A New Score for Metabolic Age in Type 2 Diabetes Mellitus: Physical Rating Score
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometric and BIA Measurements
2.2. PRS Calculation
- Hidden obese (characterized by low muscle mass and a high fat ratio)
- Obese (normal muscle mass with a high fat ratio)
- Solidly built (high muscle mass accompanied by a high fat ratio)
- Under-exercised (low muscle mass with a normal fat ratio)
- Standard (normal ratios of both muscle and fat)
- Standard muscular (high muscle mass and a normal fat ratio)
- Thin (low ratios of both muscle and fat)
- Thin and muscular (normal muscle mass with a low fat ratio)
- Very muscular (high muscle mass and a low fat ratio) (Figure 1).
2.3. Blood Sampling
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Motahari-Tabari, N.; Ahmad Shirvani, M.; Shirzad-E-Ahoodashty, M.; Yousefi-Abdolmaleki, E.; Teimourzadeh, M. The effect of 8 weeks aerobic exercise on insulin resistance in type 2 diabetes: A randomized clinical trial. Glob. J. Health Sci. 2014, 7, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Park, S.W.; Goodpaster, B.H.; Strotmeyer, E.S.; de Rekeneire, N.; Harris, T.B.; Schwartz, A.V.; Tylavsky, F.A.; Newman, A.B. Decreased muscle strength and quality in older adults with type 2 diabetes: The health, aging, and body composition study. Diabetes 2006, 55, 1813–1818. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Long, J.; Dan, S.; Johannsen, N.M.; Talamoa, R.; Raghuram, S.; Chung, S.; Kent, K.; Basina, M.; Lamendola, C.; et al. Strength training is more effective than aerobic exercise for improving glycaemic control and body composition in people with normal-weight type 2 diabetes: A randomised controlled trial. Diabetologia 2023, 66, 1897–1907. [Google Scholar] [CrossRef]
- Chien, Y.-H.; Tsai, C.-J.; Wang, D.-C.; Chuang, P.-H.; Lin, H.-T. Effects of 12-week progressive sandbag exercise training on glycemic control and muscle strength in patients with type 2 diabetes mellitus combined with possible sarcopenia. Int. J. Environ. Res. Public Health 2022, 19, 15009. [Google Scholar] [CrossRef]
- Al-Sofiani, M.E.; Ganji, S.; Kalyani, R.R. Body composition changes in diabetes and aging. J. Diabetes Complicat. 2019, 33, 451–459. [Google Scholar] [CrossRef]
- Barbosa-Silva, M.C.G.; Barros, A.J.D. Bioelectrical impedance analysis in clinical practice: A new perspective on its use beyond body composition equations. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 311–317. [Google Scholar] [CrossRef]
- Wang, J.-G.; Zhang, Y.; Chen, H.-E.; Li, Y.; Cheng, X.-G.; Xu, L.; Guo, Z.; Zhao, X.-S.; Sato, T.; Cao, Q.-Y.; et al. Comparison of two bioelectrical impedance analysis devices with dual energy X-ray absorptiometry and magnetic resonance imaging in the estimation of body composition. J. Strength Cond. Res. 2013, 27, 236–243. [Google Scholar] [CrossRef]
- Kreissl, A.; Jorda, A.; Truschner, K.; Skacel, G.; Greber-Platzer, S. Clinically relevant body composition methods for obese pediatric patients. BMC Pediatr. 2019, 19, 84. [Google Scholar] [CrossRef]
- Vásquez-Alvarez, S.; Bustamante-Villagomez, S.K.; Vazquez-Marroquin, G.; Porchia, L.M.; Pérez-Fuentes, R.; Torres-Rasgado, E.; Herrera-Fomperosa, O.; Montes-Arana, I.; Gonzalez-Mejia, M.E. Metabolic age, an index based on basal metabolic rate, can predict individuals that are high risk of developing metabolic syndrome. High Blood Press. Cardiovasc. Prev. 2021, 28, 263–270. [Google Scholar] [CrossRef]
- Elguezabal-Rodelo, R.; Ochoa-Précoma, R.; Vazquez-Marroquin, G.; Porchia, L.M.; Montes-Arana, I.; Torres-Rasgado, E.; Méndez-Fernández, E.; Pérez-Fuentes, R.; Gonzalez-Mejia, M.E. Metabolic age correlates better than chronological age with waist-to-height ratio, a cardiovascular risk index. Med. Clin. 2021, 157, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Kaziuk, M.B.; Kosiba, W.; Kuzniewski, M. High metabolic age and excessive adipose tissue as a storage location for toxins, and their influence on the excretory function of a liver and bile ducts in patients with a transplanted allogenic kidney. Transplantation 2017, 101, S53. [Google Scholar] [CrossRef]
- Mehrdad, R.; Pouragha, H.; Vesal, M.; Pouryaghoub, G.; Naderzadeh, M.; Alemohammad, Z.B. Metabolic age: A new predictor for metabolic syndrome. Turk. J. Endocrinol. Metab. 2021, 25, 78–86. [Google Scholar] [CrossRef]
- Koster, A.; Schaap, L.A. The effect of type 2 diabetes on body composition of older adults. Clin. Geriatr. Med. 2015, 31, 41–49. [Google Scholar] [CrossRef]
- Gallagher, D.; Kelley, D.E.; Yim, J.E.; Spence, N.; Albu, J.; Boxt, L.; Pi-Sunyer, F.X.; Heshka, S. Adipose tissue distribution is different in type 2 diabetes. Am. J. Clin. Nutr. 2009, 89, 807–814. [Google Scholar] [CrossRef]
- Kautzky-Willer, A.; Leutner, M.; Harreiter, J. Sex differences in type 2 diabetes. Diabetologia 2023, 66, 986–1002. [Google Scholar] [CrossRef] [PubMed]
- Tramunt, B.; Smati, S.; Grandgeorge, N.; Lenfant, F.; Arnal, J.-F.; Montagner, A.; Gourdy, P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 2020, 63, 453–461. [Google Scholar] [CrossRef]
- Wright, A.K.; Welsh, P.; Gill, J.M.R.; Kontopantelis, E.; Emsley, R.; Buchan, I.; Ashcroft, D.M.; Rutter, M.K.; Sattar, N. Age-, sex- and ethnicity-related differences in body weight, blood pressure, HbA1c and lipid levels at the diagnosis of type 2 diabetes relative to people without diabetes. Diabetologia 2020, 63, 1542–1553. [Google Scholar] [CrossRef]
- Lee, D.H.; Keum, N.; Hu, F.B.; Orav, E.J.; Rimm, E.B.; Willett, W.C.; Giovannucci, E.L. Comparison of the association of predicted fat mass, body mass index, and other obesity indicators with type 2 diabetes risk: Two large prospective studies in US men and women. Eur. J. Epidemiol. 2018, 33, 1113–1123. [Google Scholar] [CrossRef]
- Goossens, G.H.; Jocken, J.W.E.; Blaak, E.E. Sexual dimorphism in cardiometabolic health: The role of adipose tissue, muscle and liver. Nat. Rev. Endocrinol. 2021, 17, 47–66. [Google Scholar] [CrossRef]
- Rubin, R. Postmenopausal women with a “normal” BMI might be overweight or even obese. JAMA 2018, 319, 1185–1187. [Google Scholar] [CrossRef]
- Nevill, A.M.; Stewart, A.D.; Olds, T.; Duncan, M.J. A new waist-to-height ratio predicts abdominal adiposity in adults. Res. Sports Med. 2020, 28, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Li, M.; Xu, Z.; Qi, Z.; Zheng, H.; Cao, Y.; Huang, H.; Duan, X.; Zhuang, X. Comparison of different obesity indices associated with type 2 diabetes mellitus among different sex and age groups in Nantong, China: A cross-section study. BMC Geriatr. 2022, 22, 20. [Google Scholar] [CrossRef] [PubMed]
- Radzevičienė, L.; Ostrauskas, R. Body mass index, waist circumference, waist-hip ratio, waist-height ratio and risk for type 2 diabetes in women: A case-control study. Public Health 2013, 127, 241–246. [Google Scholar] [CrossRef]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef]
- Amani, R. Comparison between bioelectrical impedance analysis and body mass index methods in determination of obesity prevalence in Ahvazi women. Eur. J. Clin. Nutr. 2007, 61, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-H.; Kim, H.-K.; Kim, E.-H.; Bae, S.-J.; Park, J.-Y. Association between changes in body composition and risk of developing type 2 diabetes in Koreans. Diabet. Med. 2014, 31, 1393–1398. [Google Scholar] [CrossRef]
- Biggs, M.L.; Mukamal, K.J.; Luchsinger, J.A.; Ix, J.H.; Carnethon, M.R.; Newman, A.B.; de Boer, I.H.; Strotmeyer, E.S.; Mozaffarian, D.; Siscovick, D.S. Association between adiposity in midlife and older age and risk of diabetes in older adults. JAMA 2010, 303, 2504–2512. [Google Scholar] [CrossRef]
- Sneed, N.M.; Morrison, S.A. Body composition methods in adults with type 2 diabetes or at risk for T2D: A clinical review. Curr. Diabetes Rep. 2021, 21, 14. [Google Scholar] [CrossRef]
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef]
- Yücel, H.E.; Ulcay, T.; Görgülü, Ö.; Öncü, R. Correlation of Metabolic Age with Chronological Age and Physical Examination Score from BIA in Male and Female Patients with Type 2 Diabetes Mellitus. Res. Sq. 2024. preprint. [Google Scholar] [CrossRef]
Variables/Sexes | Total, n = 122 | Female, n = 72 | Male, n = 50 | p |
---|---|---|---|---|
Chronological age | 56.3311.36 57.0 (19–85) | 56.1412.41 57.0 (19–85) | 56.6 57.0 (36–85) | 0.827 & |
Met-age | 58.3012.16 58.0 (19–89) | 59.9212.90 60.0 (19–83) | 55.9810.71 55.0 (39–89) | 0.079 & |
Met-age–chronological age difference | 4.923.65 4.0 (0.0–12.0) | 6.03.79 6.0 (0–12) | 3.38 3.0 (0.0–12.0) | <0.001 * |
PRS | 62.7324.63 49.0 (34.0–96.0) | 54.7623.04 45.0 (34–96) | 74.222.40 91.0 (34–96) | <0.001 * |
BMI | 30.285.20 29.75 (20.30–45.80) | 31.965.17 31.20 (22.0–45.80) | 27.874.24 28.0 (20.30–43.6) | <0.001 & |
Degree of obesity | 23.5818.20 18.30 (0.94–93.31) | 28.5620.03 26.12 (1.14–93.31) | 16.4212.16 13.04 (0.94–71.06) | <0.001 * |
Fat mass | 26.029.75 24.45 (7.60–51.80) | 30.348.64 29.55 (14.30–48.0) | 19.807.74 18.90 (7.60–51.80) | <0.001 & |
Muscle mass | 54.208.48 52.80 (36.60–77.80) | 49.955.92 50.45 (36.60–62.70) | 60.31 60.9 (40.8–77.8) | <0.001 & |
Lean mass | 57.128.98 55.60 (38.60–81.80) | 52.616.22 53.15 (38.6–66.0) | 63.618.38 64.1 (43–81.8) | <0.001 & |
Waist/hip ratio | 0.890.05 0.90 (0.71–1.0) | 0.870.05 0.87 (0.76–1.0) | 0.91 0.92 (0.71–1.0) | <0.001 * |
Waist/height ratio | 0.580.07 0.57 (0.42–0.83) | 0.600.08 0.59 (0.45–0.78) | 0.550.06 0.55 (0.42–0.83) | 0.001 & |
Fasting glucose | 180.2070.20 170.50 (97.0–395.0) | 180.4868.64 176.0 (98.0–395.0) | 179.8073.10 153.50 (97.0–358.0) | 0.958 * |
HbA1c | 8.392.12 7.85 (5.70–14.70) | 8.352.10 8.20 (5.70–14.70) | 8.442.17 7.60 (5.80–14.40) | 0.817 & |
Variables/Sexes | Female | Male | ||
---|---|---|---|---|
r | p | r | p | |
Chronological age | 0.887 ** | <0.001 | 0.913 ** | <0.001 |
PRS | −0.307 ** | 0.009 | −0.361 * | 0.001 |
BMI | 0.370 ** | <0.001 | 0.389 ** | <0.001 |
Degree of obesity | 0.088 | 0.461 | 0.316 * | 0.025 |
Fat mass | 0.368 ** | 0.001 | 0.346 * | 0.014 |
Muscle mass | −0.051 | 0.670 | 0.057 | 0.697 |
Lean mass | −0.051 | 0.672 | 0.041 | 0.779 |
Waist/hip ratio | 0.298 * | 0.011 | 0.233 | 0.103 |
Waist/height ratio | 0.435 ** | <0.001 | 0.436 ** | 0.002 |
Fasting glucose | −0.023 | 0.847 | 0.035 | 0.809 |
HbA1c | 0.059 | 0.620 | 0.069 | 0.634 |
Variables | 95% Confidence Interval for B | p | ||
---|---|---|---|---|
Low | Upper | |||
Chronological age | 0.923 | 0.861 | 0.985 | <0.001 |
PRS | −0.082 | −0.112 | −0.053 | <0.001 |
BMI | 0.387 | −0.031 | 0.804 | 0.069 |
Degree of obesity | −0.032 | −0.132 | 0.069 | 0.529 |
Fat mass | −0.017 | −0.227 | 0.193 | 0.870 |
Waist/height ratio | 39.400 | 5.280 | 73.519 | 0.024 |
Waist/hip ratio | −4.591 | −20.987 | 11.804 | 0.578 |
Variables | 95% Confidence Interval for B | p | ||
---|---|---|---|---|
Low | Upper | |||
Chronological age | 0.990 | 0.928 | 1.053 | <0.001 |
PRS | −0.105 | −0.136 | −0.074 | <0.001 |
BMI | 0.623 | 0.185 | 1.061 | 0.006 |
Degree of obesity | 0.118 | 0.022 | 0.214 | 0.017 |
Fat mass | −0.041 | −0.296 | 0.213 | 0.744 |
Waist/height ratio | −23.996 | −61.224 | 13.232 | 0.200 |
Waist/hip ratio | 7.459 | −13.519 | 28.437 | 0.477 |
Variables | Standard (n: 17) | Very Muscular (n: 5) | Hidden Obese (n: 25) | Obese (n: 25) | p |
---|---|---|---|---|---|
PRS | 92.76 ± 1.67 93.00 (91–96) | 69.60 ± 3.13 71.00 (64–71) | 44.80 ± 1.00 45.00 (44–49) | 35.92 ± 4.94 34.00 (34–49) | <0.001 * |
Variables | Standard (n: 26) | Very Muscular (n: 11) | Hidden Obese (n: 9) | Obese (n: 4) | p |
---|---|---|---|---|---|
PRS | 93.65 ± 1.85 93.00 (91–96) | 65.64 ± 7.44 67.00 (45–71) | 44.56 ± 0.52 45.00 (44–45) | 38.00 ± 7.34 34.50 (34–49) | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yücel, H.E.; Ulcay, T.; Görgülü, Ö.; Öncü, R.; Uğuz, E.; Dulkadiroğlu, E. A New Score for Metabolic Age in Type 2 Diabetes Mellitus: Physical Rating Score. J. Clin. Med. 2025, 14, 2868. https://doi.org/10.3390/jcm14092868
Yücel HE, Ulcay T, Görgülü Ö, Öncü R, Uğuz E, Dulkadiroğlu E. A New Score for Metabolic Age in Type 2 Diabetes Mellitus: Physical Rating Score. Journal of Clinical Medicine. 2025; 14(9):2868. https://doi.org/10.3390/jcm14092868
Chicago/Turabian StyleYücel, Hasan Esat, Tufan Ulcay, Özkan Görgülü, Ruken Öncü, Emre Uğuz, and Erkan Dulkadiroğlu. 2025. "A New Score for Metabolic Age in Type 2 Diabetes Mellitus: Physical Rating Score" Journal of Clinical Medicine 14, no. 9: 2868. https://doi.org/10.3390/jcm14092868
APA StyleYücel, H. E., Ulcay, T., Görgülü, Ö., Öncü, R., Uğuz, E., & Dulkadiroğlu, E. (2025). A New Score for Metabolic Age in Type 2 Diabetes Mellitus: Physical Rating Score. Journal of Clinical Medicine, 14(9), 2868. https://doi.org/10.3390/jcm14092868