Effectiveness and Safety of Erector Spinae Plane Block vs. Conventional Pain Treatment Strategies in Thoracic Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Patients
2.3. ESPB
2.4. Standard Analgesia
2.5. Data Collected
2.6. Definitions
2.7. Study Endpoints
2.8. Sample Size Calculation
2.9. Statistical Analysis
3. Results
3.1. Patients
3.2. Postoperative Piritramide
3.3. Postoperative Pain Scores
3.4. Exploratory Endpoints
3.5. Adverse Events
3.6. Post Hoc Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forero, M.; Adhikary, S.D.; Lopez, H.; Tsui, C.; Chin, K.J. The Erector Spinae Plane Block: A Novel Analgesic Technique in Thoracic Neuropathic Pain. Reg. Anesth. Pain Med. 2016, 41, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Hoogma, D.F.; den Eynde, R.V.; Tmimi, L.A.; Verbrugghe, P.; Tournoy, J.; Fieuws, S. Efficacy of erector spinae plane block for minimally invasive mitral valve surgery: Results of a double-blind, prospective randomized placebo-controlled trial. J. Clin. Anesth. 2023, 86, 111072. [Google Scholar] [CrossRef]
- Chen, N.; Qiao, Q.; Chen, R.; Xu, Q.; Zhang, Y.; Tian, Y. The effect of ultrasound-guided intercostal nerve block, single-injection erector spinae plane block and multiple-injection paravertebral block on postoperative analgesia in thoracoscopic surgery: A randomized, double-blinded, clinical trial. J. Clin. Anesth. 2020, 59, 106–111. [Google Scholar] [CrossRef]
- Gürkan, Y.; Aksu, C.; Kuş, A.; Yörükoğlu, U.H. Erector spinae plane block and thoracic paravertebral block for breast surgery compared to IV-morphine: A randomized controlled trial. J. Clin. Anesth. 2020, 59, 84–88. [Google Scholar] [CrossRef]
- Saadawi, M.; Layera, S.; Aliste, J.; Bravo, D.; Leurcharusmee, P.; Tran, D.Q. Erector spinae plane block: A narrative review with systematic analysis of the evidence pertaining to clinical indications and alternative truncal blocks. J. Clin. Anesth. 2021, 68, 110063. [Google Scholar] [CrossRef]
- Elyazed, M.M.A.; Mostafa, S.F.; Abdelghany, M.S.; Eid, G.M. Ultrasound-Guided Erector Spinae Plane Block in Patients Undergoing Open Epigastric Hernia Repair: A Prospective Randomized Controlled Study. Anesth. Analg. 2019, 129, 235–240. [Google Scholar] [CrossRef]
- Hamadnalla, H.; Elsharkawy, H.; Shimada, T.; Maheshwari, K.; Esa, W.A.S.; Tsui, B.C.H. Cervical erector spinae plane block catheter for shoulder disarticulation surgery. Can. J. Anesth./J. Can. d’Anesth. 2019, 66, 1129–1131. [Google Scholar] [CrossRef]
- Pawa, A.; King, C.; Thang, C.; White, L. Erector spinae plane block: The ultimate ‘plan A’ block? Br. J. Anaesth. 2023, 130, 497–502. [Google Scholar] [CrossRef]
- Fiorelli, S.; Leopizzi, G.; Menna, C.; Teodonio, L.; Ibrahim, M.; Rendina, E.A.; Ricci, A.; De Blasi, R.A.; Rocco, M.; Massullo, D.; et al. Ultrasound-Guided Erector Spinae Plane Block Versus Intercostal Nerve Block for Post-Minithoracotomy Acute Pain Management: A Randomized Controlled Trial. J. Cardiothorac. Vasc. Anesth. 2020, 34, 2421–2429. [Google Scholar] [CrossRef]
- Yao, Y.; Fu, S.; Dai, S.; Yun, J.; Zeng, M.; Li, H.; Zheng, X. Impact of ultrasound-guided erector spinae plane block on postoperative quality of recovery in video-assisted thoracic surgery: A prospective, randomized, controlled trial. J. Clin. Anesth. 2020, 63, 109783. [Google Scholar] [CrossRef]
- Ciftci, B.; Ekinci, M.; Celik, E.C.; Tukac, I.C.; Bayrak, Y.; Atalay, Y.O. Efficacy of an Ultrasound-Guided Erector Spinae Plane Block for Postoperative Analgesia Management After Video-Assisted Thoracic Surgery: A Prospective Randomized Study. J. Cardiothorac. Vasc. Anesth. 2020, 34, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, G.; Wei, S.; He, Z.; Sun, L.; Zheng, H. Comparison of the Effects of Ultrasound-guided Erector Spinae Plane Block and Wound Infiltration on Perioperative Opioid Consumption and Postoperative Pain in Thoracotomy. J. Coll. Physicians Surg. Pak. 2019, 29, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Via, L.L.; Cavaleri, M.; Terminella, A.; Sorbello, M.; Cusumano, G. Loco-Regional Anesthesia for Pain Management in Robotic Thoracic Surgery. J. Clin. Med. 2024, 13, 3141. [Google Scholar] [CrossRef] [PubMed]
- Bauerle, W.B.; Hamlin, S.; Dubois, S.; Petrochko, J.M.; Frenzel, Z.A.; Ng-Pellegrino, A.; Burfeind, W.R.; Harrison, M.A. Impact of Liposomal Bupivacaine on Enhanced Recovery After Surgery Protocol for Lung Resection. Ann. Thorac. Surg. 2024, 119, 219–226. [Google Scholar] [CrossRef]
- Giménez-Milà, M.; Klein, A.A.; Martinez, G. Design and implementation of an enhanced recovery program in thoracic surgery. J. Thorac. Dis. 2016, 8, S37–S45. [Google Scholar] [CrossRef]
- Cohen, J.B.; Smith, B.B.; Teeter, E.G. Update on guidelines and recommendations for enhanced recovery after thoracic surgery. Curr. Opin. Anaesthesiol. 2024, 37, 58–63. [Google Scholar] [CrossRef]
- Batchelor, T.J.P.; Rasburn, N.J.; Abdelnour-Berchtold, E.; Brunelli, A.; Cerfolio, R.J.; Gonzalez, M.; Ljungqvist, O.; Petersen, R.H.; Popescu, W.M.; Slinger, P.D.; et al. Guidelines for enhanced recovery after lung surgery: Recommendations of the Enhanced Recovery After Surgery (ERAS®) Society and the European Society of Thoracic Surgeons (ESTS). Eur. J. Cardio-Thorac. Surg. 2019, 55, 91–115. [Google Scholar] [CrossRef]
- Liu, L.; Ni, X.; Zhang, L.; Zhao, K.; Xie, H.; Zhu, J. Effects of ultrasound-guided erector spinae plane block on postoperative analgesia and plasma cytokine levels after uniportal VATS: A prospective randomized controlled trial. J. Anesth. 2021, 35, 3–9. [Google Scholar] [CrossRef]
- Nachira, D.; Punzo, G.; Calabrese, G.; Sessa, F.; Congedo, M.T.; Beccia, G.; Aceto, P.; Kuzmych, K.; Cambise, C.; Sassorossi, C.; et al. The Efficacy of Continuous Serratus Anterior and Erector Spinae Plane Blocks vs Intercostal Nerve Block in Uniportal-Vats Surgery: A Propensity-Matched Prospective Trial. J. Clin. Med. 2024, 13, 606. [Google Scholar] [CrossRef]
- Durey, B.; Djerada, Z.; Boujibar, F.; Besnier, E.; Montagne, F.; Baste, J.-M.; Dusseaux, M.M.; Compere, V.; Clavier, T.; Selim, J. Erector Spinae Plane Block versus Paravertebral Block after Thoracic Surgery for Lung Cancer: A Propensity Score Study. Cancers 2023, 15, 2306. [Google Scholar] [CrossRef]
- Finnerty, D.T.; McMahon, A.; McNamara, J.R.; Hartigan, S.D.; Griffin, M.; Buggy, D.J. Comparing erector spinae plane block with serratus anterior plane block for minimally invasive thoracic surgery: A randomised clinical trial. Br. J. Anaesth. 2020, 125, 802–810. [Google Scholar] [CrossRef]
- Clairoux, A.; Moore, A.; Caron-Goudreault, M.; Soucy-Proulx, M.; Thibault, M.; Brulotte, V.; Bélanger, M.E.; Raft, J.; Godin, N.; Idrissi, M.; et al. Erector spinae plane block did not improve postoperative pain-related outcomes and recovery after video-assisted thoracoscopic surgery: A randomised controlled double-blinded multi-center trial. BMC Anesth. 2024, 24, 156. [Google Scholar] [CrossRef]
- Klaibert, B.; Lohser, J.; Tang, R.; Jew, M.; McGuire, A.; Wilson, J. Efficacy of ultrasound-guided single-injection erector spinae plane block for thoracoscopic wedge resection: A prospective randomized control trial. Reg. Anesth. Pain Med. 2022, 47, 749–754. [Google Scholar] [CrossRef]
- Bliss, D.P., Jr.; Strandness, T.B.; Derderian, S.C.; Kaizer, A.M.; Partrick, D.A. Ultrasound-guided erector spinae plane block versus thoracic epidural analgesia: Postoperative pain management after Nuss repair for pectus excavatum. J. Pediatr. Surg. 2022, 57, 207–212. [Google Scholar] [CrossRef]
- Nagaraja, P.; Ragavendran, S.; Singh, N.G.; Asai, O.; Bhavya, G.; Manjunath, N. Comparison of Continuous Thoracic Epidural Analgesia with Bilateral Erector Spinae Plane Block for Perioperative Pain Management in Cardiac Surgery. Ann. Card. Anaesth. 2018, 21, 323–327. [Google Scholar] [CrossRef]
- Mitchell, J.; Couvreur, C.; Forget, P. Recent Advances in Perioperative Analgesia in Thoracic Surgery: A Narrative Review. J. Clin. Med. 2024, 14, 38. [Google Scholar] [CrossRef]
- Shim, J.-G.; Ryu, K.-H.; Kim, P.O.; Cho, E.-A.; Ahn, J.-H.; Yeon, J.-E.; Lee, S.H.; Kang, D.Y. Evaluation of ultrasound-guided erector spinae plane block for postoperative management of video-assisted thoracoscopic surgery: A prospective, randomized, controlled clinical trial. J. Thorac. Dis. 2020, 12, 4174–4182. [Google Scholar] [CrossRef]
- Joshi, G.P.; Bonnet, F.; Shah, R.; Wilkinson, R.C.; Camu, F.; Fischer, B.; Neugebauer, E.A.; Rawal, N.; Schug, S.A.; Simanski, C.; et al. A Systematic Review of Randomized Trials Evaluating Regional Techniques for Postthoracotomy Analgesia. Anesth. Analg. 2008, 107, 1026–1040. [Google Scholar] [CrossRef]
- Shaker, E.H.; Elshal, M.M.; Gamal, R.M.; Zayed, N.O.A.; Samy, S.F.; Reyad, R.M.; Shaaban, M.H.; Abd Alrahman, A.A.M.; Abdelgalil, A.S. Ultrasound-guided continuous erector spinae plane block vs continuous thoracic epidural analgesia for the management of acute and chronic postthoracotomy pain: A randomized, controlled, double-blind trial. Pain Rep. 2023, 8, e1106. [Google Scholar] [CrossRef]
- Kwon, S.T.; Zhao, L.; Reddy, R.M.; Chang, A.C.; Orringer, M.B.; Brummett, C.M.; Lin, J. Evaluation of acute and chronic pain outcomes after robotic, video-assisted thoracoscopic surgery, or open anatomic pulmonary resection. J. Thorac. Cardiovasc. Surg. 2017, 154, 652–659.e1. [Google Scholar] [CrossRef]
- Tighe, P.J.; Le-Wendling, L.T.; Patel, A.; Zou, B.; Fillingim, R.B. Clinically derived early postoperative pain trajectories differ by age, sex, and type of surgery. Pain 2015, 156, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Zengin, M.; Alagöz, A.; Sazak, H.; Ülger, G.; Baldemir, R.; Şentürk, M. Comparison of efficacy of erector spinae plane block, thoracic paravertebral block, and erector spinae plane block and thoracic paravertebral block combination for acute pain after video-assisted thoracoscopic surgery: A randomized controlled study. Minerva Anestesiol. 2023, 89, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Turhan, Ö.; Sivrikoz, N.; Sungur, Z.; Duman, S.; Özkan, B.; Şentürk, M. Thoracic Paravertebral Block Achieves Better Pain Control Than Erector Spinae Plane Block and Intercostal Nerve Block in Thoracoscopic Surgery: A Randomized Study. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2920–2927. [Google Scholar] [CrossRef]
- Tsui, B.C.H.; Fonseca, A.; Munshey, F.; McFadyen, G.; Caruso, T.J. The erector spinae plane (ESP) block: A pooled review of 242 cases. J. Clin. Anesth. 2019, 53, 29–34. [Google Scholar] [CrossRef]
- Joseph, T.J.; Palamattam, D.J.; Madathil, T.; Panidapu, N.; Poduval, D.; Neema, P.K. Large Hematoma Following Erector Spinae Plane Block: A Case Report. A A Pract. 2024, 18, e01803. [Google Scholar] [CrossRef]
- Smith, D.; Tsui, B.C.H.; Khoo, C. Local Anesthetic Systemic Toxicity in Cardiac Surgery Patient with Erector Spinae Plane Catheter: A Case Report. A A Pract. 2024, 18, e01771. [Google Scholar] [CrossRef]
VATS Patients (N = 165) | Thoracotomy Patients (N = 72) | |||||
---|---|---|---|---|---|---|
With ESPB (N = 101) | With IV–CA (N = 64) | p | With ESPB (N = 41) | With TEA (N = 31) | p | |
age, years | 60.9 (17.5) | 60.4 (50.7) | 0.84 | 63.9 (10.9) | 52.7 (19.6) | <0.01 |
sex, female | 46 (45.5) | 27 (42.2) | 0.67 | 15 (36.6) | 10 (32.3) | 0.70 |
BMI, mean (SD) | 25.7 (6.1) | 26.2 (6.4) | 0.65 | 27.3 (5.4) | 23.8 (4.2) | <0.01 |
ASA score | 3.0 [2.0 to 3.0] | 3.0 [2.0 to 3.0] | 0.90 | 3.0 [2.0 to 3.0] | 3.0 [2.0 to 3.0] | 0.42 |
type of surgery | 0.12 | 0.38 | ||||
elective surgery, n (%) | 91 (90.1) | 57 (89.1) | 40 (97.6) | 30 (96.8) | ||
urgent surgery, n (%) | 10 (9.9) | 7 (10.9) | 1 (2.4) | 1 (3.2) | ||
analgesia | ||||||
ESPB, n (%) | 101 (100.0) | N.A. | 41 (100.0) | N.A. | ||
before surgery | 5 (5.0) | N.A. | 0 (0.0) | N.A. | ||
TEA | 0 (0.0) | 0 (0.0) | 0 (0.0) | 31 (100.0) | ||
before surgery | N.A. | N.A. | N.A. | 31 (100.0) | ||
primary diagnosis | 0.84 | 0.04 | ||||
malignancy | 68 (67.3) | 29 (45.3) | 35 (85.4) | 18 (58.1) | ||
pathology pending | 33 | 19 | 8 | 3 | ||
adenocarcinoma | 17 | 2 | 7 | 4 | ||
squamous cell carcinoma | 5 | 4 | 7 | 5 | ||
non-small cell lung cancer | 3 | 1 | 1 | 1 | ||
metastasis | 8 | 2 | 7 | 2 | ||
other malignancy | 2 | 1 | 5 | 3 | ||
pneumothorax | 12 (11.9) | 9 (14.1) | 0 (0.0) | 0 (0.0) | ||
pleural effusion | 8 (7.9) | 10 (15.6) | 0 (0.0) | 0 (0.0) | ||
hemothorax | 0 (0.0) | 5 (7.8) | 0 (0.0) | 0 (0.0) | ||
empyema | 5 (5.0) | 4 (6.3) | 6 (14.6) | 2 (6.5) | ||
emphysema | 1 (1.0) | 1 (1.6) | 0 (0.0) | 0 (0.0) | ||
pectus deformity | 0 (0.0) | 0 (0.0) | 0 (0.0) | 5 (16.1) | ||
other | 7 (6.9) | 6 (9.4) | 0 (0.0) | 6 (19.3) | ||
surgical intervention | ||||||
EASR/ASR, n (%) | 34 (33.7) | 22 (34.4) | 10 (24.4) | 1 (3.2) | ||
single EASR, n | 15 | 12 | 6 | 1 | ||
EASR + ASR, n | 0 | 1 | 0 | 0 | ||
multiple EASR, n | 8 | 6 | 0 | 0 | ||
multiple EASR + ASR, n | 1 | 0 | 0 | 0 | ||
single ASR, n | 7 | 3 | 4 | 0 | ||
multiple ASR, n | 3 | 0 | 0 | 0 | ||
lobectomy/pneumonectomy, n (%) | 44 (43.6) | 14 (21.9) | 26 (63.4) | 13 (41.9) | ||
lobectomy, n | 21 | 6 | 11 | 4 | ||
lobectomy + EASR, n | 6 | 1 | 2 | 2 | ||
bilobectomy, n | 1 | 0 | 1 | 0 | ||
pleurectomy, n | 10 | 5 | 5 | 3 | ||
pleurectomy + EASR, n | 6 | 2 | 0 | 0 | ||
sleeve bi-lobectomy | 0 | 0 | 1 | 1 | ||
sleeve lobectomy | 0 | 0 | 3 | 1 | ||
pneumonectomy | 0 | 0 | 3 | 2 | ||
pleurodesis | 5 (5.0) | 5 (7.8) | 0 (0.0) | 0 (0.0) | ||
pleurodesis | 4 | 5 | 0 | 0 | ||
pleurodesis + IPC | 1 | 0 | 0 | 0 | ||
VATS, n (%) | 11 (10.9) | 5 (7.8) | 0 (0.0) | 0 (0.0) | ||
diagnostic VATS | 6 | 3 | 0 | 0 | ||
diagnostic VATS + IPC | 3 | 2 | 0 | 0 | ||
diagnostic VATS + pleurectomy | 1 | 0 | 0 | 0 | ||
diagnostic VATS + multiple EASR | 1 | 0 | 0 | 0 | ||
miscellaneous, n (%) | 7 (6.9) | 11 (17.2) | 6 (14.6) | 17 (54.8) | ||
hematoma evacuation | 0 | 2 | 1 | 0 | ||
minor tumor resection | 0 | 0 | 0 | 2 | ||
extensive tumor resection | 0 | 0 | 1 | 7 | ||
Nuss operation | 0 | 0 | 0 | 4 | ||
other | 7 | 9 | 3 | 4 |
VATS Patients (N = 165) | Thoracotomy Patients (N = 72) | |||||
---|---|---|---|---|---|---|
With ESPB (N = 101) | With IV–CA (N = 64) | p | With ESPB (N = 41) | With TEA (N = 31) | p | |
Primary endpoint | ||||||
Median piritramide dose in first 2 h, mg [IQR] | 7.5 [3 to 12] | 10.5 [6.5 to 15.5] | <0.01 | 12.0 [6.0 to 15.0] | 3.0 [0.0 to 9.0] | <0.01 |
Secondary endpoint | ||||||
Median VAS for pain in first 2 h, score [IQR] | 2.5 [1.0 to 3.8] | 2.9 [1.5 to 4.0] | 0.19 | 2.4 [1.8 to 4.4] | 2.0 [0.0 to 5.4] | 0.30 |
VATS Patients (N = 165) | Thoracotomy Patients (N = 72) | |||||
---|---|---|---|---|---|---|
With ESPB (N = 101) | With IV–CA (N = 64) | p | With ESPB (N = 41) | With TEA (N = 31) | p | |
sedation score, median [IQR] | ||||||
first hour | 3.0 [2.5 to 3.0] | 3.0 [2.4 to 3.0] | 0.74 | 3.0 [2.5 to 3.0] | 3.0 [3.0 to 3.0] | 0.18 |
second hour | 3.0 [2.5 to 3.0] | 3.0 [2.5 to 3.0] | 0.91 | 2.7 [2.5 to 3.0] | 2.8 [2.5 to 3.0] | 0.57 |
third hour | 3.0 [2.5 to 3.0] | 3.0 [2.5 to 3.0] | 0.81 | 3.0 [2.5 to 3.0] | 3.0 [3.0 to 3.0] | 0.18 |
LOS, median [IQR] | ||||||
in OR, min | 178.0 [132.0 to 229.0] | 121.0 [98.6 to 195.5] | <0.01 | 225.0 [136.0 to 290.0] | 232.0 [206.0 to 309.0] | 0.85 |
anesthesia time, min | 33.0 [25.0 to 40.5] | 30.0 [22.3 to 37.5] | <0.01 | 34.0 [31.0 to 41.0] | 35.0 [25.0 to 54.0] | 0.64 |
in PACU, min | 135.0 [110.0 to 180.0] | 125.0 [106.5 to 180.0] | 0.71 | 150.0 [117.0 to 832.0] | 210.0 [165.0 to 1095.0] | 0.02 |
in hospital, days | 4.0 [3.0 to 5.0] | 3.0 [2.8 to 6.0] | 0.61 | 5.0 [3.5 to 7.5] | 6.0 [5.0 to 11.0] | 0.03 |
analgesia | ||||||
intraoperative: | ||||||
remifentanil, n (%) | 95 (94.1) | 58 (89.1) | 0.25 | 39 (95.1) | 27 (87.1) | 0.43 |
fentanyl, mg, median [IQR] | 300 [200 to 388] | 300 [200 to 400] | 0.09 | 300 [250 to 425] | 300 [200 to 400] | 0.54 |
intra- and postoperative: | ||||||
metamizole, n (%) | 85 (84.2) | 55 (85.9) | 0.76 | 35 (85.4) | 28 (90.3) | 0.53 |
metamizole, mg, median [IQR] | 2000 [1000 to 2500] | 1000 [1000 to 2500] | 0.46 | 2000 [1000 to 2500] | 1000 [1000 to 2000] | 0.11 |
diclofenac, n (%) | 55 (54.5) | 31 (48.4) | 0.45 | 28 (68.3) | 15 (48.4) | 0.09 |
diclofenac (mg) | 0.0 [0.0 to 75.0] | 75.0 [0.0 to 75.0] | 0.32 | 75.0 [0.0 to 75.0] | 0.0 [0.0 to 75.0] | 0.11 |
acetaminophen, n (%) | 38 (37.6) | 29 (45.3) | 0.33 | 16 (39.0) | 6 (19.4) | 0.07 |
acetaminophen, mg, median [IQR] | 0.0 [0.0 to 1000.0] | 0.0 [0.0 to 1000.0] | 0.46 | 0.0 [0.0 to 1000.0] | 0.0 [0.0 to 0.0] | 0.07 |
VATS Patients (N = 165) | Thoracotomy Patients (N = 72) | |||||
---|---|---|---|---|---|---|
With ESPB (N = 101) | With IV–CA (N = 64) | p | With ESPB (N = 41) | With TEA (N = 31) | p | |
adverse events | ||||||
any event, n (%) | 29 (28.7) | 20 (31.7) | 0.68 | 41 (100.0) | 22 (71.0) | <0.01 |
hospital mortality, n (%) | 0 (0.0) | 2 (3.1) | 0.07 | 0 (0.0) | 1 (3.2) | 0.25 |
antiemetic medication, n (%) | 26 (25.7) | 15 (23.7) | 0.74 | 41 (100.0) | 22 (71.0) | <0.01 |
motor block, n (%) | 0 (0.0) | 0 (0.0) | – | 0 (0.0) | 0 (0.0) | – |
analgesia failure, n (%) | 8 (7.9) | 5 (7.8) | 0.98 | 6 (14.6) | 5 (16.1) | 0.86 |
local anesthetic toxicity, n (%) | 0 (0.0) | 0 (0.0) | – | 0 (0.0) | 0 (0.0) | – |
delirium, n (%) | 1 (1.0) | 0 (0.0) | 1.0 | 1 (2.4) | 0 (0.0) | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapletal, B.; Bsuchner, P.; Begic, M.; Slama, A.; Vierthaler, A.; Schultz, M.J.; Tschernko, E.M.; Wohlrab, P. Effectiveness and Safety of Erector Spinae Plane Block vs. Conventional Pain Treatment Strategies in Thoracic Surgery. J. Clin. Med. 2025, 14, 2870. https://doi.org/10.3390/jcm14092870
Zapletal B, Bsuchner P, Begic M, Slama A, Vierthaler A, Schultz MJ, Tschernko EM, Wohlrab P. Effectiveness and Safety of Erector Spinae Plane Block vs. Conventional Pain Treatment Strategies in Thoracic Surgery. Journal of Clinical Medicine. 2025; 14(9):2870. https://doi.org/10.3390/jcm14092870
Chicago/Turabian StyleZapletal, Bernhard, Paul Bsuchner, Merjem Begic, Alexis Slama, Alexander Vierthaler, Marcus J. Schultz, Edda M. Tschernko, and Peter Wohlrab. 2025. "Effectiveness and Safety of Erector Spinae Plane Block vs. Conventional Pain Treatment Strategies in Thoracic Surgery" Journal of Clinical Medicine 14, no. 9: 2870. https://doi.org/10.3390/jcm14092870
APA StyleZapletal, B., Bsuchner, P., Begic, M., Slama, A., Vierthaler, A., Schultz, M. J., Tschernko, E. M., & Wohlrab, P. (2025). Effectiveness and Safety of Erector Spinae Plane Block vs. Conventional Pain Treatment Strategies in Thoracic Surgery. Journal of Clinical Medicine, 14(9), 2870. https://doi.org/10.3390/jcm14092870