Comparing Auto-Machine Learning and Expert-Designed Models in Diagnosing Vitreomacular Interface Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Building the Dataset
2.2. Designing Expert Model
2.2.1. Dataset and Image Preprocessing
2.2.2. Model Architecture and Feature Extraction
2.2.3. Cross-Validation and Monte Carlo Sampling
2.2.4. Training Procedure
2.3. Designing AutoML Model
2.3.1. Dataset Preparation
2.3.2. Model Development
2.3.3. Training and Optimization
2.4. Evaluation Metrics
3. Results
3.1. Expert-Designed Model
3.2. AutoML Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AUC | Area Under the Receiver Operating Characteristic Curve |
CNN | Convolutional Neural Network |
DL | Deep Learning |
ERM | Epiretinal Membrane |
FTMH | Full-Thickness Macular Hole |
Grad-CAM | Gradient-weighted Class Activation Mapping |
LMH | Lamellar Macular Hole |
MC | Monte Carlo |
MCC | Matthews Correlation Coefficient |
ML | Machine Learning |
OCT | Optical Coherence Tomography |
VMI | Vitreomacular Interface |
VMT | Vitreomacular Traction |
References
- Valentim, C.C.S.; Wu, A.K.; Yu, S.; Manivannan, N.; Zhang, Q.; Cao, J.; Song, W.; Wang, V.; Kang, H.; Kalur, A.; et al. Deep learning-based algorithm for the detection of idiopathic full thickness macular holes in spectral domain optical coherence tomography. Int. J. Retin. Vitr. 2024, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Hu, Y.; Quan, W.; Yang, Y.; Lai, W.; Wang, X.; Zhang, X.; Zhang, B.; Wu, Y.; Wu, Q.; et al. Development and validation of a deep learning system to classify aetiology and predict anatomical outcomes of macular hole. Br. J. Ophthalmol. 2023, 107, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Touma, S.; Antaki, F.; Duval, R. Development of a code-free machine learning model for the classification of cataract surgery phases. Sci. Rep. 2022, 12, 2398. [Google Scholar] [CrossRef]
- Jacoba, C.M.P.; Doan, D.; Salongcay, R.P.; Aquino, L.A.C.; Silva, J.P.Y.; Salva, C.M.G.; Zhang, D.; Alog, G.P.; Zhang, K.; Locaylocay, K.L.R.B.; et al. Performance of automated machine learning for diabetic retinopathy image classification from multi-field handheld retinal images. Ophthalmol. Retin. 2023, 7, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Antaki, F.; Coussa, R.G.; Kahwati, G.; Hammamji, K.; Sebag, M.; Duval, R. Accuracy of automated machine learning in classifying retinal pathologies from ultra-widefield pseudocolour fundus images. Br. J. Ophthalmol. 2023, 107, 90–95. [Google Scholar] [CrossRef]
- Kirik, F.; Ozbas, C.; Aslanoglu, C.E.; Koytak, I.A.; Ozdemir, H. Efficiency of web-based code-free artificial intelligence platform in classification of vitreomacular interface diseases. Eur. Eye Res. 2024, 4, 57–62. [Google Scholar] [CrossRef]
- Wong, C.Y.T.; O’Byrne, C.; Taribagil, P.; Liu, T.; Antaki, F.; Keane, P.A. Comparing code-free and bespoke deep learning approaches in ophthalmology. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 2785–2798. [Google Scholar] [CrossRef]
- Levison, A.L.; Kaiser, P.K. Vitreomacular interface diseases: Diagnosis and management. Taiwan J. Ophthalmol. 2014, 4, 63–68. [Google Scholar] [CrossRef]
- Crincoli, E.; Savastano, M.C.; Savastano, A.; Caporossi, T.; Bacherini, D.; Miere, A.; Gambini, G.; De Vico, U.; Baldascino, A.; Minnella, A.M.; et al. New artificial intelligence analysis for prediction of long-term visual improvement after epiretinal membrane surgery. Retina 2023, 43, 173–181. [Google Scholar] [CrossRef]
- Parra-Mora, E.; Cazañas-Gordon, A.; Proença, R.; da Silva Cruz, L.A. Epiretinal membrane detection in optical coherence tomography retinal images using deep learning. IEEE Access 2021, 9, 99201–99219. [Google Scholar] [CrossRef]
- Hsia, Y.; Lin, Y.-Y.; Wang, B.-S.; Su, C.-Y.; Lai, Y.-H.; Hsieh, Y.-T. Prediction of Visual Impairment in Epiretinal Membrane and Feature Analysis: A Deep Learning Approach Using Optical Coherence Tomography. Asia-Pac. J. Ophthalmol. 2023, 12, 21–28. [Google Scholar] [CrossRef]
- Kim, S.H.; Ahn, H.; Yang, S.; Kim, S.S.; Lee, J.H. Deep learning-based prediction of outcomes following noncomplicated epiretinal membrane surgery. Retina 2022, 42, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Lee, H. Monte Carlo methods for medical imaging research. Biomed. Eng. Lett. 2024, 14, 1195–1205. [Google Scholar] [CrossRef]
- Touma, S.; Hammou, B.A.; Antaki, F.; Boucher, M.C.; Duval, R. Comparing code-free deep learning models to expert-designed models for detecting retinal diseases from optical coherence tomography. Int. J. Retin. Vitr. 2024, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Mutasa, S.; Sun, S.; Ha, R. Understanding artificial intelligence based radiology studies: What is overfitting? Clin. Imaging 2020, 65, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Rather, I.H.; Kumar, S.; Gandomi, A.H. Breaking the data barrier: A review of deep learning techniques for democratizing AI with small datasets. Artif. Intell. Rev. 2024, 57, 226. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar] [CrossRef]
- Usmani, E.; Bacchi, S.; Zhang, H.; Guymer, C.; Kraczkowska, A.; Qinfeng Shi, J.; Gilhotra, J.; Chan, W.O. Prediction of vitreomacular traction syndrome outcomes with deep learning: A pilot study. Eur. J. Ophthalmol. 2025, 35, 335–339. [Google Scholar] [CrossRef]
- Crincoli, E.; Parolini, B.; Catania, F.; Savastano, A.; Savastano, M.C.; Rizzo, C.; Kilian, R.; Matello, V.; Allegrini, D.; Romano, M.R.; et al. Prediction of functional and anatomical progression in lamellar macular holes. Ophthalmol. Sci. 2024, 4, 100529. [Google Scholar] [CrossRef]
- Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Suganthan, P.N. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022, 115, 105151. [Google Scholar] [CrossRef]
- Rosly, R.; Makhtar, M.; Awang, M.K.; Awang, M.I.; Rahman, M.N.A.; Mahdin, H. Comprehensive study on ensemble classification for medical applications. Int. J. Eng. Technol. 2018, 7, 186–190. [Google Scholar] [CrossRef]
- Pandey, P.U.; Ballios, B.G.; Christakis, P.G.; Kaplan, A.J.; Mathew, D.J.; Tone, S.O.; Wan, M.J.; Micieli, J.A.; Wong, J.C.Y. Ensemble of deep convolutional neural networks is more accurate and reliable than board-certified ophthalmologists at detecting multiple diseases in retinal fundus photographs. Br. J. Ophthalmol. 2024, 108, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Gupta, S.; Bharany, S.; Almogren, A.; Altameem, A.; Rehman, A.U. Ensemble Deep Learning Models for Enhanced Brain Tumor Classification by Leveraging ResNet50 and EfficientNet-B7 on High-Resolution MRI Images. IEEE Access 2024, 12, 178623–178641. [Google Scholar] [CrossRef]
Average Precision | Precision (%) | Recall (%) | ||||
---|---|---|---|---|---|---|
Expert | AutoML | Expert | AutoML | Expert | AutoML | |
Normal | 1.000 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
FTMH | 100.0 | 97.8 | 100.0 | 92.7 | 100.0 | 97.4 |
LMH | 90.3 | 86.0 | 95.0 | 72.3 | 88.0 | 87.2 |
ERM | 95.3 | 83.0 | 86.0 | 93.9 | 95.0 | 79.5 |
VMT | 99.5 | 96.0 | 100 | 100 | 95.0 | 94.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durmaz Engin, C.; Gokkan, M.O.; Koksaldi, S.; Kayabasi, M.; Besenk, U.; Selver, M.A.; Grzybowski, A. Comparing Auto-Machine Learning and Expert-Designed Models in Diagnosing Vitreomacular Interface Disorders. J. Clin. Med. 2025, 14, 2774. https://doi.org/10.3390/jcm14082774
Durmaz Engin C, Gokkan MO, Koksaldi S, Kayabasi M, Besenk U, Selver MA, Grzybowski A. Comparing Auto-Machine Learning and Expert-Designed Models in Diagnosing Vitreomacular Interface Disorders. Journal of Clinical Medicine. 2025; 14(8):2774. https://doi.org/10.3390/jcm14082774
Chicago/Turabian StyleDurmaz Engin, Ceren, Mahmut Ozan Gokkan, Seher Koksaldi, Mustafa Kayabasi, Ufuk Besenk, Mustafa Alper Selver, and Andrzej Grzybowski. 2025. "Comparing Auto-Machine Learning and Expert-Designed Models in Diagnosing Vitreomacular Interface Disorders" Journal of Clinical Medicine 14, no. 8: 2774. https://doi.org/10.3390/jcm14082774
APA StyleDurmaz Engin, C., Gokkan, M. O., Koksaldi, S., Kayabasi, M., Besenk, U., Selver, M. A., & Grzybowski, A. (2025). Comparing Auto-Machine Learning and Expert-Designed Models in Diagnosing Vitreomacular Interface Disorders. Journal of Clinical Medicine, 14(8), 2774. https://doi.org/10.3390/jcm14082774