Benefits of Explorative Saccade Training in Patients with Advanced Glaucomatous Visual Field Defects—A Randomized, Placebo-Controlled Study
Abstract
:1. Introduction
- (1)
- EST improves RT on a screen;
- (2)
- EST improves RT in a natural search task;
- (3)
- PRT does not influence RT in search tasks;
- (4)
- PRT does not influence RS.
2. Patients and Methods
2.1. Patients
2.2. Perimetry
2.3. Study Design
2.4. Outcome Variables
2.4.1. Reaction Time (RT) During EST on a Computer Screen
2.4.2. Reaction Time (RT) in a Natural Search Task
2.4.3. Reading Performance
2.4.4. Quality of Life—A Secondary Outcome Variable
2.5. Statistics
3. Results
3.1. Baseline Characteristics
- The groups
3.2. Reaction Time (RT) During Explorative Saccade Training (EST)
3.3. Table Test
T0 | T1 | T2 | ||
---|---|---|---|---|
group 1 | blind area | - | 2.84 s (1.66−3.24) | 1.92 (1.67−2.27) |
Wilcoxon | - | Z = −2.105, p = 0.035 | ||
Cohen’s d | - | 0.40 (medium effect) | ||
seeing area | - | 1.93 s (1.65−2.36) | 1.57 (1.34−1.89) | |
Wilcoxon | - | Z = −2.480, p = 0.013 | ||
Cohen’s d | - | 0.47 (medium effect) | ||
group 2 | blind area | 2.01 s (1.73−3.23) | 2.01 s (1.59−2.21) | 1.35 s (1.19−1.76) |
Wilcoxon | Z = −1.689, p = 0.091 | - | ||
- | Z = −2.758, p = 0.006 | |||
Cohen’s d | - | |||
- | 0.59 (large effect) | |||
seeing area | 1.86 s (1.58−2.22) | 1.53 s (1.28−1.91) | 1.36 s (1.23−1.61) | |
Wilcoxon | Z = −2.701, p = 0.007 | - | ||
- | Z = 1.376, p = 0.169 | |||
Cohen’s d | 0.60 (large effect) | - | ||
- | - |
Blind | Group 2 at T1 | Group 2 at T2 |
---|---|---|
Seeing | ||
Group 1 at T1 | U = 62.5, p = 0.434 | - |
U = 41.5, p = 0.096 | ||
Group 1 at T2 | - | U = 42.0, p = 0.058 |
U = 50.5, p = 0.259 |
- Correlations between RT during EST vs. RT during the table test.
Spearman’s Rank-Order Correlation | RT Table Test | ||||
---|---|---|---|---|---|
T1 | T2 | ||||
Blind | Seeing | Blind | Seeing | ||
RT EST | Level 1 start | Rho = 0.674 p < 0.001, n = 24 | Rho = 0.771 p < 0.001, n = 23 | - | - |
Level 3 end | - | - | Rho = 0.610 p = 0.001, n = 25 | Rho = 0.630 p < 0.001, n = 24 |
3.4. Reading Speeds (RS-Print and RS-Screen)
3.4.1. Reading Speed During Reading Printed Paragraphs (RS-Print)
3.4.2. Reading Speed from a Computer Screen (RS-Screen) During PRT
3.5. Quality of Life
- Patients categorized based on whether the inferior visual field was affected.
- Specific subscales of the GQL-15 questionnaire
4. Discussion
4.1. Benefit of Reading Training on Reading Speed (RS)
4.2. Benefit of Explorative Saccadic Training (EST) on Reaction Time (RT)
4.3. Benefit of Explorative Saccadic Training (EST) on Quality of Life
4.4. Strengths and Limitations
4.5. Hypotheses
- -
- Hypotheses 1–3 were confirmed (EST improved RT on a screen and in a natural search task, PRT did not influence RT in search tasks and was therefore appropriate as placebo control group);
- -
- Hypothesis 4 has to be rejected: PRT did improve RS.
5. Conclusions and Outcome
- Glaucoma patients with binocular overlapping visual field defects improved their reaction time during exploration, significantly in their blind area;
- Reading training improved their reading performance;
- These compensatory strategies were transferred to everyday life.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Blindness and Vision Impairment Collaborators; The Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.; Invernizzi, A.; Martins, J.; Renken, R.J.; Cornelissen, F.W. Local neuroplasticity in adult glaucomatous visual cortex. Sci. Rep. 2022, 12, 21981. [Google Scholar] [CrossRef] [PubMed]
- Jayaram, H.; Kolko, M.; Friedman, D.S.; Gazzard, G. Glaucoma: Now and beyond. Lancet 2023, 402, 1788–1801. [Google Scholar] [CrossRef]
- Coleman, A.L.; Miglior, S. Risk factors for glaucoma onset and progression. Surv. Ophthalmol. 2008, 53 (Suppl. S1), S3–S10. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.V.; Kuester, S.; MacKeben, M.; Krumm, A.; Haaga, M.; Staudt, M.; Cordey, A.; Gehrlich, C.; Martus, P.; Trauzettel-Klosinski, S. Effects of visual search training in children with hemianopia. PLoS ONE 2018, 13, e0197285. [Google Scholar] [CrossRef]
- Ivanov, I.V.; Mackeben, M.; Vollmer, A.; Martus, P.; Nguyen, N.X.; Trauzettel-Klosinski, S. Eye Movement Training and Suggested Gaze Strategies in Tunnel Vision—A Randomized and Controlled Pilot Study. PLoS ONE 2016, 11, e0157825. [Google Scholar] [CrossRef]
- Horton, J.C.; Fahle, M.; Mulder, T.; Trauzettel-Klosinski, S. Adaptation, perceptual learning, and plasticity of brain functions. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 435–447. [Google Scholar] [CrossRef]
- Chen, A.-H.; Jufri, S.; Congdon, N. The impact of glaucomatous visual field defects on speed and eye movements during reading. Siriraj Med. J. 2021, 73, 17–25. [Google Scholar] [CrossRef]
- Ishii, M.; Seki, M.; Harigai, R.; Abe, H.; Fukuchi, T. Comparison between binocular and monocular reading ability and its relation with central visual field sensitivity in glaucoma patients. Nippon Ganka Gakkai Zasshi 2013, 117, 925–930. [Google Scholar]
- McDonald, M.A.; Stevenson, C.H.; Kersten, H.M.; Danesh-Meyer, H.V. Eye Movement Abnormalities in Glaucoma Patients: A Review. Eye Brain 2022, 14, 83–114. [Google Scholar] [CrossRef]
- Reinhard, J.I.; Damm, I.; Ivanov, I.V.; Trauzettel-Klosinski, S. Eye movements during saccadic and fixation tasks in patients with homonymous hemianopia. J. Neuroophthalmol. 2014, 34, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.T. Improving reading speed for people with central vision loss through perceptual learning. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Kaltenegger, K.; Kuester, S.; Altpeter-Ott, E.; Eschweiler, G.W.; Cordey, A.; Ivanov, I.V.; Martus, P.; Knipp, C.; Trauzettel-Klosinski, S. Effects of home reading training on reading and quality of life in AMD—A randomized and controlled study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 1499–1512. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.X.; Stockum, A.; Hahn, G.A.; Trauzettel-Klosinski, S. Training to improve reading speed in patients with juvenile macular dystrophy: A randomized study comparing two training methods. Acta Ophthalmol. 2011, 89, e82–e88. [Google Scholar] [CrossRef]
- World Medical Association; Human Experimentation: Code of Ethics of the World Medical Association (Declaration of Helsinki). Can. Med. Assoc. J. 1964, 91, 619.
- Bengtsson, B.; Heijl, A. A visual field index for calculation of glaucoma rate of progression. Am. J. Ophthalmol. 2008, 145, 343–353. [Google Scholar] [CrossRef]
- Leat, S.J.; Lovie-Kitchin, J. Visual impairment and the useful field of vision. Ophthalmic Physiol. Opt. 2006, 26, 392–403. [Google Scholar] [CrossRef]
- Trauzettel-Klosinski, S.; Krumm, A.; Küster, S.; Ivanov, I.; Cordey, A.; Gehrlich, C.; Staudt, M.; Haaga, M. Homonymous Hemianopia in Children and Adolescents: An MRI Study. Neuropediatrics 2018, 49, 142–149. [Google Scholar] [CrossRef]
- Roth, T.; Sokolov, A.N.; Messias, A.; Roth, P.; Weller, M.; Trauzettel-Klosinski, S. Comparing explorative saccade and flicker training in hemianopia: A randomized controlled study. Neurology 2009, 72, 324–331. [Google Scholar] [CrossRef]
- Nelson, P.; Aspinall, P.; Papasouliotis, O.; Worton, B.; O’Brien, C. Quality of life in glaucoma and its relationship with visual function. J. Glaucoma 2003, 12, 139–150. [Google Scholar] [CrossRef]
- Trauzettel-Klosinski, S.; Dietz, K.; The IReST Study Group. Standardized assessment of reading performance: The New International Reading Speed Texts IReST. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5452–5461. [Google Scholar] [CrossRef] [PubMed]
- Altpeter, E.K.; Marx, T.; Nguyen, N.X.; Naumann, A.; Trauzettel-Klosinski, S. Measurement of reading speed with standardized texts: A comparison of single sentences and paragraphs. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 1369–1375. [Google Scholar] [CrossRef]
- Hirneiss, C.; Vogel, M.; Kampik, A.; Neubauer, A.S.; Kernt, M. Measurement of glaucoma-specific functionality with the GQL-15 and correlation with parameters of visual function. Ophthalmologe 2011, 108, 939–946. [Google Scholar] [PubMed]
- Lappas, A.; Foerster, A.M.; Schild, A.M.; Rosentreter, A.; Dietlein, T.S. Quantification of subjective visual quality of life in glaucoma patients: First results of a German version of the GQL-15 questionnaire. Ophthalmologe 2011, 108, 745–752. [Google Scholar] [CrossRef]
- Midha, N.; Dhawan, M.; Hans, T.; Sandhu, P.S. Evaluation of Vision-Related Quality of Life in Patients with Glaucoma: A Hospital-based Study. J. Curr. Glaucoma Pract. 2019, 13, 9–15. [Google Scholar] [CrossRef]
- Medeiros, F.A.; Gracitelli, C.P.; Boer, E.R.; Weinreb, R.N.; Zangwill, L.M.; Rosen, P.N. Longitudinal changes in quality of life and rates of progressive visual field loss in glaucoma patients. Ophthalmology 2015, 122, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, Y.; Tamhane, A.C. Multiple Comparison Procedures; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1987. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Zhang, Z. Missing data imputation: Focusing on single imputation. Ann. Transl. Med. 2016, 4, 9. [Google Scholar]
- Tripathi, A.; Agarwal, R.; Kharya, P.; Dwivedi, P.; Khan, I. A comparative study of vision-related quality of life (VRQoL) among glaucoma and nonglaucoma patients at a tertiary care center of North India. Indian J. Ophthalmol. 2023, 71, 3010–3015. [Google Scholar] [CrossRef]
- GraphPad Software, Inc. GraphPad QuickCalcs. 2025. Available online: https://www.graphpad.com/quickcalcs/ (accessed on 25 January 2025).
- Mielke, A.; Wirkus, K.; Niebler, R.; Eschweiler, G.; Nguyen, N.; Trauzettel-Klosinski, S. Einfluss visueller Rehabilitation auf sekundäre depressive Störungen bei altersabhängiger Makuladegeneration. Eine randomisierte kontrollierte Pilotstudie [The influence of visual rehabilitation on secondary depressive disorders due to age-related macular degeneration. A randomized controlled pilot study]. Ophthalmol. Z. Dtsch. Ophthalmol. Gesellschaft 2013, 110, 433–440. [Google Scholar] [CrossRef]
- Yücel, Y.H.; Zhang, Q.; Weinreb, R.N.; Kaufman, P.L.; Gupta, N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog. Retin. Eye Res. 2003, 22, 465–481. [Google Scholar] [CrossRef]
- Glovinsky, Y.; Quigley, A.H.; Dunkelberger, G.R. Retinal ganglion cell loss is size dependent in experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 1991, 32, 484–491. [Google Scholar]
- Perry, V.; Cowey, A. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 1984, 12, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Quigley, H.A. Neuronal death in glaucoma. Prog. Retin. Eye Res. 1999, 18, 39–57. [Google Scholar] [CrossRef]
- Ganeshrao, S.B.; Jaleel, A.; Madicharla, S.; Sri, V.K.; Zakir, J.; Garudadri, C.S.; Senthil, S. Comparison of Saccadic Eye Movements Among the High-Tension Glaucoma, Primary Angle-closure Glaucoma, and Normal-tension Glaucoma. J. Glaucoma 2021, 30, e76–e82. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Kanjee, R.; Yücel, Y.H.; Steinbach, M.J.; Gonzalez, E.G. Delayed saccadic eye movements in glaucoma. Eye Brain 2012, 4, 63–68. [Google Scholar] [CrossRef]
- Lamirel, C.; Milea, D.; Cochereau, I.; Duong, M.-H.; Lorenceau, J. Impaired saccadic eye movement in primary open-angle glaucoma. J. Glaucoma 2014, 23, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Tatham, A.J.; Murray, I.C.; McTrusty, A.D.; Cameron, L.A.; Perperidis, A.; Brash, H.M.; Fleck, B.W.; Minns, R.A. Speed and accuracy of saccades in patients with glaucoma evaluated using an eye tracking perimeter. BMC Ophthalmol. 2020, 20, 259. [Google Scholar] [CrossRef]
- Lajoie, K.; Miller, A.B.; Strath, R.A.; Neima, D.R.; Marigold, D.S. Glaucoma-Related Differences in Gaze Behavior When Negotiating Obstacles. Transl. Vis. Sci. Technol. 2018, 7, 10. [Google Scholar] [CrossRef]
- Kasneci, E.; Sippel, K.; Aehling, K.; Heister, M.; Rosenstiel, W.; Schiefer, U.; Papageorgiou, E. Driving with binocular visual field loss? A study on a supervised on-road parcours with simultaneous eye and head tracking. PLoS ONE 2014, 9, e87470. [Google Scholar] [CrossRef]
- Meienberg, O.; Zangemeister, W.H.; Rosenberg, M.; Hoyt, W.F.; Stark, L. Saccadic eye movement strategies in patients with homonymous hemianopia. Ann. Neurol. 1981, 9, 537–544. [Google Scholar] [CrossRef]
- Burton, R.; Crabb, D.P.; Smith, N.D.; Glen, F.C.; Garway-Heath, D.F. Glaucoma and reading: Exploring the effects of contrast lowering of text. Optom. Vis. Sci. 2012, 89, 1282–1287. [Google Scholar] [CrossRef] [PubMed]
- Burton, R.; Smith, N.D.; Crabb, D.P. Eye movements and reading in glaucoma: Observations on patients with advanced visual field loss. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Ramulu, P.Y.; Swenor, B.K.; Jefferys, J.L.; Friedman, D.S.; Rubin, G.S. Difficulty with out-loud and silent reading in glaucoma. Investig. Opthalmol. Vis. Sci. 2013, 54, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Legge, G.E.; Ahn, S.J.; Klitz, T.S.; Luebker, A. Psychophysics of reading--XVI. The visual span in normal and low vision. Vis. Res. 1997, 37, 1999–2010. [Google Scholar] [CrossRef]
- Wang, Y.; Alnwisi, S.; Ke, M. The impact of mild, moderate, and severe visual field loss in glaucoma on patients’ quality of life measured via the Glaucoma Quality of Life-15 Questionnaire: A meta-analysis. Medicine 2017, 96, e8019. [Google Scholar] [CrossRef]
- Kopilaš, V.; Kopilaš, M. Quality of life and mental health status of glaucoma patients. Front. Med. 2024, 11, 1402604. [Google Scholar] [CrossRef]
- Kumar, S.; Ichhpujani, P.; Singh, R.; Thakur, S.; Sharma, M.; Nagpal, N. The impact of primary open-angle glaucoma: Quality of life in Indian patients. Indian J. Ophthalmol. 2018, 66, 416–419. [Google Scholar] [CrossRef]
Group 1 | Group 2 | |
---|---|---|
number of patients | 14 (5 women) | 11 (3 women) |
age (years) | 75 (62.7–80.7) | 72 (66–80) |
open angle glaucoma | 10 | 9 |
pseudoexfoliative glaucoma | 2 | 1 |
normal tension glaucoma | 2 | 1 |
topical antiglaucoma medication (classes) | 3 (2–3) | 3 (2–3) |
glaucoma surgery | 6 | 6 |
cataract surgery | 7 | 3 |
BCVA best eye | 0.8 (0.63–1.0) | 1.0 (0.8–1.0) |
IOP (mmHg) | 11 (10–13) | 13 (10.3–15) |
perimetric MD (dB) | 15.2 (11.9–19.3) | 14.1 (10.4–15.7) |
Group | Level 1 | Level 2 | Level 3 | |||
---|---|---|---|---|---|---|
EST | Start | End | Start | End | Start | End |
1 | 3.14 s (2.50–12.62) | 2.54 s (1.97–5.50) | 2.60 s (1.96–4.85) | 2.32 s (1.79–4.10) | 3.10 s (2.11–4.91) | 2.85 s (2.02–4.03) |
Z = −3.180, p = 0.001 | Z = −3.107, p = 0.002 | Z = −1.789, p = 0.074 | ||||
2 | 2.79 s (2.01–6.71) | 2.32 s (1.80–4.47) | 2.35 s (1.78–4.22) | 2.18 s (1.72–3.54) | 2.51 s (1.92–4.89) | 2.46 s (1.95–3.31) |
Z = −2.134, p = 0.033 | Z = −2.667, p = 0.008 | Z = −1.245, p = 0.213 | ||||
All patients | 2.86 s (2.36–8.58) | 2.52 s (1.90–4.46) | 2.47 s (1.90–4.05) | 2.32 s (1.79–3.57) | 2.53 s (2.07–4.49) | 2.48 s (2.04–3.65) |
Z = −3.771, p < 0.001 | Z = −4.103, p < 0.001 | Z = −2.274, p = 0.023 | ||||
group comparison between 1 & 2 | U = 53 p = 0.303 | U = 65 p = 0.733 | U = 68 p = 0.647 | U = 76 p = 0.979 | U = 68 p = 0.647 | U = 74 p = 0.893 |
RS-Print (Wpm) | T0 | T1 | T2 |
---|---|---|---|
group 1 | - | 145.40 wpm (122.76−174.80) | 148.11 wpm (129.98−163.30) |
Wilcoxon signed-rank test | - | Z = 50.0, p = 0.753 | |
group 2 | 144.56 wpm (76.35−170.29) | 161.68 wpm (78.95−182.29) | 162.70 wpm (93.84−179.59) |
Friedman test | χ2(2) = 2.600, p = 0.273 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrand, N.; Trauzettel-Klosinski, S.; Blumenstock, G.; Voykov, B.; Kuester-Gruber, S. Benefits of Explorative Saccade Training in Patients with Advanced Glaucomatous Visual Field Defects—A Randomized, Placebo-Controlled Study. J. Clin. Med. 2025, 14, 2876. https://doi.org/10.3390/jcm14092876
Ferrand N, Trauzettel-Klosinski S, Blumenstock G, Voykov B, Kuester-Gruber S. Benefits of Explorative Saccade Training in Patients with Advanced Glaucomatous Visual Field Defects—A Randomized, Placebo-Controlled Study. Journal of Clinical Medicine. 2025; 14(9):2876. https://doi.org/10.3390/jcm14092876
Chicago/Turabian StyleFerrand, Nawfel, Susanne Trauzettel-Klosinski, Gunnar Blumenstock, Bogomil Voykov, and Stephan Kuester-Gruber. 2025. "Benefits of Explorative Saccade Training in Patients with Advanced Glaucomatous Visual Field Defects—A Randomized, Placebo-Controlled Study" Journal of Clinical Medicine 14, no. 9: 2876. https://doi.org/10.3390/jcm14092876
APA StyleFerrand, N., Trauzettel-Klosinski, S., Blumenstock, G., Voykov, B., & Kuester-Gruber, S. (2025). Benefits of Explorative Saccade Training in Patients with Advanced Glaucomatous Visual Field Defects—A Randomized, Placebo-Controlled Study. Journal of Clinical Medicine, 14(9), 2876. https://doi.org/10.3390/jcm14092876