Prevalence and Mechanisms of Itch in Chronic Wounds: A Narrative Review
Abstract
:1. Introduction
2. Epidemiology and Impact of Wound-Associated Itch
3. Physiology of Wound Healing
4. Pathophysiology of Chronic Wounds
5. Why Are Wounds Itchy
5.1. Overlap Between Mediators of Wound Healing and Itch
5.2. Neuronal Activity
5.3. Microbial Factors
5.4. Other Factors
6. Itch Associated with Burns
7. Itch Associated with Cutaneous Ulcers
8. The Special Case of Epidermolysis Bullosa
9. Management of Wound-Related Itch
10. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AD | Atopic dermatitis |
CGRP | Calcitonin gene-related peptide |
CXCL10 | C-X-C motif chemokine 10 |
CXCR3 | C-X-C motif chemokine receptor 3 |
CVI | Chronic venous insufficiency |
CysLT2 | Cysteinyl leukotriene receptor 2 |
DEB | Dystrophic epidermolysis bullosa |
DETC | Dendritic epidermal T cells |
DRG | Dorsal root ganglia |
EB | Epidermolysis bullosa |
ECM | Extracellular matrix |
GRP | Gastrin-releasing peptide |
GRPR | Gastrin-releasing peptide receptor |
HRH | Histamine receptor |
HTR | Hydroxytryptamine receptor |
IGF | Insulin growth factor |
IL | Interleukin |
JAK | Janus kinase |
KGF | Keratinocyte growth factors |
LPA | Lysophosphatidic acid |
LT | Leukotriene |
MMP | Matrix metalloproteinase |
Mrgpr | Mas-related G-protein-coupled receptor |
NGF | Nerve growth factor |
NK1R | Neurokinin-1 receptor |
NMB | Neuromedin B |
NPY | Neuropeptide Y |
NRS | Numerical rating scale |
PAF | Platelet-activating factor |
PAR | Protein activated receptor |
QoL | Quality of life |
ROS | Reactive oxygen species |
SD | Stasis dermatitis |
SP | Substance P |
TGF | Transforming growth factor |
TRP | Transient receptor potential |
TSLP | Thymic stromal lymphopoietin |
References
- Kujath, P.; Michelsen, A. Wounds-from physiology to wound dressing. Dtsch. Arztebl. Int. 2008, 105, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Paul, J. Characteristics of chronic wounds that itch. Adv. Skin Wound Care 2013, 26, 320–332; quiz 324–333. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.C.; Barbul, A. Guidelines for the best care of chronic wounds. Wound Repair. Regen. 2006, 14, 647–648. [Google Scholar] [CrossRef] [PubMed]
- InformedHealth.org. Chronic Wounds: Learn More–What Are the Treatment Options for Chronic Wounds? Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG). 2006. Available online: https://www.ncbi.nlm.nih.gov/books/NBK326436/ (accessed on 10 October 2024).
- Hareendran, A.; Bradbury, A.; Budd, J.; Geroulakos, G.; Hobbs, R.; Kenkre, J.; Symonds, T. Measuring the impact of venous leg ulcers on quality of life. J. Wound Care 2005, 14, 53–57. [Google Scholar] [CrossRef]
- Jockenhofer, F.; Zaremba, A.; Wehrmann, C.; Benson, S.; Stander, S.; Dissemond, J. Pruritus in patients with chronic leg ulcers: A frequent and often neglected problem. Int. Wound J. 2019, 16, 1464–1470. [Google Scholar] [CrossRef]
- Upton, D.; Richardson, C.; Andrews, A.; Rippon, M. Wound pruritus: Prevalence, aetiology and treatment. J. Wound Care 2013, 22, 501–508. [Google Scholar] [CrossRef]
- Iannone, M.; Janowska, A.; Dini, V.; Tonini, G.; Oranges, T.; Romanelli, M. Itch in Chronic Wounds: Pathophysiology, Impact, and Management. Medicines 2019, 6, 112. [Google Scholar] [CrossRef]
- Paul, J.C. Wound Itch: An Update. Adv. Skin. Wound Care 2024, 37, 463–469. [Google Scholar] [CrossRef]
- Woo, K.; Santamaria, N.; Beeckman, D.; Alves, P.; Cullen, B.; Gefen, A.; Lazaro-Martinez, J.L.; Lev-Tov, H.; Najafi, B.; Sharpe, A.; et al. Using patient-reported experiences to inform the use of foam dressings for hard-to-heal wounds: Perspectives from a wound care expert panel. J. Wound Care 2024, 33, 814–822. [Google Scholar] [CrossRef]
- Andrade, L.F.; Abdi, P.; Kooner, A.; Eldaboush, A.M.; Dhami, R.K.; Natarelli, N.; Yosipovitch, G. Treatment of post-burn pruritus—A systematic review and meta-analysis. Burns 2024, 50, 293–301. [Google Scholar] [CrossRef]
- Martinengo, L.; Olsson, M.; Bajpai, R.; Soljak, M.; Upton, Z.; Schmidtchen, A.; Car, J.; Jarbrink, K. Prevalence of chronic wounds in the general population: Systematic review and meta-analysis of observational studies. Ann. Epidemiol. 2019, 29, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.J.; DaVanzo, J.; Haught, R.; Nusgart, M.; Cartwright, D.; Fife, C.E. Chronic wound prevalence and the associated cost of treatment in Medicare beneficiaries: Changes between 2014 and 2019. J. Med. Econ. 2023, 26, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Paul, J. A cross-sectional study of chronic wound-related pain and itching. Ostomy Wound Manag. 2013, 59, 28–34. [Google Scholar]
- Maida, V.; Ennis, M.; Kuziemsky, C. The Toronto Symptom Assessment System for Wounds: A new clinical and research tool. Adv. Skin. Wound Care 2009, 22, 468–474. [Google Scholar] [CrossRef]
- Mack, M.R.; Kim, B.S. The Itch-Scratch Cycle: A Neuroimmune Perspective. Trends Immunol. 2018, 39, 980–991. [Google Scholar] [CrossRef]
- Zhou, L.; Tang, J.; Cai, Q.; Wang, Y.R.; Wan, Y.; Lu, X.; Bai, J.J. Survey of factors related to diabetic foot pruritus in the elderly in Shanghai. Int. Wound J. 2023, 20, 2020–2027. [Google Scholar] [CrossRef]
- Romeo, C.; Buscemi, C.P. Treating a chronic wound in a nonadherent patient: A case study. J. Wound Ostomy Continence Nurs. 2013, 40, 195–197. [Google Scholar] [CrossRef]
- de Vere Hunt, I.; Halley, M.; Sum, K.; Yekrang, K.; Phung, M.; Good, J.; Linos, E.; Chiou, A.S. A qualitative exploration of the experiences of itch for adults living with epidermolysis bullosa. Br. J. Dermatol. 2022, 187, 261–263. [Google Scholar] [CrossRef]
- Paul, J. Descriptors for Itch Related to Chronic Wounds. Wounds 2018, 30, 4–9. [Google Scholar]
- Grubbs, H.; Manna, B. Wound Physiology. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Demidova-Rice, T.N.; Hamblin, M.R.; Herman, I.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1: Normal and chronic wounds: Biology, causes, and approaches to care. Adv. Skin Wound Care 2012, 25, 304–314. [Google Scholar] [CrossRef]
- Wallace, H.A.; Basehore, B.M.; Zito, P.M. Wound Healing Phases. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Khalid, K.A.; Nawi, A.F.M.; Zulkifli, N.; Barkat, M.A.; Hadi, H. Aging and Wound Healing of the Skin: A Review of Clinical and Pathophysiological Hallmarks. Life 2022, 12, 2142. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, J.C.; Browning, K.K. Smoking, chronic wound healing, and implications for evidence-based practice. J. Wound Ostomy Cont. Nurs. 2014, 41, 415–423; quiz E411–412. [Google Scholar] [CrossRef] [PubMed]
- Garcia Hidalgo, L. Dermatological complications of obesity. Am. J. Clin. Dermatol. 2002, 3, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Seth, I.; Lim, B.; Cevik, J.; Gracias, D.; Chua, M.; Kenney, P.S.; Rozen, W.M.; Cuomo, R. Impact of nutrition on skin wound healing and aesthetic outcomes: A comprehensive narrative review. JPRAS Open 2024, 39, 291–302. [Google Scholar] [CrossRef]
- Hassanshahi, A.; Moradzad, M.; Ghalamkari, S.; Fadaei, M.; Cowin, A.J.; Hassanshahi, M. Macrophage-Mediated Inflammation in Skin Wound Healing. Cells 2022, 11, 2953. [Google Scholar] [CrossRef]
- Uberoi, A.; McCready-Vangi, A.; Grice, E.A. The wound microbiota: Microbial mechanisms of impaired wound healing and infection. Nat. Rev. Microbiol. 2024, 22, 507–521. [Google Scholar] [CrossRef]
- Todd, M. Compression therapy for chronic oedema and venous leg ulcers: CoFlex TLC Calamine. Br. J. Nurs. 2019, 28, S32–S37. [Google Scholar] [CrossRef]
- Gompelman, M.; van Asten, S.A.V.; Peters, E.J.G. Update on the Role of Infection and Biofilms in Wound Healing: Pathophysiology and Treatment. Plast Reconstr. Surg. 2016, 138 (Suppl. 3), 61S–70S. [Google Scholar] [CrossRef]
- Canedo-Dorantes, L.; Canedo-Ayala, M. Skin Acute Wound Healing: A Comprehensive Review. Int. J. Inflam. 2019, 2019, 3706315. [Google Scholar] [CrossRef]
- Adib, Y.; Bensussan, A.; Michel, L. Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediators. Inflamm. 2022, 2022, 5344085. [Google Scholar] [CrossRef]
- Spiekstra, S.W.; Breetveld, M.; Rustemeyer, T.; Scheper, R.J.; Gibbs, S. Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair Regen. 2007, 15, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Jameson, J.; Ugarte, K.; Chen, N.; Yachi, P.; Fuchs, E.; Boismenu, R.; Havran, W.L. A role for skin gammadelta T cells in wound repair. Science 2002, 296, 747–749. [Google Scholar] [CrossRef] [PubMed]
- Ribot, J.C.; Lopes, N.; Silva-Santos, B. gammadelta T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 2021, 21, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bai, Y.; Li, Y.; Liang, G.; Jiang, Y.; Liu, Z.; Liu, M.; Hao, J.; Zhang, X.; Hu, X.; et al. IL-15 Enhances Activation and IGF-1 Production of Dendritic Epidermal T Cells to Promote Wound Healing in Diabetic Mice. Front. Immunol. 2017, 8, 1557. [Google Scholar] [CrossRef]
- Theilgaard-Monch, K.; Knudsen, S.; Follin, P.; Borregaard, N. The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J. Immunol. 2004, 172, 7684–7693. [Google Scholar] [CrossRef]
- Chen, C.; Yang, J.; Shang, R.; Tang, Y.; Cai, X.; Chen, Y.; Liu, Z.; Hu, W.; Zhang, W.; Zhang, X.; et al. Orchestration of Macrophage Polarization Dynamics by Fibroblast-Secreted Exosomes during Skin Wound Healing. J. Investig. Dermatol. 2025, 145, 171–184.e176. [Google Scholar] [CrossRef]
- Walker, J.T.; McLeod, K.; Kim, S.; Conway, S.J.; Hamilton, D.W. Periostin as a multifunctional modulator of the wound healing response. Cell Tissue Res. 2016, 365, 453–465. [Google Scholar] [CrossRef]
- Ko, U.H.; Choi, J.; Choung, J.; Moon, S.; Shin, J.H. Physicochemically Tuned Myofibroblasts for Wound Healing Strategy. Sci. Rep. 2019, 9, 16070. [Google Scholar] [CrossRef]
- Bray, E.R.; Cheret, J.; Yosipovitch, G.; Paus, R. Schwann cells as underestimated, major players in human skin physiology and pathology. Exp. Dermatol. 2020, 29, 93–101. [Google Scholar] [CrossRef]
- Barrick, B.; Campbell, E.J.; Owen, C.A. Leukocyte proteinases in wound healing: Roles in physiologic and pathologic processes. Wound Repair Regen. 1999, 7, 410–422. [Google Scholar] [CrossRef]
- Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in wound repair: Molecular and cellular mechanisms. J. Investig. Dermatol. 2007, 127, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuna, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef] [PubMed]
- Hanna, K.R.; Katz, A.J. An update on wound healing and the nervous system. Ann. Plast. Surg. 2011, 67, 49–52. [Google Scholar] [CrossRef]
- Ge, S.; Khachemoune, A. Neuroanatomy of the Cutaneous Nervous System Regarding Wound Healing. Int. J. Low Extrem. Wounds 2024, 23, 191–204. [Google Scholar] [CrossRef]
- Theocharidis, G.; Veves, A. Autonomic nerve dysfunction and impaired diabetic wound healing: The role of neuropeptides. Auton. Neurosci. 2020, 223, 102610. [Google Scholar] [CrossRef]
- Ashrafi, M.; Baguneid, M.; Bayat, A. The Role of Neuromediators and Innervation in Cutaneous Wound Healing. Acta Derm. Venereol. 2016, 96, 587–594. [Google Scholar] [CrossRef]
- Thamm, O.C.; Koenen, P.; Bader, N.; Schneider, A.; Wutzler, S.; Neugebauer, E.A.; Spanholtz, T.A. Acute and chronic wound fluids influence keratinocyte function differently. Int. Wound J. 2015, 12, 143–149. [Google Scholar] [CrossRef]
- Theocharidis, G.; Baltzis, D.; Roustit, M.; Tellechea, A.; Dangwal, S.; Khetani, R.S.; Shu, B.; Zhao, W.; Fu, J.; Bhasin, S.; et al. Integrated Skin Transcriptomics and Serum Multiplex Assays Reveal Novel Mechanisms of Wound Healing in Diabetic Foot Ulcers. Diabetes 2020, 69, 2157–2169. [Google Scholar] [CrossRef]
- Stone, R.C.; Stojadinovic, O.; Rosa, A.M.; Ramirez, H.A.; Badiavas, E.; Blumenberg, M.; Tomic-Canic, M. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers. Sci. Transl. Med. 2017, 9, eaaf8611. [Google Scholar] [CrossRef]
- Tellechea, A.; Bai, S.; Dangwal, S.; Theocharidis, G.; Nagai, M.; Koerner, S.; Cheong, J.E.; Bhasin, S.; Shih, T.Y.; Zheng, Y.; et al. Topical Application of a Mast Cell Stabilizer Improves Impaired Diabetic Wound Healing. J. Investig. Dermatol. 2020, 140, 901–911.e11. [Google Scholar] [CrossRef]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Maheswary, T.; Nurul, A.A.; Fauzi, M.B. The Insights of Microbes’ Roles in Wound Healing: A Comprehensive Review. Pharmaceutics 2021, 13, 981. [Google Scholar] [CrossRef] [PubMed]
- Leaper, D.; Assadian, O.; Edmiston, C.E. Approach to chronic wound infections. Br. J. Dermatol. 2015, 173, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.E.; McCready-Vangi, A.R.; Uberoi, A.; Murga-Garrido, S.M.; Lovins, V.M.; White, E.K.; Pan, J.T.; Knight, S.A.B.; Morgenstern, A.R.; Bianco, C.; et al. Variable staphyloxanthin production by Staphylococcus aureus drives strain-dependent effects on diabetic wound-healing outcomes. Cell Rep. 2023, 42, 113281. [Google Scholar] [CrossRef]
- Yokota, M.; Haffner, N.; Kassier, M.; Brunner, M.; Shambat, S.M.; Brennecke, F.; Schniering, J.; Marques Maggio, E.; Distler, O.; Zinkernagel, A.S.; et al. Staphylococcus aureus impairs dermal fibroblast functions with deleterious effects on wound healing. FASEB J. 2021, 35, e21695. [Google Scholar] [CrossRef]
- Athanasopoulos, A.N.; Economopoulou, M.; Orlova, V.V.; Sobke, A.; Schneider, D.; Weber, H.; Augustin, H.G.; Eming, S.A.; Schubert, U.; Linn, T.; et al. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms. Blood 2006, 107, 2720–2727. [Google Scholar] [CrossRef]
- Shen, S.; Miskolci, V.; Dewey, C.N.; Sauer, J.D.; Huttenlocher, A. Infection induced inflammation impairs wound healing through IL-1beta signaling. iScience 2024, 27, 109532. [Google Scholar] [CrossRef]
- Eriksson, E.; Liu, P.Y.; Schultz, G.S.; Martins-Green, M.M.; Tanaka, R.; Weir, D.; Gould, L.J.; Armstrong, D.G.; Gibbons, G.W.; Wolcott, R.; et al. Chronic wounds: Treatment consensus. Wound Repair Regen. 2022, 30, 156–171. [Google Scholar] [CrossRef]
- Klein, P.A.; Clark, R.A. An evidence-based review of the efficacy of antihistamines in relieving pruritus in atopic dermatitis. Arch. Dermatol. 1999, 135, 1522–1525. [Google Scholar] [CrossRef]
- Andersen, H.H.; Elberling, J.; Solvsten, H.; Yosipovitch, G.; Arendt-Nielsen, L. Nonhistaminergic and mechanical itch sensitization in atopic dermatitis. Pain 2017, 158, 1780–1791. [Google Scholar] [CrossRef]
- Sanders, K.M.; Fast, K.; Yosipovitch, G. Why we scratch: Function and dysfunction. Exp. Dermatol. 2019, 28, 1482–1484. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.W.; Zhang, Y.R.; Chen, C.S.; Edwards, T.N.; Ozyaman, S.; Ramcke, T.; McKendrick, L.M.; Weiss, E.S.; Gillis, J.E.; Laughlin, C.R.; et al. Scratching promotes allergic inflammation and host defense via neurogenic mast cell activation. Science 2025, 387, eadn9390. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zanvit, P.; Hu, L.; Tseng, P.Y.; Liu, N.; Wang, F.; Liu, O.; Zhang, D.; Jin, W.; Guo, N.; et al. The Cytokine TGF-beta Induces Interleukin-31 Expression from Dermal Dendritic Cells to Activate Sensory Neurons and Stimulate Wound Itching. Immunity 2020, 53, 371–383.e375. [Google Scholar] [CrossRef] [PubMed]
- Campolo, M.; Gallo, G.; Roviello, F.; Ardizzone, A.; La Torre, M.; Filippone, A.; Lanza, M.; Cuzzocrea, S.; Siroli, L.; Esposito, E. Evaluation of a Gel Containing a Propionibacterium Extract in an In Vivo Model of Wound Healing. Int. J. Mol. Sci. 2022, 23, 4708. [Google Scholar] [CrossRef]
- Stander, S.; Yosipovitch, G. Substance P and neurokinin 1 receptor are new targets for the treatment of chronic pruritus. Br. J. Dermatol. 2019, 181, 932–938. [Google Scholar] [CrossRef]
- Rogoz, K.; Andersen, H.H.; Lagerstrom, M.C.; Kullander, K. Multimodal use of calcitonin gene-related peptide and substance P in itch and acute pain uncovered by the elimination of vesicular glutamate transporter 2 from transient receptor potential cation channel subfamily V member 1 neurons. J. Neurosci. 2014, 34, 14055–14068. [Google Scholar] [CrossRef]
- Kupczyk, P.; Reich, A.; Gajda, M.; Holysz, M.; Wysokinska, E.; Paprocka, M.; Nevozhay, D.; Chodaczek, G.; Jagodzinski, P.P.; Ziolkowski, P.; et al. UCHL1/PGP 9.5 Dynamic in Neuro-Immune-Cutaneous Milieu: Focusing on Axonal Nerve Terminals and Epidermal Keratinocytes in Psoriatic Itch. Biomed. Res. Int. 2018, 2018, 7489316. [Google Scholar] [CrossRef]
- Gunawardena, D.A.; Stanley, E.; Issler-Fisher, A.C. Understanding Neural Factors in Burn-related Pruritus and Neuropathic Pain. J. Burn Care Res. 2023, 44, 1182–1188. [Google Scholar] [CrossRef]
- Yin, S.L.; Qin, Z.L.; Yang, X. Role of periostin in skin wound healing and pathologic scar formation. Chin. Med. J. 2020, 133, 2236–2238. [Google Scholar] [CrossRef]
- Mishra, S.K.; Wheeler, J.J.; Pitake, S.; Ding, H.; Jiang, C.; Fukuyama, T.; Paps, J.S.; Ralph, P.; Coyne, J.; Parkington, M.; et al. Periostin Activation of Integrin Receptors on Sensory Neurons Induces Allergic Itch. Cell Rep. 2020, 31, 107472. [Google Scholar] [CrossRef]
- Taub, D.D.; Lloyd, A.R.; Conlon, K.; Wang, J.M.; Ortaldo, J.R.; Harada, A.; Matsushima, K.; Kelvin, D.J.; Oppenheim, J.J. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J. Exp. Med. 1993, 177, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- Ridiandries, A.; Tan, J.T.M.; Bursill, C.A. The Role of Chemokines in Wound Healing. Int. J. Mol. Sci. 2018, 19, 3217. [Google Scholar] [CrossRef] [PubMed]
- Shiraha, H.; Glading, A.; Gupta, K.; Wells, A. IP-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity. J. Cell Biol. 1999, 146, 243–254. [Google Scholar] [CrossRef]
- Qu, L.; Fu, K.; Yang, J.; Shimada, S.G.; LaMotte, R.H. CXCR3 chemokine receptor signaling mediates itch in experimental allergic contact dermatitis. Pain 2015, 156, 1737–1746. [Google Scholar] [CrossRef]
- Walsh, C.M.; Hill, R.Z.; Schwendinger-Schreck, J.; Deguine, J.; Brock, E.C.; Kucirek, N.; Rifi, Z.; Wei, J.; Gronert, K.; Brem, R.B.; et al. Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. Elife 2019, 8, e48448. [Google Scholar] [CrossRef]
- Allen, J.E. IL-4 and IL-13: Regulators and Effectors of Wound Repair. Annu. Rev. Immunol. 2023, 41, 229–254. [Google Scholar] [CrossRef]
- Lauterbach, A.L.; Wallace, R.P.; Alpar, A.T.; Refvik, K.C.; Reda, J.W.; Ishihara, A.; Beckman, T.N.; Slezak, A.J.; Mizukami, Y.; Mansurov, A.; et al. Topically-applied collagen-binding serum albumin-fused interleukin-4 modulates wound microenvironment in non-healing wounds. NPJ Regen. Med. 2023, 8, 49. [Google Scholar] [CrossRef]
- Roeb, E. Interleukin-13 (IL-13)-A Pleiotropic Cytokine Involved in Wound Healing and Fibrosis. Int. J. Mol. Sci. 2023, 24, 12884. [Google Scholar] [CrossRef]
- Salmon-Ehr, V.; Ramont, L.; Godeau, G.; Birembaut, P.; Guenounou, M.; Bernard, P.; Maquart, F.X. Implication of interleukin-4 in wound healing. Lab. Investig. 2000, 80, 1337–1343. [Google Scholar] [CrossRef]
- Oetjen, L.K.; Mack, M.R.; Feng, J.; Whelan, T.M.; Niu, H.; Guo, C.J.; Chen, S.; Trier, A.M.; Xu, A.Z.; Tripathi, S.V.; et al. Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell 2017, 171, 217–228.e213. [Google Scholar] [CrossRef]
- Mack, M.R.; Miron, Y.; Chen, F.; Miller, P.E.; Zhang, A.; Korotzer, A.; Richman, D.; Bryce, P.J. Type 2 cytokines sensitize human sensory neurons to itch-associated stimuli. Front. Mol. Neurosci. 2023, 16, 1258823. [Google Scholar] [CrossRef] [PubMed]
- Kuzumi, A.; Yoshizaki, A.; Matsuda, K.M.; Kotani, H.; Norimatsu, Y.; Fukayama, M.; Ebata, S.; Fukasawa, T.; Yoshizaki-Ogawa, A.; Asano, Y.; et al. Interleukin-31 promotes fibrosis and T helper 2 polarization in systemic sclerosis. Nat. Commun. 2021, 12, 5947. [Google Scholar] [CrossRef] [PubMed]
- Nemmer, J.M.; Kuchner, M.; Datsi, A.; Olah, P.; Julia, V.; Raap, U.; Homey, B. Interleukin-31 Signaling Bridges the Gap Between Immune Cells, the Nervous System and Epithelial Tissues. Front. Med. 2021, 8, 639097. [Google Scholar] [CrossRef] [PubMed]
- Cevikbas, F.; Wang, X.; Akiyama, T.; Kempkes, C.; Savinko, T.; Antal, A.; Kukova, G.; Buhl, T.; Ikoma, A.; Buddenkotte, J.; et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1. J. Allergy Clin. Immunol. 2014, 133, 448–460. [Google Scholar] [CrossRef]
- Fassett, M.S.; Braz, J.M.; Castellanos, C.A.; Salvatierra, J.J.; Sadeghi, M.; Yu, X.; Schroeder, A.W.; Caston, J.; Munoz-Sandoval, P.; Roy, S.; et al. IL-31-dependent neurogenic inflammation restrains cutaneous type 2 immune response in allergic dermatitis. Sci. Immunol. 2023, 8, eabi6887. [Google Scholar] [CrossRef]
- Raap, U.; Gehring, M.; Kleiner, S.; Rudrich, U.; Eiz-Vesper, B.; Haas, H.; Kapp, A.; Gibbs, B.F. Human basophils are a source of - and are differentially activated by-IL-31. Clin. Exp. Allergy 2017, 47, 499–508. [Google Scholar] [CrossRef]
- Numata, Y.; Terui, T.; Okuyama, R.; Hirasawa, N.; Sugiura, Y.; Miyoshi, I.; Watanabe, T.; Kuramasu, A.; Tagami, H.; Ohtsu, H. The accelerating effect of histamine on the cutaneous wound-healing process through the action of basic fibroblast growth factor. J. Investig. Dermatol. 2006, 126, 1403–1409. [Google Scholar] [CrossRef]
- Gutowska-Owsiak, D.; Selvakumar, T.A.; Salimi, M.; Taylor, S.; Ogg, G.S. Histamine enhances keratinocyte-mediated resolution of inflammation by promoting wound healing and response to infection. Clin. Exp. Dermatol. 2014, 39, 187–195. [Google Scholar] [CrossRef]
- Wolak, M.; Bojanowska, E.; Staszewska, T.; Piera, L.; Szymanski, J.; Drobnik, J. Histamine augments collagen content via H1 receptor stimulation in cultures of myofibroblasts taken from wound granulation tissue. Mol. Cell Biochem. 2021, 476, 1083–1092. [Google Scholar] [CrossRef]
- Hatamochi, A.; Ueki, H.; Mauch, C.; Krieg, T. Effect of histamine on collagen and collagen m-RNA production in human skin fibroblasts. J. Dermatol. Sci. 1991, 2, 407–412. [Google Scholar] [CrossRef]
- Thurmond, R.L.; Kazerouni, K.; Chaplan, S.R.; Greenspan, A.J. Peripheral Neuronal Mechanism of Itch: Histamine and Itch. In Itch: Mechanisms and Treatment; Frontiers in Neuroscience; Carstens, E., Akiyama, T., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2014. [Google Scholar]
- Schmelz, M.; Schmidt, R.; Bickel, A.; Handwerker, H.O.; Torebjork, H.E. Specific C-receptors for itch in human skin. J. Neurosci. 1997, 17, 8003–8008. [Google Scholar] [CrossRef] [PubMed]
- Ikoma, A.; Steinhoff, M.; Stander, S.; Yosipovitch, G.; Schmelz, M. The neurobiology of itch. Nat. Rev. Neurosci. 2006, 7, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Shim, W.S.; Tak, M.H.; Lee, M.H.; Kim, M.; Kim, M.; Koo, J.Y.; Lee, C.H.; Kim, M.; Oh, U. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. Neurosci. 2007, 27, 2331–2337. [Google Scholar] [CrossRef] [PubMed]
- Mommert, S.; Schaper, J.T.; Schaper-Gerhardt, K.; Gutzmer, R.; Werfel, T. Histamine Increases Th2 Cytokine-Induced CCL18 Expression in Human M2 Macrophages. Int. J. Mol. Sci. 2021, 22, 11648. [Google Scholar] [CrossRef]
- Duerschmied, D.; Suidan, G.L.; Demers, M.; Herr, N.; Carbo, C.; Brill, A.; Cifuni, S.M.; Mauler, M.; Cicko, S.; Bader, M.; et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 2013, 121, 1008–1015. [Google Scholar] [CrossRef]
- Mann, D.A.; Oakley, F. Serotonin paracrine signaling in tissue fibrosis. Biochim. Biophys. Acta 2013, 1832, 905–910. [Google Scholar] [CrossRef]
- Sadiq, A.; Shah, A.; Jeschke, M.G.; Belo, C.; Qasim Hayat, M.; Murad, S.; Amini-Nik, S. The Role of Serotonin during Skin Healing in Post-Thermal Injury. Int. J. Mol. Sci. 2018, 19, 1034. [Google Scholar] [CrossRef]
- Lofdahl, A.; Rydell-Tormanen, K.; Muller, C.; Martina Holst, C.; Thiman, L.; Ekstrom, G.; Wenglen, C.; Larsson-Callerfelt, A.K.; Westergren-Thorsson, G. 5-HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo. Physiol. Rep. 2016, 4, e12873. [Google Scholar] [CrossRef]
- Morita, T.; McClain, S.P.; Batia, L.M.; Pellegrino, M.; Wilson, S.R.; Kienzler, M.A.; Lyman, K.; Olsen, A.S.; Wong, J.F.; Stucky, C.L.; et al. HTR7 Mediates Serotonergic Acute and Chronic Itch. Neuron 2015, 87, 124–138. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Liu, X.Y.; Jeffry, J.; Karunarathne, W.K.; Li, J.L.; Munanairi, A.; Zhou, X.Y.; Li, H.; Sun, Y.G.; Wan, L.; et al. Descending control of itch transmission by the serotonergic system via 5-HT1A-facilitated GRP-GRPR signaling. Neuron 2014, 84, 821–834. [Google Scholar] [CrossRef]
- Domocos, D.; Selescu, T.; Ceafalan, L.C.; Iodi Carstens, M.; Carstens, E.; Babes, A. Role of 5-HT1A and 5-HT3 receptors in serotonergic activation of sensory neurons in relation to itch and pain behavior in the rat. J. Neurosci. Res. 2020, 98, 1999–2017. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Ivanov, M.; Nagamine, M.; Davoodi, A.; Carstens, M.I.; Ikoma, A.; Cevikbas, F.; Kempkes, C.; Buddenkotte, J.; Steinhoff, M.; et al. Involvement of TRPV4 in Serotonin-Evoked Scratching. J. Investig. Dermatol. 2016, 136, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Tonello, R.; Choi, Y.; Jung, S.J.; Berta, T. Sensory Neuron-Expressed TRPC4 Is a Target for the Relief of Psoriasiform Itch and Skin Inflammation in Mice. J. Investig. Dermatol. 2020, 140, 2221–2229.e2226. [Google Scholar] [CrossRef]
- Mogren, S.; Berlin, F.; Ramu, S.; Sverrild, A.; Porsbjerg, C.; Uller, L.; Andersson, C.K. Mast cell tryptase enhances wound healing by promoting migration in human bronchial epithelial cells. Cell Adh. Migr. 2021, 15, 202–214. [Google Scholar] [CrossRef]
- Ng, M.F. The role of mast cells in wound healing. Int. Wound J. 2010, 7, 55–61. [Google Scholar] [CrossRef]
- Garbuzenko, E.; Nagler, A.; Pickholtz, D.; Gillery, P.; Reich, R.; Maquart, F.X.; Levi-Schaffer, F. Human mast cells stimulate fibroblast proliferation, collagen synthesis and lattice contraction: A direct role for mast cells in skin fibrosis. Clin. Exp. Allergy 2002, 32, 237–246. [Google Scholar] [CrossRef]
- Abe, M.; Kurosawa, M.; Ishikawa, O.; Miyachi, Y. Effect of mast cell-derived mediators and mast cell-related neutral proteases on human dermal fibroblast proliferation and type I collagen production. J. Allergy Clin. Immunol. 2000, 106 Pt 2, S78–S84. [Google Scholar] [CrossRef]
- Siiskonen, H.; Harvima, I. Mast Cells and Sensory Nerves Contribute to Neurogenic Inflammation and Pruritus in Chronic Skin Inflammation. Front. Cell Neurosci. 2019, 13, 422. [Google Scholar] [CrossRef]
- Tsujii, K.; Andoh, T.; Ui, H.; Lee, J.B.; Kuraishi, Y. Involvement of Tryptase and Proteinase-Activated Receptor-2 in Spontaneous Itch-Associated Response in Mice With Atopy-like Dermatitis. J. Pharmacol. Sci. 2009, 109, 388–395. [Google Scholar] [CrossRef]
- Xiang, Y.; Jiang, Y.; Lu, L. Low-Dose Trypsin Accelerates Wound Healing via Protease-Activated Receptor 2. ACS. Pharmacol. Transl. Sci. 2024, 7, 274–284. [Google Scholar] [CrossRef]
- White, M.J.; Glenn, M.; Gomer, R.H. Trypsin potentiates human fibrocyte differentiation. PLoS ONE 2013, 8, e70795. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.; Marotta, D.M.; Manjavachi, M.N.; Fernandes, E.S.; Lima-Garcia, J.F.; Paszcuk, A.F.; Quintao, N.L.; Juliano, L.; Brain, S.D.; Calixto, J.B. Evidence for the role of neurogenic inflammation components in trypsin-elicited scratching behaviour in mice. Br. J. Pharmacol. 2008, 154, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Alsrhani, A.; Raman, R.; Jagadeeswaran, P. Trypsin induces an aversive response in zebrafish by PAR2 activation in keratinocytes. PLoS ONE 2021, 16, e0257774. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.E.; Corral, C.J.; MacIvor, D.M.; Lin, X.; Ley, T.J.; Mustoe, T.A. Augmented inflammatory responses and altered wound healing in cathepsin G-deficient mice. Arch. Surg. 1998, 133, 1002–1006. [Google Scholar] [CrossRef]
- Anes, E.; Pires, D.; Mandal, M.; Azevedo-Pereira, J.M. Spatial localization of cathepsins: Implications in immune activation and resolution during infections. Front. Immunol. 2022, 13, 955407. [Google Scholar] [CrossRef]
- Sun, M.; Chen, M.; Liu, Y.; Fukuoka, M.; Zhou, K.; Li, G.; Dawood, F.; Gramolini, A.; Liu, P.P. Cathepsin-L contributes to cardiac repair and remodelling post-infarction. Cardiovasc. Res. 2011, 89, 374–383. [Google Scholar] [CrossRef]
- Chung, K.; Pitcher, T.; Grant, A.D.; Hewitt, E.; Lindstrom, E.; Malcangio, M. Cathepsin S acts via protease-activated receptor 2 to activate sensory neurons and induce itch-like behaviour. Neurobiol. Pain. 2019, 6, 100032. [Google Scholar] [CrossRef]
- Reddy, V.B.; Shimada, S.G.; Sikand, P.; Lamotte, R.H.; Lerner, E.A. Cathepsin S elicits itch and signals via protease-activated receptors. J. Investig. Dermatol. 2010, 130, 1468–1470. [Google Scholar] [CrossRef]
- Reddy, V.B.; Sun, S.; Azimi, E.; Elmariah, S.B.; Dong, X.; Lerner, E.A. Redefining the concept of protease-activated receptors: Cathepsin S evokes itch via activation of Mrgprs. Nat. Commun. 2015, 6, 7864. [Google Scholar] [CrossRef]
- Andoh, T.; Yoshida, T.; Lee, J.B.; Kuraishi, Y. Cathepsin E induces itch-related response through the production of endothelin-1 in mice. Eur. J. Pharmacol. 2012, 686, 16–21. [Google Scholar] [CrossRef]
- Nikoloudaki, G.; Creber, K.; Hamilton, D.W. Wound healing and fibrosis: A contrasting role for periostin in skin and the oral mucosa. Am. J. Physiol. Cell. Physiol. 2020, 318, C1065–C1077. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Mishra, S.K.; Olivry, T.; Yosipovitch, G. Periostin, an Emerging Player in Itch Sensation. J. Investig. Dermatol. 2021, 141, 2338–2343. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Chen, B.; Qin, Y.; Li, X.; Zhou, S.; Yuan, K.; Zhao, R.; Qin, D. The role of neuropeptides in cutaneous wound healing: A focus on mechanisms and neuropeptide-derived treatments. Front. Bioeng. Biotechnol. 2024, 12, 1494865. [Google Scholar] [CrossRef] [PubMed]
- Schmelz, M.; Petersen, L.J. Neurogenic inflammation in human and rodent skin. News. Physiol. Sci. 2001, 16, 33–37. [Google Scholar] [CrossRef]
- Hagermark, O.; Hokfelt, T.; Pernow, B. Flare and itch induced by substance P in human skin. J. Investig. Dermatol. 1978, 71, 233–235. [Google Scholar] [CrossRef]
- Nakashima, C.; Ishida, Y.; Kitoh, A.; Otsuka, A.; Kabashima, K. Interaction of peripheral nerves and mast cells, eosinophils, and basophils in the development of pruritus. Exp. Dermatol. 2019, 28, 1405–1411. [Google Scholar] [CrossRef]
- Sun, Y.G.; Chen, Z.F. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 2007, 448, 700–703. [Google Scholar] [CrossRef]
- Wan, L.; Jin, H.; Liu, X.Y.; Jeffry, J.; Barry, D.M.; Shen, K.F.; Peng, J.H.; Liu, X.T.; Jin, J.H.; Sun, Y.; et al. Distinct roles of NMB and GRP in itch transmission. Sci. Rep. 2017, 7, 15466. [Google Scholar] [CrossRef]
- Tian, W.; Jiang, X.; Kim, D.; Guan, T.; Nicolls, M.R.; Rockson, S.G. Leukotrienes in Tumor-Associated Inflammation. Front. Pharmacol. 2020, 11, 1289. [Google Scholar] [CrossRef]
- Peters-Golden, M.; Canetti, C.; Mancuso, P.; Coffey, M.J. Leukotrienes: Underappreciated mediators of innate immune responses. J. Immunol. 2005, 174, 589–594. [Google Scholar] [CrossRef]
- Yasukawa, K.; Okuno, T.; Yokomizo, T. Eicosanoids in Skin Wound Healing. Int. J. Mol. Sci. 2020, 21, 8435. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, T.; Filgueiras, L.; Silva-Jr, I.A.; Pessoa, A.F.M.; Jancar, S. Impaired wound healing in type 1 diabetes is dependent on 5-lipoxygenase products. Sci. Rep. 2018, 8, 14164. [Google Scholar] [CrossRef] [PubMed]
- Oyoshi, M.K.; He, R.; Kanaoka, Y.; ElKhal, A.; Kawamoto, S.; Lewis, C.N.; Austen, K.F.; Geha, R.S. Eosinophil-derived leukotriene C4 signals via type 2 cysteinyl leukotriene receptor to promote skin fibrosis in a mouse model of atopic dermatitis. Proc. Natl. Acad. Sci. USA 2012, 109, 4992–4997. [Google Scholar] [CrossRef] [PubMed]
- Sadik, C.D.; Sezin, T.; Kim, N.D. Leukotrienes orchestrating allergic skin inflammation. Exp. Dermatol. 2013, 22, 705–709. [Google Scholar] [CrossRef]
- Voisin, T.; Perner, C.; Messou, M.A.; Shiers, S.; Ualiyeva, S.; Kanaoka, Y.; Price, T.J.; Sokol, C.L.; Bankova, L.G.; Austen, K.F.; et al. The CysLT(2)R receptor mediates leukotriene C(4)-driven acute and chronic itch. Proc. Natl. Acad. Sci. USA 2021, 118, e2022087118. [Google Scholar] [CrossRef]
- Andoh, T.; Harada, A.; Kuraishi, Y. Involvement of Leukotriene B4 Released from Keratinocytes in Itch-associated Response to Intradermal Interleukin-31 in Mice. Acta Derm. Venereol. 2017, 97, 922–927. [Google Scholar] [CrossRef]
- Andoh, T.; Katsube, N.; Maruyama, M.; Kuraishi, Y. Involvement of leukotriene B(4) in substance P-induced itch-associated response in mice. J. Investig. Dermatol. 2001, 117, 1621–1626. [Google Scholar] [CrossRef]
- Sato, M.; Shegogue, D.; Hatamochi, A.; Yamazaki, S.; Trojanowska, M. Lysophosphatidic acid inhibits TGF-beta-mediated stimulation of type I collagen mRNA stability via an ERK-dependent pathway in dermal fibroblasts. Matrix. Biol. 2004, 23, 353–361. [Google Scholar] [CrossRef]
- Panther, E.; Idzko, M.; Corinti, S.; Ferrari, D.; Herouy, Y.; Mockenhaupt, M.; Dichmann, S.; Gebicke-Haerter, P.; Di Virgilio, F.; Girolomoni, G.; et al. The influence of lysophosphatidic acid on the functions of human dendritic cells. J. Immunol. 2002, 169, 4129–4135. [Google Scholar] [CrossRef]
- Lei, L.; Su, J.; Chen, J.; Chen, W.; Chen, X.; Peng, C. The role of lysophosphatidic acid in the physiology and pathology of the skin. Life Sci. 2019, 220, 194–200. [Google Scholar] [CrossRef]
- Mio, T.; Liu, X.; Toews, M.L.; Rennard, S.I. Lysophosphatidic acid augments fibroblast-mediated contraction of released collagen gels. J. Lab. Clin. Med. 2002, 139, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Chabaud, S.; Marcoux, T.L.; Deschenes-Rompre, M.P.; Rousseau, A.; Morissette, A.; Bouhout, S.; Bernard, G.; Bolduc, S. Lysophosphatidic acid enhances collagen deposition and matrix thickening in engineered tissue. J. Tissue Eng. Regen Med. 2015, 9, E65–E75. [Google Scholar] [CrossRef] [PubMed]
- Kittaka, H.; Uchida, K.; Fukuta, N.; Tominaga, M. Lysophosphatidic acid-induced itch is mediated by signalling of LPA(5) receptor, phospholipase D and TRPA1/TRPV1. J. Physiol. 2017, 595, 2681–2698. [Google Scholar] [CrossRef] [PubMed]
- Bergasa, N.V. Lysophosphatidic acid and atotaxin in patients with cholestasis and pruritus: Fine biology, anticipated discernme. Ann. Hepatol. 2010, 9, 475–479. [Google Scholar] [CrossRef]
- Fischer, C.; Schreiber, Y.; Nitsch, R.; Vogt, J.; Thomas, D.; Geisslinger, G.; Tegeder, I. Lysophosphatidic Acid Receptors LPAR5 and LPAR2 Inversely Control Hydroxychloroquine-Evoked Itch and Scratching in Mice. Int. J. Mol. Sci. 2024, 25, 8177. [Google Scholar] [CrossRef]
- Emmerson, E. Efficient Healing Takes Some Nerve: Electrical Stimulation Enhances Innervation in Cutaneous Human Wounds. J. Investig. Dermatol. 2017, 137, 543–545. [Google Scholar] [CrossRef]
- Sebastian, A.; Iqbal, S.A.; Colthurst, J.; Volk, S.W.; Bayat, A. Electrical stimulation enhances epidermal proliferation in human cutaneous wounds by modulating p53-SIVA1 interaction. J. Investig. Dermatol. 2015, 135, 1166–1174. [Google Scholar] [CrossRef]
- Harsum, S.; Clarke, J.D.; Martin, P. A reciprocal relationship between cutaneous nerves and repairing skin wounds in the developing chick embryo. Dev. Biol. 2001, 238, 27–39. [Google Scholar] [CrossRef]
- Malenfant, A.; Forget, R.; Papillon, J.; Amsel, R.; Frigon, J.Y.; Choiniere, M. Prevalence and characteristics of chronic sensory problems in burn patients. Pain 1996, 67, 493–500. [Google Scholar] [CrossRef]
- Palanivelu, V.; Maghami, S.; Wallace, H.J.; Wijeratne, D.; Wood, F.M.; Fear, M.W. Loss of Type A neuronal cells in the dorsal root ganglion after a non-severe full-thickness burn injury in a rodent model. Burns 2018, 44, 1792–1800. [Google Scholar] [CrossRef]
- Saffari, T.M.; Schuttenhelm, B.N.; van Neck, J.W.; Holstege, J.C. Nerve reinnervation and itch behavior in a rat burn wound model. Wound Repair Regen 2018, 26, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Buttaci, D.R.; Sokol, C.L. Neurogenic inflammation and itch in barrier tissues. Semin. Immunol. 2025, 77, 101928. [Google Scholar] [CrossRef] [PubMed]
- Keim, K.; Bhattacharya, M.; Crosby, H.A.; Jenul, C.; Mills, K.; Schurr, M.; Horswill, A. Polymicrobial interactions between Staphylococcus aureus and Pseudomonas aeruginosa promote biofilm formation and persistence in chronic wound infections. bioRxiv 2024. [Google Scholar] [CrossRef]
- Gallo, R.L.; Horswill, A.R. Staphylococcus aureus: The Bug Behind the Itch in Atopic Dermatitis. J. Investig. Dermatol. 2024, 144, 950–953. [Google Scholar] [CrossRef]
- Sonkoly, E.; Muller, A.; Lauerma, A.I.; Pivarcsi, A.; Soto, H.; Kemeny, L.; Alenius, H.; Dieu-Nosjean, M.C.; Meller, S.; Rieker, J.; et al. IL-31: A new link between T cells and pruritus in atopic skin inflammation. J. Allergy Clin. Immunol. 2006, 117, 411–417. [Google Scholar] [CrossRef]
- Deng, L.; Costa, F.; Blake, K.J.; Choi, S.; Chandrabalan, A.; Yousuf, M.S.; Shiers, S.; Dubreuil, D.; Vega-Mendoza, D.; Rolland, C.; et al. S. aureus drives itch and scratch-induced skin damage through a V8 protease-PAR1 axis. Cell 2023, 186, 5375–5393.e5325. [Google Scholar] [CrossRef]
- Kim, J.; Stechmiller, J.; Weaver, M.; James, G.; Stewart, P.S.; Lyon, D. Associations Among Wound-Related Factors Including Biofilm, Wound-Related Symptoms and Systemic Inflammation in Older Adults with Chronic Venous Leg Ulcers. Adv. Wound Care 2024, 13, 518–527. [Google Scholar] [CrossRef]
- Lerner, E. Why Do Wounds Itch? Wounds 2018, 30, 1–3. [Google Scholar]
- Sim, P.; Strudwick, X.L.; Song, Y.; Cowin, A.J.; Garg, S. Influence of Acidic pH on Wound Healing In Vivo: A Novel Perspective for Wound Treatment. Int. J. Mol. Sci. 2022, 23, 13655. [Google Scholar] [CrossRef]
- Hindhede, A.; Meuleneire, F. A clinical case-series evaluation of a superabsorbent dressing on exuding wounds. J. Wound Care. 2012, 21, 574, 576–580. [Google Scholar] [CrossRef]
- Imbernon-Moya, A.; Ortiz-de Frutos, F.J.; Sanjuan-Alvarez, M.; Portero-Sanchez, I.; Merinero-Palomares, R.; Alcazar, V. Pain and analgesic drugs in chronic venous ulcers with topical sevoflurane use. J. Vasc. Surg. 2018, 68, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Abbade, L.P.F.; Barraviera, S.; Silvares, M.R.C.; Lima, A.; Haddad, G.R.; Gatti, M.A.N.; Medolago, N.B.; Rigotto Carneiro, M.T.; Dos Santos, L.D.; Ferreira, R.S., Jr.; et al. Treatment of Chronic Venous Ulcers With Heterologous Fibrin Sealant: A Phase I/II Clinical Trial. Front. Immunol. 2021, 12, 627541. [Google Scholar] [CrossRef] [PubMed]
- Knight Nee Shingler, S.L.; Robertson, L.; Stewart, M. Graduated compression stockings for the initial treatment of varicose veins in people without venous ulceration. Cochrane Database Syst. Rev. 2021, 7, CD008819. [Google Scholar] [CrossRef]
- Paus, R.; Schmelz, M.; Biro, T.; Steinhoff, M. Frontiers in pruritus research: Scratching the brain for more effective itch therapy. J. Clin. Investig. 2006, 116, 1174–1186. [Google Scholar] [CrossRef]
- Nedorost, S.T.; Stevens, S.R. Diagnosis and treatment of allergic skin disorders in the elderly. Drugs Aging 2001, 18, 827–835. [Google Scholar] [CrossRef]
- Pannu, C.D.; Farooque Md, K. Allergic Contact Dermatitis to Octyl Cyanoacrylate Skin Glue After Surgical Wound Closure: A Systematic Review. Dermatitis 2024, 35, 443–466. [Google Scholar] [CrossRef]
- Berkay, A.F.; Buyukkuscu, M.O. Vicryl Reaction Following Arthroscopic Surgery: A Case Report. Cureus 2024, 16, e65255. [Google Scholar] [CrossRef]
- So, S.P.; Yoon, J.Y.; Kim, J.W. Postoperative contact dermatitis caused by skin adhesives used in orthopedic surgery: Incidence, characteristics, and difference from surgical site infection. Medicine 2021, 100, e26053. [Google Scholar] [CrossRef]
- D’Erme, A.M.; Iannone, M.; Dini, V.; Romanelli, M. Contact dermatitis in patients with chronic leg ulcers: A common and neglected problem: A review 2000-2015. J. Wound Care 2016, 25 (Suppl. 9), S23–S29. [Google Scholar] [CrossRef]
- Bollemeijer, J.F.; Zheng, K.J.; van der Meer, A.M.; Ikram, M.K.; Kavousi, M.; Brouwer, W.P.; Luik, A.I.; Chaker, L.; Xu, Y.; Gunn, D.A.; et al. Lifetime prevalence and associated factors of itch with skin conditions: Atopic dermatitis, psoriasis and dry skin in individuals aged > 50 years. Clin. Exp. Dermatol. 2024, 49, 1036–1043. [Google Scholar] [CrossRef]
- Obanigba, G.; Jay, J.W.; Wolf, S.; Golovko, G.; Song, J.; Obi, A.; Efejuku, T.; Johnson, D.; El Ayadi, A. Pre-existing skin diseases as predictors of post-burn pruritus. Am. J. Surg. 2024, 236, 115427. [Google Scholar] [CrossRef] [PubMed]
- Khalil, N.B.; Coscarella, G.; Dhabhar, F.S.; Yosipovitch, G. A Narrative Review on Stress and Itch: What We Know and What We Would Like to Know. J. Clin. Med. 2024, 13, 6854. [Google Scholar] [CrossRef] [PubMed]
- Goutos, I. Neuropathic mechanisms in the pathophysiology of burns pruritus: Redefining directions for therapy and research. J. Burn Care Res. 2013, 34, 82–93. [Google Scholar] [CrossRef]
- Nedelec, B.; LaSalle, L. Postburn Itch: A Review of the Literature. Wounds 2018, 30, E118–E124. [Google Scholar] [PubMed]
- Carrougher, G.J.; Martinez, E.M.; McMullen, K.S.; Fauerbach, J.A.; Holavanahalli, R.K.; Herndon, D.N.; Wiechman, S.A.; Engrav, L.H.; Gibran, N.S. Pruritus in adult burn survivors: Postburn prevalence and risk factors associated with increased intensity. J. Burn Care Res. 2013, 34, 94–101. [Google Scholar] [CrossRef]
- Schneider, J.C.; Nadler, D.L.; Herndon, D.N.; Kowalske, K.; Matthews, K.; Wiechman, S.A.; Carrougher, G.J.; Gibran, N.S.; Meyer, W.J.; Sheridan, R.L.; et al. Pruritus in pediatric burn survivors: Defining the clinical course. J. Burn Care Res. 2015, 36, 151–158. [Google Scholar] [CrossRef]
- Zuccaro, J.; Budd, D.; Kelly, C.; Fish, J.S. Pruritus in the Pediatric Burn Population. J. Burn Care Res. 2022, 43, 1175–1179. [Google Scholar] [CrossRef]
- Stewart, D.; Caradec, J.; Ziegfeld, S.; Reynolds, E.; Ostrander, R.; Parrish, C. Predictors and Correlates of Pediatric Postburn Pruritus in Preschool Children of Ages 0 to 4. J. Burn Care Res. 2019, 40, 930–935. [Google Scholar] [CrossRef]
- Nieuwendijk, S.M.P.; de Korte, I.J.; Pursad, M.M.; van Dijk, M.; Rode, H. Post burn pruritus in pediatric burn patients. Burns 2018, 44, 1151–1158. [Google Scholar] [CrossRef]
- Samhan, A.F.; Abdelhalim, N.M. Impacts of low-energy extracorporeal shockwave therapy on pain, pruritus, and health-related quality of life in patients with burn: A randomized placebo-controlled study. Burns 2019, 45, 1094–1101. [Google Scholar] [CrossRef]
- Van Loey, N.E.; Bremer, M.; Faber, A.W.; Middelkoop, E.; Nieuwenhuis, M.K. Itching following burns: Epidemiology and predictors. Br. J. Dermatol. 2008, 158, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Tracy, L.M.; Edgar, D.W.; Schrale, R.; Cleland, H.; Gabbe, B.J.; BRANZ Adult Long-Term Outcomes Pilot Project participating sites and working party. Predictors of itch and pain in the 12 months following burn injury: Results from the Burns Registry of Australia and New Zealand (BRANZ) Long-Term Outcomes Project. Burns Trauma 2020, 8, tkz004. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Thode, H.C., Jr.; Sandoval, S.; Singer, A.J. The association of patient and burn characteristics with itching and pain severity. Burns 2019, 45, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Mauck, M.C.; Smith, J.; Shupp, J.W.; Weaver, M.A.; Liu, A.; Bortsov, A.V.; Lateef, B.; Jones, S.W.; Williams, F.; Hwang, J.; et al. Pain and itch outcome trajectories differ among European American and African American survivors of major thermal burn injury. Pain 2017, 158, 2268–2276. [Google Scholar] [CrossRef]
- Dahiya, P. Burns as a model of SIRS. Front. Biosci. 2009, 14, 4962–4967. [Google Scholar] [CrossRef]
- Mulder, P.P.G.; Vlig, M.; Fasse, E.; Stoop, M.M.; Pijpe, A.; van Zuijlen, P.P.M.; Joosten, I.; Boekema, B.; Koenen, H. Burn-injured skin is marked by a prolonged local acute inflammatory response of innate immune cells and pro-inflammatory cytokines. Front. Immunol. 2022, 13, 1034420. [Google Scholar] [CrossRef]
- Bergquist, M.; Hastbacka, J.; Glaumann, C.; Freden, F.; Huss, F.; Lipcsey, M. The time-course of the inflammatory response to major burn injury and its relation to organ failure and outcome. Burns 2019, 45, 354–363. [Google Scholar] [CrossRef]
- Jeschke, M.G.; Gauglitz, G.G.; Finnerty, C.C.; Kraft, R.; Mlcak, R.P.; Herndon, D.N. Survivors versus nonsurvivors postburn: Differences in inflammatory and hypermetabolic trajectories. Ann. Surg. 2014, 259, 814–823. [Google Scholar] [CrossRef]
- McGovern, C.; Quasim, T.; Puxty, K.; Shaw, M.; Ng, W.; Gilhooly, C.; Arkoulis, N.; Basler, M.; Macfarlane, A.; Paton, L. Neuropathic agents in the management of pruritus in burn injuries: A systematic review and meta-analysis. Trauma Surg. Acute Care Open 2021, 6, e000810. [Google Scholar] [CrossRef]
- Yang, Y.S.; Cho, S.I.; Choi, M.G.; Choi, Y.H.; Kwak, I.S.; Park, C.W.; Kim, H.O. Increased expression of three types of transient receptor potential channels (TRPA1, TRPV4 and TRPV3) in burn scars with post-burn pruritus. Acta Derm. Venereol. 2015, 95, 20–24. [Google Scholar] [CrossRef]
- Park, C.W.; Kim, H.J.; Choi, Y.W.; Chung, B.Y.; Woo, S.Y.; Song, D.K.; Kim, H.O. TRPV3 Channel in Keratinocytes in Scars with Post-Burn Pruritus. Int. J. Mol. Sci. 2017, 18, 2425. [Google Scholar] [CrossRef] [PubMed]
- Chung, B.Y.; Kim, H.B.; Jung, M.J.; Kang, S.Y.; Kwak, I.S.; Park, C.W.; Kim, H.O. Post-Burn Pruritus. Int. J. Mol. Sci. 2020, 21, 3880. [Google Scholar] [CrossRef] [PubMed]
- Patrascu, A.I.; Vata, D.; Temelie-Olinici, D.; Mocanu, M.; Gugulus, D.L.; Marinescu, M.; Stafie, L.; Tarcau, B.M.; Cretu, I.; Popescu, I.A.; et al. Skin Lesions with Loss of Tissue and Cutaneous-Onset Sepsis: The Skin Infection-Sepsis Relationship. Diagnostics 2024, 14, 659. [Google Scholar] [CrossRef] [PubMed]
- Janowska, A.; Dini, V.; Oranges, T.; Iannone, M.; Loggini, B.; Romanelli, M. Atypical Ulcers: Diagnosis and Management. Clin. Interv. Aging 2019, 14, 2137–2143. [Google Scholar] [CrossRef]
- Ladwig, A.; Haase, H.; Bichel, J.; Schuren, J.; Junger, M. Compression therapy of leg ulcers with PAOD. Phlebology 2014, 29 (Suppl. 1), 7–12. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Jackson, J.M.; Nedorost, S.T.; Friedman, A.J.; Adiri, R.; Cha, A.; Canosa, J.M. Stasis Dermatitis: The Burden of Disease, Diagnosis, and Treatment. Dermatitis 2024, 35, 337–344. [Google Scholar] [CrossRef]
- Andersen, H.H.; Akiyama, T.; Nattkemper, L.A.; van Laarhoven, A.; Elberling, J.; Yosipovitch, G.; Arendt-Nielsen, L. Alloknesis and hyperknesis-mechanisms, assessment methodology, and clinical implications of itch sensitization. Pain 2018, 159, 1185–1197. [Google Scholar] [CrossRef]
- Park, K.Y.; Kim, I.S.; Yeo, I.K.; Kim, B.J.; Kim, M.N. Treatment of refractory venous stasis ulcers with autologous platelet-rich plasma and light-emitting diodes: A pilot study. J. Dermatolog. Treat. 2013, 24, 332–335. [Google Scholar] [CrossRef]
- Kaur, C.; Sarkar, R.; Kanwar, A.J.; Attri, A.K.; Dabra, A.K.; Kochhar, S. An open trial of calcium dobesilate in patients with venous ulcers and stasis dermatitis. Int. J. Dermatol. 2003, 42, 147–152. [Google Scholar] [CrossRef]
- Reyzelman, A.M.; Vayser, D.; Tam, S.W.; Dove, C. Initial clinical assessment of a novel wound management system: A case series. Adv. Skin Wound Care 2011, 24, 256–260. [Google Scholar] [CrossRef]
- Bradbury, A.; Evans, C.; Allan, P.; Lee, A.; Ruckley, C.V.; Fowkes, F.G. What are the symptoms of varicose veins? Edinburgh vein study cross sectional population survey. BMJ 1999, 318, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Duque, M.I.; Yosipovitch, G.; Chan, Y.H.; Smith, R.; Levy, P. Itch, pain, and burning sensation are common symptoms in mild to moderate chronic venous insufficiency with an impact on quality of life. J. Am. Acad. Dermatol. 2005, 53, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.C.; Pieper, B.; Templin, T.N. Itch: Association with chronic venous disease, pain, and quality of life. J. Wound Ostomy Continence Nurs. 2011, 38, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Yosipovitch, G.; Nedorost, S.T.; Silverberg, J.I.; Friedman, A.J.; Canosa, J.M.; Cha, A. Stasis Dermatitis: An Overview of Its Clinical Presentation, Pathogenesis, and Management. Am. J. Clin. Dermatol. 2023, 24, 275–286. [Google Scholar] [CrossRef]
- Oien, R.F.; Hakansson, A.; Ovhed, I.; Hansen, B.U. Wound management for 287 patients with chronic leg ulcers demands 12 full-time nurses. Leg ulcer epidemiology and care in a well-defined population in southern Sweden. Scand J. Prim. Health Care 2000, 18, 220–225. [Google Scholar] [CrossRef]
- Shevchenko, A.; Valdes-Rodriguez, R.; Yosipovitch, G. Causes, pathophysiology, and treatment of pruritus in the mature patient. Clin. Dermatol. 2018, 36, 140–151. [Google Scholar] [CrossRef]
- Labib, A.; Rosen, J.; Yosipovitch, G. Skin Manifestations of Diabetes Mellitus. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Kirsner, R.S.; Yosipovitch, G.; Hu, S.; Andriessen, A.; Hanft, J.R.; Kim, P.J.; Lavery, L.; Meneghini, L.; Ruotsi, L.C. Diabetic Skin Changes Can Benefit from Moisturizer and Cleanser Use: A Review. J. Drugs Dermatol. 2019, 18, 1211–1217. [Google Scholar]
- Kim, J.H.; Yoon, N.Y.; Kim, D.H.; Jung, M.; Jun, M.; Park, H.Y.; Chung, C.H.; Lee, K.; Kim, S.; Park, C.S.; et al. Impaired permeability and antimicrobial barriers in type 2 diabetes skin are linked to increased serum levels of advanced glycation end-product. Exp. Dermatol. 2018, 27, 815–823. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Mills, K.C.; Nattkemper, L.A.; Feneran, A.; Tey, H.L.; Lowenthal, B.M.; Pearce, D.J.; Williford, P.M.; Sangueza, O.P.; D’Agostino, R.B., Jr. Association of pain and itch with depth of invasion and inflammatory cell constitution in skin cancer: Results of a large clinicopathologic study. JAMA Dermatol. 2014, 150, 1160–1166. [Google Scholar] [CrossRef]
- Mills, K.C.; Kwatra, S.G.; Feneran, A.N.; Pearce, D.J.; Williford, P.M.; D’Agostino, R.B.; Yosipovitch, G. Itch and pain in nonmelanoma skin cancer: Pain as an important feature of cutaneous squamous cell carcinoma. Arch. Dermatol. 2012, 148, 1422–1423. [Google Scholar] [CrossRef]
- Tilley, C.P.; Fu, M.R.; Van Cleeve, J.; Crocilla, B.L.; Comfort, C.P. Symptoms of Malignant Fungating Wounds and Functional Performance among Patients with Advanced Cancer: An Integrative Review from 2000 to 2019. J. Palliat. Med. 2020, 23, 848–862. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xie, J.Q.; Liao, Z.Y.; Wei, M.J.; Lin, H. Changes in wound symptoms and quality of life of patients with newly diagnosed malignant fungating wounds. J. Wound Care 2024, 33, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Maida, V.; Ennis, M.; Kuziemsky, C.; Trozzolo, L. Symptoms associated with malignant wounds: A prospective case series. J. Pain Symptom. Manag. 2009, 37, 206–211. [Google Scholar] [CrossRef]
- Chen, A.; Dusza, S.; Bromberg, J.; Goldfarb, S.; Sanford, R.; Markova, A. Quality of Life in Patients with Malignant Wounds Treated at a Wound Care Clinic. Res. Sq. 2024, preprint. [Google Scholar] [CrossRef]
- Ye, C.; Li, W. Cutaneous vasculitis in a patient with ankylosing spondylitis: A case report. Medicine 2019, 98, e14121. [Google Scholar] [CrossRef]
- Bhatt, D.M.; Bhamburkar, S.; Madke, B.; Jangid, S.D.; Khan, A. Adalimumab in the Treatment of Recalcitrant Livedoid Vasculopathy. Cureus 2023, 15, e50053. [Google Scholar] [CrossRef]
- Altieri, M.; Vaziri, K.; Orkin, B.A. Topical tacrolimus for parastomal pyoderma gangrenosum: A report of two cases. Ostomy Wound Manag. 2010, 56, 56–59. [Google Scholar]
- Flora, A.; Pham, J.; Woods, J.A.; Radzeika, M.; Dickson, H.; Malone, M.; Frew, J.W. The Clinical and Molecular Response of Pyoderma Gangrenosum to Interleukin 23 Blockade: Result from a proof-of-concept open-label clinical trial. J. Investig. Dermatol. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Neoh, C.Y.; Tan, A.W. Trigeminal trophic syndrome: An unusual cause of a non-healing cheek ulcer. Singapore Med. J. 2007, 48, e22–e24. [Google Scholar]
- Mohammadi, A.; Khojasteh, A.; Khojasteh, F. Trigeminal Trophic Syndrome as an Unusual Cause of Chronic and Non-Healing Ala Nasi Ulcer: A Case Report. World J. Plast Surg. 2020, 9, 346–348. [Google Scholar] [CrossRef]
- Pala, E.; Tasar, P.T.; Soguksu, A.O.; Karasahin, O.; Sevinc, C. Dermatological Diseases in Palliative Care Patients in a University Hospital: A Prospective Study. J. Palliat. Care 2024, 39, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.P.; Misra, J.; Subudhi, B.S.; Panda, A.K. Tubercular lesion of the foot presenting as epithelioma. Singapore Med. J. 2013, 54, e59–e61. [Google Scholar] [CrossRef] [PubMed]
- Elas, D.; Swick, B.; Stone, M.S.; Miller, M.; Stockdale, C. Botryomycosis of the vulva: A case report. J. Low Genit. Tract. Dis. 2014, 18, e80–e83. [Google Scholar] [CrossRef] [PubMed]
- Gelman, A.; Valdes-Rodriguez, R.; Bhattacharyya, S.; Yosipovitch, G. A case of primary cutaneous mucormycosis caused by minor trauma. Dermatol. Online J. 2015, 21. [Google Scholar] [CrossRef]
- Samaranayake, T.N.; Dissanayake, V.H.; Fernando, S.D. Clinical manifestations of cutaneous leishmaniasis in Sri Lanka-possible evidence for genetic susceptibility among the Sinhalese. Ann. Trop. Med. Parasitol. 2008, 102, 383–390. [Google Scholar] [CrossRef]
- Li, D.; Zhang, M.; Yin, J.; Chen, K. A Case of Secondary Syphilis with the Extragenital Chancre of the Lips and Tongue. Clin. Cosmet. Investig. Dermatol. 2023, 16, 2185–2188. [Google Scholar] [CrossRef]
- Has, C.; Bauer, J.W.; Bodemer, C.; Bolling, M.C.; Bruckner-Tuderman, L.; Diem, A.; Fine, J.D.; Heagerty, A.; Hovnanian, A.; Marinkovich, M.P.; et al. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br. J. Dermatol. 2020, 183, 614–627. [Google Scholar] [CrossRef]
- Alheggi, A.; Alnutaifi, R.; Alkhonezan, M.; Almudawi, N.; Alsuhaibani, R.; Moons, P.; Aljuhani, T. Measuring the impact of pruritus in patients with epidermolysis bullosa: Evaluation with an itch-specific instrument. Dermatol. Rep. 2023, 15, 9700. [Google Scholar] [CrossRef]
- Snauwaert, J.J.; Yuen, W.Y.; Jonkman, M.F.; Moons, P.; Naulaers, G.; Morren, M.A. Burden of itch in epidermolysis bullosa. Br. J. Dermatol. 2014, 171, 73–78. [Google Scholar] [CrossRef]
- Mellerio, J.E.; Pillay, E.I.; Ledwaba-Chapman, L.; Bisquera, A.; Robertson, S.J.; Papanikolaou, M.; McGrath, J.A.; Wang, Y.; Martinez, A.E.; Jeffs, E. Itch in recessive dystrophic epidermolysis bullosa: Findings of PEBLES, a prospective register study. Orphanet. J. Rare Dis. 2023, 18, 235. [Google Scholar] [CrossRef]
- Papanikolaou, M.; Onoufriadis, A.; Mellerio, J.E.; Nattkemper, L.A.; Yosipovitch, G.; Steinhoff, M.; McGrath, J.A. Prevalence, pathophysiology and management of itch in epidermolysis bullosa. Br. J. Dermatol. 2021, 184, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Aala, W.J.F.; Hou, P.C.; Hong, Y.K.; Lin, Y.C.; Lee, Y.R.; Tu, W.T.; Papanikolaou, M.; Benzian-Olsson, N.; Onoufriadis, A.; I Chen Harn, H.; et al. Dominant dystrophic epidermolysis bullosa is associated with glycolytically active GATA3+ T helper 2 cells which may contribute to pruritus in lesional skin. Br. J. Dermatol. 2024, 191, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, M.; Nattkemper, L.; Benzian-Olsson, N.; Liu, L.; Guy, A.; Lu, H.; Kadiyirire, T.; Hou, P.C.; Aala, W.; Serrano, S.; et al. Th2 response drives itch in dystrophic epidermolysis bullosa pruriginosa: A case-control study. J. Am. Acad. Dermatol. 2024, 91, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Kim, S.E.; Jeong, I.H.; Lee, S.E. Mechanism underlying pruritus in recessive dystrophic epidermolysis bullosa: Role of interleukin-31 from mast cells and macrophages. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 895–903. [Google Scholar] [CrossRef]
- Chiaverini, C.; Kandemir, S.; Hubiche, T.; Bourrat, E.; Hovnanian, A. Efficacy of dupilumab against pruritus in dystrophic epidermolysis bullosa: Real-life data from a retrospective bicentric study. J. Eur. Acad. Dermatol. Venereol. 2024, 39, e353–e355. [Google Scholar] [CrossRef]
- Gewert, S.; Davidovic, M.; Has, C.; Kiritsi, D. Dupilumab improves itch and blistering in different subtypes of epidermolysis bullosa. J. Dtsch. Dermatol. Ges. 2024, 22, 1139–1144. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Shinkuma, S.; Hayashi, R.; Katsumi, T.; Nishiguchi, T.; Natsuga, K.; Fujita, Y.; Abe, R. New insight of itch mediators and proinflammatory cytokines in epidermolysis bullosa. J. Cutan. Immunol. Allergy 2022, 5, 78–87. [Google Scholar] [CrossRef]
- Reimer-Taschenbrecker, A.; Hess, M.; Davidovic, M.; Hwang, A.; Hubner, S.; Hofsaess, M.; Gewert, S.; Eyerich, K.; Has, C. IL-6 levels dominate the serum cytokine signature of severe epidermolysis bullosa: A prospective cohort study. J. Eur. Acad. Dermatol. Venereol. 2025, 39, 202–209. [Google Scholar] [CrossRef]
- Esposito, S.; Guez, S.; Orenti, A.; Tadini, G.; Scuvera, G.; Corti, L.; Scala, A.; Biganzoli, E.; Berti, E.; Principi, N. Autoimmunity and Cytokine Imbalance in Inherited Epidermolysis Bullosa. Int. J. Mol. Sci. 2016, 17, 1625. [Google Scholar] [CrossRef]
- Darbord, D.; Hickman, G.; Pironon, N.; Barbieux, C.; Bonnet-des-Claustres, M.; Titeux, M.; Miskinyte, S.; Cordoliani, F.; Vignon-Pennamen, M.D.; Amode, R.; et al. Dystrophic epidermolysis bullosa pruriginosa: A new case series of a rare phenotype unveils skewed Th2 immunity. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 133–143. [Google Scholar] [CrossRef]
- Calvo, M.; Tejos-Bravo, M.; Passi-Solar, A.; Espinoza, F.; Fuentes, I.; Lara-Corrales, I.; Pope, E. Pregabalin for Neuropathic Pain and Itch in Recessive Dystrophic Epidermolysis Bullosa: A Randomized Crossover Trial. JAMA Dermatol. 2024, 160, 1314–1319. [Google Scholar] [CrossRef] [PubMed]
- Danial, C.; Adeduntan, R.; Gorell, E.S.; Lucky, A.W.; Paller, A.S.; Bruckner, A.; Pope, E.; Morel, K.D.; Levy, M.L.; Li, S.; et al. Prevalence and characterization of pruritus in epidermolysis bullosa. Pediatr. Dermatol. 2015, 32, 53–59. [Google Scholar] [CrossRef] [PubMed]
- van Scheppingen, C.; Lettinga, A.T.; Duipmans, J.C.; Maathuis, C.G.; Jonkman, M.F. Main problems experienced by children with epidermolysis bullosa: A qualitative study with semi-structured interviews. Acta. Derm. Venereol. 2008, 88, 143–150. [Google Scholar] [CrossRef]
- Jeon, I.K.; On, H.R.; Kim, S.C. Quality of Life and Economic Burden in Recessive Dystrophic Epidermolysis Bullosa. Ann. Dermatol. 2016, 28, 6–14. [Google Scholar] [CrossRef]
- Eriksson, E.; Griffith, G.L.; Nuutila, K. Topical Drug Delivery in the Treatment of Skin Wounds and Ocular Trauma Using the Platform Wound Device. Pharmaceutics 2023, 15, 1060. [Google Scholar] [CrossRef]
- Bowers, S.; Franco, E. Chronic Wounds: Evaluation and Management. Am. Fam. Physician 2020, 101, 159–166. [Google Scholar]
- Weisshaar, E.; Szepietowski, J.C.; Dalgard, F.J.; Garcovich, S.; Gieler, U.; Gimenez-Arnau, A.M.; Lambert, J.; Leslie, T.; Mettang, T.; Misery, L.; et al. European S2k Guideline on Chronic Pruritus. Acta Derm. Venereol. 2019, 99, 469–506. [Google Scholar] [CrossRef]
- Harrison, I.P.; Spada, F. Breaking the Itch-Scratch Cycle: Topical Options for the Management of Chronic Cutaneous Itch in Atopic Dermatitis. Medicines 2019, 6, 76. [Google Scholar] [CrossRef]
- Ways to Relieve Itch from Eczema: National Eczema Association. Available online: https://nationaleczema.org/eczema-management/itchy-skin/ (accessed on 21 March 2025).
- Brooks, S.G.; Yosipovitch, G. A critical evaluation of nemolizumab for prurigo nodularis. Expert. Rev. Clin. Immunol. 2024, 20, 577–587. [Google Scholar] [CrossRef]
- McCann, M.R.; Kosloski, M.P.; Xu, C.; Davis, J.D.; Kamal, M.A. Dupilumab: Mechanism of action, clinical, and translational science. Clin. Transl. Sci. 2024, 17, e13899. [Google Scholar] [CrossRef]
- Lin, J.; Luo, M.; Zhuo, Q.; Chen, N.; Zhang, H.; Han, Y. Efficacy and safety of lebrikizumab for the treatment of moderate-to-severe atopic dermatitis: A systematic review and meta-analysis. Front. Pharmacol. 2024, 15, 1429709. [Google Scholar] [CrossRef] [PubMed]
- Ronnstad, A.T.M.; Bunick, C.G.; Chovatiya, R.; Kamata, M.; Nielsen, M.L.; Isufi, D.; Thomsen, S.F.; Vestergaard, C.; Wollenberg, A.; Egeberg, A.; et al. Real-World Evidence of Tralokinumab Effectiveness and Safety: A Systematic Review and Meta-analysis. Am. J. Clin. Dermatol. 2025. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, A.; Spinelli, F.R.; Telliez, J.B.; O’Shea, J.J.; Silvennoinen, O.; Gadina, M. JAK inhibitor selectivity: New opportunities, better drugs? Nat. Rev. Rheumatol. 2024, 20, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Trent, J.T.; Kirsner, R.S. Wounds and malignancy. Adv. Skin Wound Care 2003, 16, 31–34. [Google Scholar] [CrossRef]
- He, A.; Alhariri, J.M.; Sweren, R.J.; Kwatra, M.M.; Kwatra, S.G. Aprepitant for the Treatment of Chronic Refractory Pruritus. Biomed. Res. Int. 2017, 2017, 4790810. [Google Scholar] [CrossRef]
- Kirsner, R.S.; Andriessen, A.; Hanft, J.R.; Hu, S.; Marston, W.A.; Ruotsi, L.C.; Yosipovitch, G. Improvement of Chronic Venous Insufficiency Related Leg Xerosis and Dermatitis With Ceramide-Containing Cleansers and Moisturizers: An Expert-Based Consensus. J. Drugs Dermatol. 2024, 23, 61–66. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Eltregy, S.; Kandil, M.I. Honey dressing: A missed way for orthopaedic wound care. Int. Orthop. 2022, 46, 2483–2491. [Google Scholar] [CrossRef]
- Liu, J.; Shen, H. Clinical efficacy of chitosan-based hydrocolloid dressing in the treatment of chronic refractory wounds. Int. Wound J. 2022, 19, 2012–2018. [Google Scholar] [CrossRef]
- Niculescu, A.G.; Georgescu, M.; Marinas, I.C.; Ustundag, C.B.; Bertesteanu, G.; Pinteala, M.; Maier, S.S.; Al-Matarneh, C.M.; Angheloiu, M.; Chifiriuc, M.C. Therapeutic Management of Malignant Wounds: An Update. Curr. Treat. Options Oncol. 2024, 25, 97–126. [Google Scholar] [CrossRef]
Mediator | Role in Wound Healing | Role in Itch |
---|---|---|
CXCL10 | ||
IL-4 and IL-13 |
| |
IL-31 | ||
Histamine | ||
Serotonin (5-HT) |
|
|
Proteases | Tryptase | Tryptase |
Trypsin | Trypsin | |
Cathepsins
| Cathepsins: shown to induce itch via | |
Periostin | ||
Neuropeptides (including but not limited to substance P, CGRP, GRP, NMB, NPY) | ||
Lipid mediators | Leukotrienes | Leukotrienes |
LPA | LPA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papanikolaou, M.; Paul, J.; Nattkemper, L.A.; Kirsner, R.S.; Yosipovitch, G. Prevalence and Mechanisms of Itch in Chronic Wounds: A Narrative Review. J. Clin. Med. 2025, 14, 2877. https://doi.org/10.3390/jcm14092877
Papanikolaou M, Paul J, Nattkemper LA, Kirsner RS, Yosipovitch G. Prevalence and Mechanisms of Itch in Chronic Wounds: A Narrative Review. Journal of Clinical Medicine. 2025; 14(9):2877. https://doi.org/10.3390/jcm14092877
Chicago/Turabian StylePapanikolaou, Marieta, Julia Paul, Leigh A. Nattkemper, Robert S. Kirsner, and Gil Yosipovitch. 2025. "Prevalence and Mechanisms of Itch in Chronic Wounds: A Narrative Review" Journal of Clinical Medicine 14, no. 9: 2877. https://doi.org/10.3390/jcm14092877
APA StylePapanikolaou, M., Paul, J., Nattkemper, L. A., Kirsner, R. S., & Yosipovitch, G. (2025). Prevalence and Mechanisms of Itch in Chronic Wounds: A Narrative Review. Journal of Clinical Medicine, 14(9), 2877. https://doi.org/10.3390/jcm14092877