predictive value of hemoglobin to creatinine ratio for contrast-induced nephropathy in percutaneous coronary interventions. Clin. Chem. Lab. Med. 2022, 60, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Mamas, M.A.; Kwok, C.S.; Kontopantelis, E.; Fryer, A.A.; Buchan, I.; Bachmann, M.O.; Zaman, M.J.; Myint, P.K. Relationship Between Anemia and Mortality Outcomes in a National Acute Coronary Syndrome Cohort: Insights From the UK Myocardial Ischemia National Audit Project Registry. J. Am. Heart Assoc. 2016, 5, e003348. [Google Scholar] [CrossRef] [PubMed]
- Masoudi, F.A.; Plomondon, M.E.; Magid, D.J.; Sales, A.; Rumsfeld, J.S. Renal insufficiency and mortality from acute coronary syndromes. Am. Heart J. 2004, 147, 623–629. [Google Scholar] [CrossRef]
- Brennan, J.M.; Curtis, J.P.; Dai, D.; Fitzgerald, S.; Khandelwal, A.K.; Spertus, J.A.; Rao, S.V.; Singh, M.; Shaw, R.E.; Ho, K.K.; et al. Enhanced mortality risk prediction with a focus on high-risk percutaneous coronary intervention: Results from 1,208,137 procedures in the NCDR (National Cardiovascular Data Registry). JACC Cardiovasc. Interv. 2013, 6, 790–799. [Google Scholar] [CrossRef]
- Jung, C.; Rezar, R.; Wischmann, P.; Masyuk, M.; Datz, C.; Bruno, R.R.; Kelm, M.; Wernly, B. The role of anemia on admission in acute coronary syndrome—An umbrella review of systematic reviews and meta-analyses. Int. J. Cardiol. 2022, 367, 1–10. [Google Scholar] [CrossRef]
- D’Ascenzo, F.; De Filippo, O.; Gallone, G.; Mittone, G.; Deriu, M.A.; Iannaccone, M.; Ariza-Sole, A.; Liebetrau, C.; Manzano-Fernandez, S.; Quadri, G.; et al. Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): A modelling study of pooled datasets. Lancet 2021, 397, 199–207. [Google Scholar] [CrossRef]
- D’Ascenzo, F.; Biole, C.; Raposeiras-Roubin, S.; Gaido, F.; Abu-Assi, E.; Kinnaird, T.; Ariza-Sole, A.; Liebetrau, C.; Manzano-Fernandez, S.; Boccuzzi, G.; et al. Average daily ischemic versus bleeding risk in patients with ACS undergoing PCI: Insights from the BleeMACS and RENAMI registries. Am. Heart J. 2020, 220, 108–115. [Google Scholar] [CrossRef]
- De Filippo, O.; D’Ascenzo, F.; Raposeiras-Roubin, S.; Abu-Assi, E.; Peyracchia, M.; Bocchino, P.P.; Kinnaird, T.; Ariza-Sole, A.; Liebetrau, C.; Manzano-Fernandez, S.; et al. P2Y12 inhibitors in acute coronary syndrome patients with renal dysfunction: An analysis from the RENAMI and BleeMACS projects. Eur. Heart J. Cardiovasc. Pharmacother. 2020, 6, 31–42. [Google Scholar] [CrossRef]
- Campo, G.; Pavasini, R.; Maietti, E.; Tonet, E.; Cimaglia, P.; Scillitani, G.; Bugani, G.; Serenelli, M.; Zaraket, F.; Balla, C.; et al. The frailty in elderly patients receiving cardiac interventional procedures (FRASER) program: Rational and design of a multicenter prospective study. Aging Clin. Exp. Res. 2017, 29, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.; Chieffo, A.; Frasheri, A.; Garbo, R.; Masotti-Centol, M.; Salvatella, N.; Oteo Dominguez, J.F.; Steffanon, L.; Tarantini, G.; Presbitero, P.; et al. Second-generation drug-eluting stent implantation followed by 6- versus 12-month dual antiplatelet therapy: The SECURITY randomized clinical trial. J. Am. Coll. Cardiol. 2014, 64, 2086–2097. [Google Scholar] [CrossRef]
- Spadafora, L.; Mohammadi, T.; Bernardi, M.; Testa, A.; Tun, H.N.; D’Ascenzo, F.; De Filippo, O.; Frati, G.; Peruzzi, M.; Pepe, M.; et al. Appraising features and outlook of women and men discharged after an acute coronary syndrome: Evidence from the 23,700-patient PRAISE International Registry. Panminerva Med. 2023, 65, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Spadafora, L.; Betti, M.; D’Ascenzo, F.; De Ferrari, G.; De Filippo, O.; Gaudio, C.; Collet, C.; Sabouret, P.; Agostoni, P.; Zivelonghi, C.; et al. Impact of In-Hospital Bleeding on Post-Discharge Therapies and Prognosis in Acute Coronary Syndromes. J. Cardiovasc. Pharmacol. 2025. [Google Scholar] [CrossRef]
- Modification of Diet in Renal Disease Study Group The Modification of Diet in Renal Disease Study: Design, methods, and results from the feasibility study. Am. J. Kidney Dis. 1992, 20, 18–33. [CrossRef] [PubMed]
- Ikuta, A.; Oka, S.; Matsushita, S.; Hirao, S.; Kadota, K.; Komiya, T.; Fuku, Y. Impact of serum haemoglobin-to-creatinine ratio after transcatheter aortic valve implantation. Open Heart 2023, 10, e002419. [Google Scholar] [CrossRef]
- Damluji, A.A.; Forman, D.E.; Wang, T.Y.; Chikwe, J.; Kunadian, V.; Rich, M.W.; Young, B.A.; Page, R.L., 2nd; DeVon, H.A.; Alexander, K.P.; et al. Management of Acute Coronary Syndrome in the Older Adult Population: A Scientific Statement From the American Heart Association. Circulation 2023, 147, e32–e62. [Google Scholar] [CrossRef]
- Damluji, A.A.; Alfaraidhy, M.; AlHajri, N.; Rohant, N.N.; Kumar, M.; Al Malouf, C.; Bahrainy, S.; Ji Kwak, M.; Batchelor, W.B.; Forman, D.E.; et al. Sarcopenia and Cardiovascular Diseases. Circulation 2023, 147, 1534–1553. [Google Scholar] [CrossRef]
- Palmer, K.; Vetrano, D.L.; Marengoni, A.; Tummolo, A.M.; Villani, E.R.; Acampora, N.; Bernabei, R.; Onder, G. The Relationship between Anaemia and Frailty: A Systematic Review and Meta-Analysis of Observational Studies. J. Nutr. Health Aging 2018, 22, 965–974. [Google Scholar] [CrossRef]
- Kennard, A.; Glasgow, N.; Rainsford, S.; Talaulikar, G. Frailty in chronic kidney disease: Challenges in nephrology practice. A review of current literature. Intern. Med. J. 2023, 53, 465–472. [Google Scholar] [CrossRef]
- Berger, A.K.; Duval, S.; Krumholz, H.M. Aspirin, beta-blocker, and angiotensin-converting enzyme inhibitor therapy in patients with end-stage renal disease and an acute myocardial infarction. J. Am. Coll. Cardiol. 2003, 42, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Di Mauro, M.; Fiorentini, V.; Mistrulli, R.; Veneziano, F.A.; De Luca, L. Acute coronary syndrome and renal impairment: A systematic review. Rev. Cardiovasc. Med. 2022, 23, 49. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, F.; Paoletti, L.; Carrieri, B.; Dell’Aquila, G.; Fedecostante, M.; Di Muzio, M.; Corsonello, A.; Lattanzio, F.; Cherubini, A. Underprescription of medications in older adults: Causes, consequences and solutions-a narrative review. Eur. Geriatr. Med. 2021, 12, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Kitai, Y.; Ozasa, N.; Morimoto, T.; Bao, B.; Furukawa, Y.; Nakagawa, Y.; Kadota, K.; Yanagita, M.; Shizuta, S.; Kimura, T.; et al. Prognostic implications of anemia with or without chronic kidney disease in patients undergoing elective percutaneous coronary intervention. Int. J. Cardiol. 2013, 168, 5221–5228. [Google Scholar] [CrossRef]
- Hussain, J.; Imsirovic, H.; Canney, M.; Clark, E.G.; Elliott, M.J.; Ravani, P.; Tanuseputro, P.; Akbari, A.; Hundemer, G.L.; Ramsay, T.; et al. Impaired Renal Function and Major Cardiovascular Events in Young Adults. J. Am. Coll. Cardiol. 2023, 82, 1316–1327. [Google Scholar] [CrossRef]
Outcome | Hb/Cr Threshold (95% CI) | Sensitivity | Specificity | AUC |
---|---|---|---|---|
All-cause mortality | 13.68 (13.10–14.25) | 75% | 56% | 0.68 |
Major bleeding | 14.42 (13.90–14.94) | 67% | 51% | 0.59 |
All-cause mortality or reinfarction | 14.42 (13.54–15.30) | 68% | 51% | 0.60 |
Low Hb/Cr Ratio (n = 2982) | High Hb/Cr Ratio (n = 8254) | p | |
---|---|---|---|
General characteristics | |||
Age | 66.8 (12.6) | 59.661 (12.2) | <0.001 |
Sex, female | 687 (23.0%) | 1769 (21.4%) | 0.069 |
Medical history | |||
Hypertension | 1854 (62.2%) | 3885 (47.1%) | <0.001 |
Dyslipidemia | 1322 (44.3%) | 3811 (46.2%) | 0.084 |
Diabetes mellitus | 906 (30.4%) | 1545 (18.7%) | <0.001 |
Peripheral artery disease | 214 (8.0%) | 294 (3.8%) | <0.001 |
Prior myocardial infarction | 400 (13.4%) | 688 (8.3%) | <0.001 |
Prior PCI | 392 (13.1%) | 674 (8.2%) | <0.001 |
Prior CABG | 55 (1.8%) | 84 (1.0%) | <0.001 |
Prior stroke | 247 (8.3%) | 351 (4.3%) | <0.001 |
Prior bleeding | 143 (5.3%) | 251 (3.3%) | <0.001 |
Malignancy | 219 (7.3%) | 349 (4.2%) | <0.001 |
Laboratory parameters | |||
Hemoglobin, g/dL | 13.1 (1.76) | 14.4 (1.47) | <0.001 |
Creatinine, mg/dL | 1.32 (0.67) | 0.81 (0.15) | <0.001 |
HB/Cr ratio | 10.9 (2.6) | 18.6 (5.5) | <0.001 |
Cardiac function | |||
LVEF, % | 48.7 (11.4) | 51.1 (10.4) | <0.001 |
Procedural and angiographic characteristics | |||
Radial access | 1074 (43.0%) | 3417 (46.5%) | 0.002 |
Multivessel disease | 1244 (47.6%) | 3032 (40.6%) | <0.001 |
DES | 1401 (47.7%) | 4021 (49.0%) | 0.227 |
Complete revascularization | 1436 (56.5%) | 4665 (64.3%) | <0.001 |
Thrombolysis | 59 (1.9%) | 226 (2.9%) | 0.036 |
In-hospital events | |||
In-hospital reinfarction | 39 (1.4%) | 97 (1.3%) | 0.483 |
In-hospital bleeding | 235 (8.6%) | 412 (5.3%) | <0.001 |
Discharge medical therapy | |||
Aspirin | 2764 (92.7%) | 7750 (93.9%) | 0.022 |
Clopidogrel | 1946 (65.3%) | 5430 (65.8%) | 0.603 |
Prasugrel | 465 (15.6%) | 1688 (20.5%) | <0.001 |
Ticagrelor | 532 (17.8%) | 1105 (13.4%) | <0.001 |
Oral anticoagulants | 170 (5.7%) | 328 (4.0%) | <0.001 |
Beta-blockers | 1966 (78.5%) | 6119 (83.8%) | <0.001 |
ACE-i/ARB | 1856 (74.1%) | 5675 (77.7%) | <0.001 |
Statins | 2375 (91.7%) | 7101 (95.1%) | <0.001 |
PPi | 1263 (60.5%) | 3219 (52.5%) | <0.001 |
Clinical outcomes at 1-year follow-up after discharge | |||
All-cause mortality | 258 (8.7%) | 200 (2.4%) | <0.001 |
All-cause mortality or reinfarction | 342 (11.5%) | 408 (4.9%) | <0.001 |
Major bleeding | 148 (5.0%) | 201 (2.4%) | <0.001 |
Outcome | Unadjusted OR (95% CI) | p | Adjusted * OR (95% CI) | p |
---|---|---|---|---|
All-cause mortality | 0.87 (0.85–0.88) | <0.001 | 0.94 (0.92–0.96) | <0.001 |
Major bleeding | 0.91 (0.89–0.92) | <0.001 | 0.96 (0.94–0.97) | <0.001 |
All-cause mortality or reinfarction | 0.92 (0.90–0.94) | <0.001 | 0.93 (0.91–0.96) | <0.001 |
Outcome | Matched Pairs | ATE (95% CI) | p |
---|---|---|---|
All-cause mortality | 5242 | 2.35% (0.98–3.71%) | <0.001 |
Major bleeding | 5242 | 1.95% (0.17–3.72%) | <0.001 |
All-cause mortality or reinfarction | 5242 | 1.98% (0.56–3.41%) | <0.001 |
SMD, Before Matching | SMD, After Matching | |
---|---|---|
Age | 0.601 | 0.017 |
Sex | 0.008 | −0.040 |
Hypertension | 0.368 | 0.002 |
Dyslipidemia | −0.054 | 0.003 |
Diabetes mellitus | 0.254 | −0.007 |
Peripheral artery disease | 0.196 | 0.003 |
Prior myocardial infarction | 0.116 | 0.013 |
Prior PCI | 0.110 | 0.015 |
Prior CABG | 0.063 | −0.027 |
Prior stroke | 0.162 | −0.024 |
Prior bleeding | 0.078 | −0.024 |
Malignancy | 0.127 | −0.034 |
LVEF | −0.202 | 0.048 |
Radial access | −0.133 | 0.022 |
Multivessel disease | 0.114 | 0.011 |
DES | −0.178 | 0.015 |
Thrombolysis | −0.075 | −0.047 |
Aspirin | 0.018 | 0.048 |
Prasugrel | −0.064 | −0.048 |
Ticagrelor | −0.030 | −0.079 |
Oral anticoagulants | 0.080 | −0.032 |
Beta-blockers | −0.141 | 0.026 |
ACE-i/ARB | −0.127 | 0.018 |
Statins | −0.106 | 0.008 |
Term | Coefficient (95% CI) | SE | z-Score | p |
---|---|---|---|---|
Hb/Cr spline term 1 | −0.214 (−0.250 to −0.178) | 0.018 | −11.59 | <0.001 |
Hb/Cr spline term 2 | +0.176 (+0.022 to +0.330) | 0.079 | +2.24 | 0.025 |
Hb/Cr spline term 3 | −0.189 (−0.614 to +0.237) | 0.217 | −0.87 | 0.384 |
Constant | –0.254 (−0.651 to +0.142) | 0.202 | −1.26 | 0.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spadafora, L.; Cacciatore, S.; Galli, M.; Collet, C.; Betti, M.; Sarto, G.; Simeone, B.; Rocco, E.; D’Ascenzo, F.; De Ferrari, G.M.; et al. Hemoglobin-to-Creatinine Ratio Predicts One-Year Adverse Clinical Outcomes in ST-Elevation Myocardial Infarction: Retrospective and Propensity Score Matched Analysis. J. Clin. Med. 2025, 14, 2756. https://doi.org/10.3390/jcm14082756
Spadafora L, Cacciatore S, Galli M, Collet C, Betti M, Sarto G, Simeone B, Rocco E, D’Ascenzo F, De Ferrari GM, et al. Hemoglobin-to-Creatinine Ratio Predicts One-Year Adverse Clinical Outcomes in ST-Elevation Myocardial Infarction: Retrospective and Propensity Score Matched Analysis. Journal of Clinical Medicine. 2025; 14(8):2756. https://doi.org/10.3390/jcm14082756
Chicago/Turabian StyleSpadafora, Luigi, Stefano Cacciatore, Mattia Galli, Carlos Collet, Matteo Betti, Gianmarco Sarto, Beatrice Simeone, Erica Rocco, Fabrizio D’Ascenzo, Gaetano Maria De Ferrari, and et al. 2025. "Hemoglobin-to-Creatinine Ratio Predicts One-Year Adverse Clinical Outcomes in ST-Elevation Myocardial Infarction: Retrospective and Propensity Score Matched Analysis" Journal of Clinical Medicine 14, no. 8: 2756. https://doi.org/10.3390/jcm14082756
APA StyleSpadafora, L., Cacciatore, S., Galli, M., Collet, C., Betti, M., Sarto, G., Simeone, B., Rocco, E., D’Ascenzo, F., De Ferrari, G. M., De Filippo, O., Sabouret, P., Colaiori, I., Carnevale, R., Valenti, V., Gaudio, C., Zimatore, F. R., Frati, G., Versaci, F., ... Bernardi, M. (2025). Hemoglobin-to-Creatinine Ratio Predicts One-Year Adverse Clinical Outcomes in ST-Elevation Myocardial Infarction: Retrospective and Propensity Score Matched Analysis. Journal of Clinical Medicine, 14(8), 2756. https://doi.org/10.3390/jcm14082756