The Impact of Fluid Resuscitation on Clinical Outcomes According to Transport Time in Out-of-Hospital Cardiac Arrest Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Data Sources
2.3. Study Population
2.4. Main Outcomes
2.5. Variable and Measurements
2.6. Statistical Analysis
3. Results
3.1. Demographic Findings
3.2. Main Results
3.3. Stratified Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atwood, C.; Eisenberg, M.S.; Herlitz, J.; Rea, T.D. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 2005, 67, 75–80. [Google Scholar] [CrossRef]
- Berdowski, J.; Berg, R.A.; Tijssen, J.G.; Koster, R.W. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation 2010, 81, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Gan, Y.; Jiang, N.; Wang, R.; Chen, Y.; Luo, Z.; Zong, Q.; Chen, S.; Lv, C. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: A systematic review and meta-analysis. Crit. Care 2020, 24, 61. [Google Scholar] [CrossRef] [PubMed]
- Babbs, C.F.; Voorhees, W.; Fitzgerald, K.; Holmes, H.; Geddes, L. Relationship of blood pressure and flow during CPR to chest compression amplitude: Evidence for an effective compression threshold. Ann. Emerg. Med. 1983, 12, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Michelland, L.; Adnet, F.; Escutnaire, J.; Baker, C.; Hubert, H.; Chevret, S. Association between early advanced life support and good neurological outcome in out of hospital cardiac arrest: A propensity score analysis. J. Eval. Clin. Pract. 2020, 26, 1013–1021. [Google Scholar] [CrossRef]
- Berg, K.M.; Cheng, A.; Panchal, A.R.; Topjian, A.A.; Aziz, K.; Bhanji, F.; Bigham, B.L.; Hirsch, K.G.; Hoover, A.V.; Kurz, M.C. Part 7: Systems of care: 2020 American Heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2020, 142, S580–S604. [Google Scholar] [CrossRef]
- Fletcher, D.J.; Boller, M. Fluid Therapy During Cardiopulmonary Resuscitation. Front. Vet. Sci. 2020, 7, 625361. [Google Scholar] [CrossRef]
- Kitamura, T.; Kiyohara, K.; Sakai, T.; Iwami, T.; Nishiyama, C.; Kajino, K.; Nishiuchi, T.; Hayashi, Y.; Katayama, Y.; Yoshiya, K.; et al. Epidemiology and outcome of adult out-of-hospital cardiac arrest of non-cardiac origin in Osaka: A population-based study. BMJ Open 2014, 4, e006462. [Google Scholar] [CrossRef]
- Tijssen, J.A.; Prince, D.K.; Morrison, L.J.; Atkins, D.L.; Austin, M.A.; Berg, R.; Brown, S.P.; Christenson, J.; Egan, D.; Fedor, P.J.; et al. Time on the scene and interventions are associated with improved survival in pediatric out-of-hospital cardiac arrest. Resuscitation 2015, 94, 1–7. [Google Scholar] [CrossRef]
- Lott, C.; Truhlář, A.; Alfonzo, A.; Barelli, A.; González-Salvado, V.; Hinkelbein, J.; Nolan, J.P.; Paal, P.; Perkins, G.D.; Thies, K.-C. European Resuscitation Council Guidelines 2021: Cardiac arrest in special circumstances. Resuscitation 2021, 161, 152–219. [Google Scholar] [CrossRef]
- Merchant, R.M.; Topjian, A.A.; Panchal, A.R.; Cheng, A.; Aziz, K.; Berg, K.M.; Lavonas, E.J.; Magid, D.J.; Basic, A.; Advanced Life Support, P.B.; et al. Part 1: Executive summary: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2020, 142, S337–S357. [Google Scholar] [CrossRef]
- Krep, H.; Breil, M.; Sinn, D.; Hagendorff, A.; Hoeft, A.; Fischer, M. Effects of hypertonic versus isotonic infusion therapy on regional cerebral blood flow after experimental cardiac arrest cardiopulmonary resuscitation in pigs. Resuscitation 2004, 63, 73–83. [Google Scholar] [CrossRef]
- Capparelli, E.V.; Chow, M.S.; Kluger, J.; Fieldman, A. Differences in systemic and myocardial blood acid-base status during cardiopulmonary resuscitation. Crit. Care Med. 1989, 17, 442–446. [Google Scholar] [CrossRef]
- Prause, G.; Ratzenhofer-Comenda, B.; Smolle-Jüttner, F.; Heydar-Fadai, J.; Wildner, G.; Spernbauer, P.; Smolle, J.; Hetz, H. Comparison of lactate or BE during out-of-hospital cardiac arrest to determine metabolic acidosis. Resuscitation 2001, 51, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K.; Fujii, T. Management of acute metabolic acidosis in the ICU: Sodium bicarbonate and renal replacement therapy. Crit. Care 2021, 25, 314. [Google Scholar] [CrossRef] [PubMed]
- Kilic, O.; Gultekin, Y.; Yazici, S. The Impact of Intravenous Fluid Therapy on Acid-Base Status of Critically Ill Adults: A Stewart Approach-Based Perspective. Int. J. Nephrol. Renovasc. Dis. 2020, 13, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Jeong, W.J.; Moon, H.J.; Kim, G.W.; Cho, J.S.; Lee, K.M.; Choi, H.J.; Park, Y.J.; Lee, C.A. Factors Associated with High-Quality Cardiopulmonary Resuscitation Performed by Bystander. Emerg. Med. Int. 2020, 2020, 8356201. [Google Scholar] [CrossRef]
- Honarmand, K.; Mepham, C.; Ainsworth, C.; Khalid, Z. Adherence to advanced cardiovascular life support (ACLS) guidelines during in-hospital cardiac arrest is associated with improved outcomes. Resuscitation 2018, 129, 76–81. [Google Scholar] [CrossRef]
- Langhelle, A.; Nolan, J.; Herlitz, J.; Castren, M.; Wenzel, V.; Soreide, E.; Engdahl, J.; Steen, P.A.; on behalf of the participants at the 2003 Utstein Consensus Symposium. Recommended guidelines for reviewing, reporting, and conducting research on post-resuscitation care: The Utstein style. Resuscitation 2005, 66, 271–283. [Google Scholar] [CrossRef]
- Nolan, J.P.; Maconochie, I.; Soar, J.; Olasveengen, T.M.; Greif, R.; Wyckoff, M.H.; Singletary, E.M.; Aickin, R.; Berg, K.M.; Mancini, M.E.; et al. Executive Summary: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation 2020, 142, S2–S27. [Google Scholar] [CrossRef]
- Sandroni, C.; Nolan, J.P.; Andersen, L.W.; Böttiger, B.W.; Cariou, A.; Cronberg, T.; Friberg, H.; Genbrugge, C.; Lilja, G.; Morley, P.T.; et al. ERC-ESICM guidelines on temperature control after cardiac arrest in adults. Intensive Care Med. 2022, 48, 261–269. [Google Scholar] [CrossRef]
- Nongchang, P.; Wong, W.L.; Pitaksanurat, S.; Amchai, P.B. Intravenous Fluid Administration and the Survival of Pre hospital Resuscitated out of Hospital Cardiac Arrest Patients in Thailand. J. Clin. Diagn. Res. 2017, 11, oc29–oc32. [Google Scholar] [CrossRef] [PubMed]
- Weisfeldt, M.L.; Becker, L.B. Resuscitation after cardiac arrest: A 3-phase time-sensitive model. JAMA 2002, 288, 3035–3038. [Google Scholar] [CrossRef] [PubMed]
- Adrie, C.; Adib-Conquy, M.; Laurent, I.; Monchi, M.; Vinsonneau, C.; Fitting, C.; Fraisse, F.; Dinh-Xuan, A.T.; Carli, P.; Spaulding, C.; et al. Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation 2002, 106, 562–568. [Google Scholar] [CrossRef]
- Lindsay, P.J.; Buell, D.; Scales, D.C. The efficacy and safety of pre-hospital cooling after out-of-hospital cardiac arrest: A systematic review and meta-analysis. Crit. Care 2018, 22, 66. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, P.; Taccone, F.S.; Truhlar, A.; Forsberg, S.; Hollenberg, J.; Jonsson, M.; Cuny, J.; Goldstein, P.; Vermeersch, N.; Higuet, A.; et al. Effect of Trans-Nasal Evaporative Intra-arrest Cooling on Functional Neurologic Outcome in Out-of-Hospital Cardiac Arrest: The PRINCESS Randomized Clinical Trial. JAMA 2019, 321, 1677–1685. [Google Scholar] [CrossRef]
- Awad, A.; Taccone, F.S.; Jonsson, M.; Forsberg, S.; Hollenberg, J.; Truhlar, A.; Ringh, M.; Abella, B.S.; Becker, L.B.; Vincent, J.L.; et al. Time to intra-arrest therapeutic hypothermia in out-of-hospital cardiac arrest patients and its association with neurologic outcome: A propensity matched sub-analysis of the PRINCESS trial. Intensive Care Med. 2020, 46, 1361–1370. [Google Scholar] [CrossRef]
- Yokoyama, H.; Nagao, K.; Hase, M.; Tahara, Y.; Hazui, H.; Arimoto, H.; Kashiwase, K.; Sawano, H.; Yasuga, Y.; Kuroda, Y.; et al. Impact of therapeutic hypothermia in the treatment of patients with out-of-hospital cardiac arrest from the J-PULSE-HYPO study registry. Circ. J. 2011, 75, 1063–1070. [Google Scholar] [CrossRef]
Total | Fluid Resuscitation | |||
---|---|---|---|---|
Yes | No | p-Value | ||
n (%) | n (%) | n (%) | ||
Total | 29,228 | 13,683 | 15,545 | |
Age, year | <0.01 | |||
19–65 | 8384 (28.7) | 4199 (30.7) | 4185 (26.9) | |
65–120 | 20,844 (71.3) | 9484 (69.3) | 11,360 (73.1) | |
Sex, female | 11,017 (37.7) | 4730 (34.6) | 6287 (40.4) | <0.01 |
Comorbidity | ||||
Diabetes mellitus | 6924 (23.7) | 3376 (24.7) | 3548 (22.8) | <0.01 |
Hypertension | 10,574 (36.2) | 5120 (37.4) | 5454 (35.1) | <0.01 |
Heart disease | 5316 (18.2) | 2607 (19.1) | 2709 (17.4) | <0.01 |
Stroke | 2815 (9.6) | 1241 (9.1) | 1574 (10.1) | <0.01 |
Kidney disease | 1840 (6.3) | 866 (6.3) | 974 (6.3) | 0.82 |
Metropolitan area | 11,134 (38.1) | 7090 (51.8) | 4044 (26.0) | <0.01 |
Place of arrest, public | 7115 (24.3) | 2962 (21.6) | 4153 (26.7) | <0.01 |
Arrest witnessed | 14,189 (48.5) | 6459 (47.2) | 7730 (49.7) | <0.01 |
Bystander CPR | 16,279 (55.7) | 8302 (60.7) | 7977 (51.3) | <0.01 |
Initial shockable rhythm | 3536 (12.1) | 1942 (14.2) | 1594 (10.3) | <0.01 |
Response time interval, min | <0.01 | |||
0–3 | 1449 (5.0) | 655 (4.8) | 794 (5.1) | |
4–7 | 15,162 (51.9) | 7631 (55.8) | 7531 (48.4) | |
≥8 | 12,617 (43.2) | 5397 (39.4) | 7220 (46.4) | |
Median (IQR) | 7 (5–10) | 7 (5–9) | 7 (5–9) | <0.01 |
Scene time interval, min | <0.01 | |||
0–10 | 8351 (28.6) | 2025 (14.8) | 6326 (40.7) | |
11–15 | 11,482 (39.3) | 5751 (42.0) | 5731 (36.9) | |
≥16 | 9395 (32.1) | 5907 (43.2) | 3488 (22.4) | |
Median (IQR) | 13 (10–17) | 15 (12–18) | 15 (12–18) | <0.01 |
Transport time interval, min | <0.01 | |||
0–3 | 4707 (16.1) | 2173 (15.9) | 2534 (16.3) | |
4–7 | 11,137 (38.1) | 5827 (42.6) | 5310 (34.2) | |
≥8 | 13,384 (45.8) | 5683 (41.5) | 7701 (49.5) | |
Median (IQR) | 7 (4–11) | 7 (4–10) | 7 (4–10) | <0.01 |
Multi-tier response | 19,346 (66.2) | 11,359 (83.0) | 7987 (51.4) | <0.01 |
EMT number, 3 people | 28,267 (96.7) | 13,538 (98.9) | 14,729 (94.8) | <0.01 |
EMS management | ||||
Mechanical CPR | 6705 (22.9) | 4594 (33.6) | 2111 (13.6) | <0.01 |
Advanced airway | 22,698 (77.7) | 12,205 (89.2) | 10,493 (67.5) | <0.01 |
Epinephrine use | 3091 (10.6) | 2946 (21.5) | 145 (0.9) | <0.01 |
ED level | <0.01 | |||
Level 1 | 5440 (18.6) | 2791 (20.4) | 2649 (17.0) | |
Level 2 | 13,361 (45.7) | 7091 (51.8) | 6270 (40.3) | |
Level 3 | 10,427 (35.7) | 3801 (27.8) | 6626 (42.6) | |
Hospital treatment | ||||
TTM | 692 (2.4) | 395 (2.9) | 297 (1.9) | <0.01 |
PCI | 1173 (4.0) | 628 (4.6) | 545 (3.5) | <0.01 |
ECMO | 310 (1.1) | 196 (1.4) | 114 (0.7) | <0.01 |
Survival outcomes | ||||
Prehospital ROSC | 9454 (32.3) | 4664 (34.1) | 4790 (30.8) | <0.01 |
Survival to discharge | 1433 (4.9) | 593 (4.3) | 840 (5.4) | <0.01 |
Good neurological recovery | 676 (2.3) | 249 (1.8) | 427 (2.7) | <0.01 |
Total | Outcome | Model 1 | Model 2 | Model 3 | Model 3 (Fluid Only) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | n | % | aOR | 95% CI | aOR | 95% CI | aOR | 95% CI | aOR | 95% CI | |||||
Good neurological recovery | |||||||||||||||
IV fluid (−) | 15,545 | 427 | 2.7 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
IV fluid (+) | 13,683 | 249 | 1.8 | 0.61 | 0.52 | 0.72 | 0.64 | 0.54 | 0.77 | 1.10 | 0.89 | 1.36 | 1.15 | 0.93 | 1.42 |
Survival to discharge | |||||||||||||||
IV fluid (−) | 15,545 | 840 | 5.4 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
IV fluid (+) | 13,683 | 593 | 4.3 | 0.75 | 0.68 | 0.80 | 0.79 | 0.70 | 0.89 | 1.15 | 1.01 | 1.32 | 1.17 | 1.02 | 1.34 |
Prehospital ROSC | |||||||||||||||
IV fluid (−) | 15,545 | 4790 | 30.8 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
IV fluid (+) | 13,683 | 4664 | 34.1 | 1.14 | 1.08 | 1.20 | 1.15 | 1.09 | 1.21 | 1.25 | 1.18 | 1.33 | 1.26 | 1.18 | 1.34 |
IV Fluid (−) | IV Fluid (+) | |||||
---|---|---|---|---|---|---|
aOR | aOR | 95% CI | p Value | |||
Whole population | ||||||
Good neurological recovery | ||||||
EMS time interval | 0.21 | |||||
≤15 min | ref. | 0.81 | 0.54 | 1.20 | ||
16–30 min | ref. | 1.21 | 0.93 | 1.57 | ||
≥31 min | ref. | 1.19 | 0.79 | 1.79 | ||
Survival to discharge | ||||||
EMS time interval | <0.01 | |||||
≤15 min | ref. | 0.87 | 0.67 | 1.14 | ||
16–30 min | ref. | 1.20 | 1.02 | 1.43 | ||
≥31 min | ref. | 1.48 | 1.09 | 2.01 | ||
Subgroup (fluid only) population | ||||||
Good neurological recovery | ||||||
EMS time interval | 0.15 | |||||
≤15 min | ref. | 0.91 | 0.61 | 1.36 | ||
16–30 min | ref. | 1.19 | 0.90 | 1.58 | ||
≥31 min | ref. | 1.61 | 1.05 | 2.48 | ||
Survival to discharge | ||||||
EMS time interval | <0.01 | |||||
≤15 min | ref. | 0.90 | 0.69 | 1.18 | ||
16–30 min | ref. | 1.24 | 1.04 | 1.48 | ||
≥31 min | ref. | 1.74 | 1.26 | 2.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, E.; Ro, Y.S.; Song, K.J.; Shin, S.D.; Ryu, H.H. The Impact of Fluid Resuscitation on Clinical Outcomes According to Transport Time in Out-of-Hospital Cardiac Arrest Patients. J. Clin. Med. 2025, 14, 2867. https://doi.org/10.3390/jcm14092867
Jung E, Ro YS, Song KJ, Shin SD, Ryu HH. The Impact of Fluid Resuscitation on Clinical Outcomes According to Transport Time in Out-of-Hospital Cardiac Arrest Patients. Journal of Clinical Medicine. 2025; 14(9):2867. https://doi.org/10.3390/jcm14092867
Chicago/Turabian StyleJung, Eujene, Young Sun Ro, Kyoung Jun Song, Sang Do Shin, and Hyun Ho Ryu. 2025. "The Impact of Fluid Resuscitation on Clinical Outcomes According to Transport Time in Out-of-Hospital Cardiac Arrest Patients" Journal of Clinical Medicine 14, no. 9: 2867. https://doi.org/10.3390/jcm14092867
APA StyleJung, E., Ro, Y. S., Song, K. J., Shin, S. D., & Ryu, H. H. (2025). The Impact of Fluid Resuscitation on Clinical Outcomes According to Transport Time in Out-of-Hospital Cardiac Arrest Patients. Journal of Clinical Medicine, 14(9), 2867. https://doi.org/10.3390/jcm14092867