Development of a New Ramus Anterior Vertical Reference Line for the Evaluation of Skeletal and Dental Changes as a Decision Aid for the Treatment of Crowding in the Lower Jaw: Extraction vs. Nonextraction
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patient Selection
- In the first step, a randomized, stratified sample of 300 patients was drawn from the original population of 1251 patients, with proportions maintained according to gender and treatment modality. This initial step aimed to preserve population-level representativeness.
- In the second step, all 300 selected patients were re-evaluated to verify their documented LII values. This was necessary because the initial LII measurements were recorded in the analog patient documentation, which introduced potential for measurement or transcription inaccuracies. Only patients with a confirmed LII between 4 mm and 9 mm were retained. From this validated subsample, a second stratified randomization assigned 35 female and 35 male patients to each group (G1 and G2), resulting in a final study population of 140 patients (G1-F, G1-M, G2-F, G2-M; each n = 35).
2.2. Clinical Decision-Making and Justification of Extraction
2.3. Group Comparability at Baseline
2.4. Inclusion and Exclusion Criteria
2.5. Sample Distribution and Demographics
2.6. Cephalometric Imaging and Measurement Protocol
2.7. Method Error and Measurement Reliability
2.8. Cephalometric Parameters and Measurement Protocol
- Skeletal angles: SNB, ANB, SNPg, ML–NSL, ML–NL, Gn–tGo–Ar, and Norderval angle;
- Linear measurements: anterior facial height (N–Sp’), inferior facial height (Sp’–Gn);
- Indices: Hasund index.
- The facial type was classified based on the SNA angle as follows:
- Retrognathic: SNA < 77°;
- Orthognathic: 77° ≤ SNA ≤ 85°;
- Prognathic: SNA > 85°.
- O (open relation): H index < 71%);
- N (neutral relation): 71% ≥ H index ≤ 89%);
- D (deep relation): H index > 89%).
- Subgroup 1: Large ML–NL angle;
- Subgroup 2: Balanced ML–NL angle;
- Subgroup 3: Small ML–NL angle.
- Dental centroid point (CP): Located at the intersection of the distal-to-sagittal and superior-to-inferior axes of the enamel–cementum border of the tooth crown;
- Centre of resistance (CR): Defined at the trifurcation among molars and at 40% of the alveolar height on the coronal view for second premolars [34];
- Apex (A): Defined as the midpoint between the roots of the molars and the apex of the second premolars.
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
Ex | treatment of premolar extraction |
G1 | premolar extraction group |
G2 | nonextraction group |
LC | lateral cephalogram |
LII | Little’s Irregularity Index |
Non-Ex | treatment without extraction |
OT | orthodontic treatment |
PTV | Pterygoid Vertical |
RaV | Ramus Anterior Vertical |
T0 | beginning of treatment, baseline |
T1 | completion of treatment |
References
- Proffit, W.R.; Fields, H.W.J.; Moray, L.J. Prevalence of malocclusion and orthodontic treatment need in the United States: Estimates from the NHANES III survey. Int. J. Adult Orthod. Orthognath. Surg. 1998, 13, 97–106. [Google Scholar]
- Atwood, D.A. Reduction of residual ridges: A major oral disease entity. J. Prosthet. Dent. 1971, 26, 266–279. [Google Scholar] [CrossRef]
- Ferrario, V.F.; Sforza, C.; Miani, A.; Tartaglia, G. Craniofacial morphometry by photographic evaluations. Am. J. Orthod. Dentofac. Orthop. 1997, 114, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Schropp, L.; Wenzel, A.; Kostopoulos, L.; Karring, T. Bone healing and soft tissue contour changes following single-tooth extraction: A clinical and radiographic 12-month prospective study. Int. J. Periodontics Restor. Dent. 2003, 23, 313–323. [Google Scholar]
- Urban, I.A.; Jovanovic, S.A.; Lozada, J.L. Vertical ridge augmentation using guided bone regeneration (GBR) in the posterior maxilla: A retrospective study. Int. J. Oral. Maxillofac. Implant. 2009, 24, 502–510. [Google Scholar]
- Konstantonis, D.; Anthopoulou, C.; Makou, M. Extraction decision and identification of treatment predictors in Class I malocclusions. Prog. Orthod. 2013, 14, 47. [Google Scholar] [CrossRef]
- Elias, K.G.; Sivamurthy, G.; Bearn, D.R. Extraction vs nonextraction orthodontic treatment: A systematic review and meta-analysis. Angle Orthod. 2024, 94, 83–106. [Google Scholar] [CrossRef] [PubMed]
- Konstantonis, D.; Vasileiou, D.; Papageorgiou, S.N.; Eliades, T. Soft tissue changes following extraction vs. nonextraction orthodontic fixed appliance treatment: A systematic review and meta-analysis. Eur. J. Oral. Sci. 2018, 126, 167–179. [Google Scholar] [CrossRef]
- Little, R.M.; Wallen, T.R.; Riedel, R.A. Stability and relapse of mandibular anterior alignment-first premolar extraction cases treated by traditional edgewise orthodontics. Am. J. Orthod. 1981, 80, 349–365. [Google Scholar] [CrossRef]
- Rossouw, P.E.; Preston, C.B.; Lombard, C.A. Longitudinal evaluation of extraction versus nonextraction treatment with special reference to the posttreatment irregularity of the lower incisors. Semin. Orthod. 1999, 5, 160–170. [Google Scholar] [CrossRef]
- Longerich, U.J.; Thurau, M.; Grill, F.; Stimmer, H.; Gahl, C.M.; Kolk, A. Does molar distalization by the Beneslider have skeletal and dental impacts? A prospective 3D analysis. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endo 2022, 134, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Longerich, U.J.J.; Thurau, M.; Kolk, A. Development of a new device for maxillary molar distalization with high pseudoelastic forces to overcome slider friction: The Longslider—A modification of the Beneslider. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endo 2014, 118, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Okeson, J.P. Management of Temporomandibular Disorders and Occlusion, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 324–371. [Google Scholar]
- Lippold, C.; Danesh, G.; Schilgen, M.; Drerup, B.; Hackenberg, L. Relationship between thoracic kyphosis, lumbar lordosis, and craniofacial morphology in adults. J. Orofac. Orthop. 2006, 67, 371–381. [Google Scholar]
- Rocabado, M.; Johnston, B.E.; Blakney, M.G. Physical therapy and dentistry: An overview. J. Craniomandib. Practice 1982, 1, 46–49. [Google Scholar] [CrossRef]
- Manfredini, D.; Winocur, E.; Guarda-Nardini, L.; Paesani, D.; Lobbezoo, F. Epidemiology of bruxism in adults: A systematic review of the literature. J. Orofac. Pain 27 2011, 2, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Enlow, D.H.; Hans, M.G. Growth of the mandible. In Essentials of Facial Growth; W.B. Saunders: Philadelphia, PA, USA, 2008; pp. 63–90. [Google Scholar]
- Enlow, D.H. Compensatory growth mechanisms in craniofacial development: An interview. J. Clin. Orthod. 1983, 17, 669–681. [Google Scholar]
- Björk, A. FaFacial growth in man, studied with the aid of metallic implants. Acta Odontol. Scand. 1955, 13, 9–34. [Google Scholar] [CrossRef]
- Björk, A. Variation in the growth pattern of the human mandible: Longitudinal radiographic study by the implant method. J. Dent. Res. 1963, 42, 400–411. [Google Scholar] [CrossRef]
- Ricketts, R.M. Cranial Growth and Cephalometrics. Am. J. Orthod. 1977, 41, 163–194. [Google Scholar] [CrossRef]
- Buschang, P.H.; Carillo, H.B.; Rossoue, V.D. Mandibular Growth Relativity in Adolescents. Am. J. Orthod. Dentofacial. Orthop. 1999, 115, 29–37. [Google Scholar]
- Altman, D.G. Practical Statistics for Medical Research; Chapman and Hall: London, UK, 1991; pp. 151–154. [Google Scholar]
- Pocock, S.J. Clinical Trials: A Practical Approach; Wiley: Chichester, UK, 1983; pp. 66–69. [Google Scholar]
- Alam, M.K.; Nowrin, S.A.; Shahid, F.; Haque, S.; Imran, A.; Fareen, N.; Sujon, M.K.; Zaman, S.; Islam, R.; Nishi, S.E. Treatment of Angle class I malocclusion with severe crowding by extraction of four premolars: A case report. Bangladesh J. Med. Sci. 2018, 17, 683–687. [Google Scholar] [CrossRef]
- Barber, S.K.; Forde, K.E.; Spencer, R.J. Class II Division 1: An Evidence-Based Review of Management and Treatment Timing in the Growing Patient. Dent. Update 2015, 42, 632–642. [Google Scholar] [CrossRef]
- Baumrind, S.; Korn, E.L.; Boyd, R.L.; Maxwell, R. The decision to extract: Part II. Analysis of clinicians’ stated reasons for extraction. Am. J. Orthod. Dentofac. Orthop. 1996, 109, 393–402. [Google Scholar] [CrossRef]
- Keeling, S.D.; McGorray, S.; Wheeler, T.T.; King, G.J. Imprecision in orthodontic diagnosis: Reliability of clinical measures of malocclusion. Angle Orthod. 1996, 66, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions—Introduction and key changes from the 1999 classification. J. Periodontol. 2018, 89, S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Abouleish, A.E.; Leib, M.L.; Cohen, N.H. ASA provides examples to each ASA physical status class. ASA Monit. 2015, 79, 38–39. [Google Scholar] [CrossRef]
- Dahlberg, G. Statistical Methods for Medical and Biological Students; Interscience Publications: New York, NY, USA, 1940. [Google Scholar]
- Houston, W.J. The analysis of errors in orthodontic measurements. Am. J. Orthod. 1983, 83, 382–390. [Google Scholar] [CrossRef]
- Segner, D.H.A. Individualisierte Kephalometrie, 3rd ed.; Dietmar Segner: Hamburg, Germany, 1998. [Google Scholar]
- Ziegler, A.; Keilig, L.; Kawarizadeh, A.; Jäger, A.; Bourauel, C. Numerical simulation of the biomechanical behavior of multi-rooted teeth. Eur. J. Orthod. 2005, 27, 333–339. [Google Scholar] [CrossRef]
- Welch, B.L. WELCH BL. The significance of the difference between two means when the population variances are unequal. InBiometrika 1938, 29, 350–362. [Google Scholar] [CrossRef]
- Bender, R.; Lange, S. Adjusting for multiple testing—When and how? J. Clin. Epidemiol. 2001, 54, 343–349. [Google Scholar] [CrossRef]
- Fischer, H. A History of the Central Limit Theorem. From Classical to Modern Probability Theory; Springer: New York, NY, USA, 2011. [Google Scholar]
- Björk, A. The Face in Profile: An Anthropological X-ray Investigation on Swedish Children and Conscripts; Berlingska Boktryckeriet: Lund, Sweden, 1947. [Google Scholar]
- Gambardela-Tkacz, C.M.; Alcaraz, G.; Cotrin, p.; Salvatore de Freitas, K.M.; Moura, W.; Janson, G.; Garib, D.; Roberto de Freitas, M. Incisor irregularity and dental arch dimensions changes in subjects with different severity of anterior crowding: A 37-year follow-up. Prog. Orthod. 2023, 24, 10. [Google Scholar] [CrossRef] [PubMed]
- Pullinger, A.G.; Seligman, D.A.; Solberg, W.K. Temporomandibular disorders. J. Dent. Res. 1993, 72, 1110–1122. [Google Scholar]
- Bishara, S.E.; Jakobsen, J.R.; Treder, J.; Nowak, A. Changes in the molar relationship between the deciduous and permanent dentitions: A longitudinal study. Am. J. Orthod. Dentofac. Orthop. 1998, 113, 401–406. [Google Scholar] [CrossRef]
- Upadhyay, M.; Yadav, S.; Patil, S. Mini-implants vs fixed functional appliances for treatment of Class II malocclusion: A randomized controlled trial. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 21–34. [Google Scholar]
- Beit, P.; Konstantonis, D.; Papagiannis, A.; Eliades, T. Vertical skeletal changes after extraction and non-extraction treatment in matched class I patients identified by a discriminant analysis: Cephalometric appraisal and Procrustes superimposition. Prog. Orthod. 2017, 18, 44. [Google Scholar] [CrossRef]
- Garlington, M.; Logan, L.R. Vertical changes in high mandibular plane cases following enucleation of second premolars. Angle Orthod. 1990, 60, 263–267; discussion 267–268. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Kim, J.T.; Mah, J.; Yang, W.S.; Baek, S.H. First or second premolar extraction effects on facial vertical dimension. Angle Orthod. 2005, 75, 177–182. [Google Scholar] [CrossRef]
- Kocadereli, I. The effect of first premolar extraction on vertical dimension. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 41–45. [Google Scholar] [CrossRef]
- Kumari, M.; Fida, M. Vertical facial and dental arch dimensional changes in extraction vs. non-extraction orthodontic treatment. J. Coll. Physicians Surg. Pak. 2010, 20, 17–21. [Google Scholar]
- Luppanapornlarp, S.; Johnston, L.E., Jr. The effects of premolar-extraction: A long-term comparison of outcomes in “clear-cut” extraction and nonextraction Class II patients. Angle Orthod. 1993, 63, 257–272. [Google Scholar] [CrossRef]
- Meral, O.; Iscan, H.N.; Okay, C.; Gursoy, Y. Effects of bilateral upper first premolar extraction on the mandible. Eur. J. Orthod. 2004, 26, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, A.; Valiathan, A. Cephalometric assessment of dentofacial vertical changes in Class I subjects treated with and without extraction. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 869–875. [Google Scholar] [CrossRef]
- Kirschneck, C.; Proff, P.; Reicheneder, C.; Lippold, C. Premolar extraction in orthodontic treatment of Class II malocclusion: A systematic review. Prog. Orthod. 2014, 15, 1–15. [Google Scholar]
- Aras, A. Vertical changes following orthodontic extraction treatment in skeletal open bite subjects. Eur. J. Orthod. 2002, 24, 407–416. [Google Scholar] [CrossRef]
- Kirschneck, C.; Proff, P.; Reicheneder, C.; Lippold, C. Short-term effects of systematic premolar extraction on lip profile, vertical dimension and cephalometric parameters in borderline patients for extraction therapy--a retrospective cohort study. Clin. Oral. Investig. 2016, 20, 865–874. [Google Scholar] [CrossRef]
- Kim, T.W.; Artun, J.; Behbehani, F.; Artese, F. Prevalence of third molar impaction in orthodontic patients treated nonextraction and with extraction of 4 premolars. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Turkoz, C.; Ulusoy, C. Effect of premolar extraction on mandibular third molar impaction in young adults. Angle Orthod. 2013, 83, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M.E. The effect of mandibular first premolar extraction on third molar space. Angle Orthod. 1989, 59, 291–294. [Google Scholar]
- Wilmes, B.; Drescher, D. Application and effectiveness of the Beneslider: A device to move molars distally. World J. Orthod. 2010, 11, 331–340. [Google Scholar]
- Wilmes, B.; Nienkemper, M.; Drescher, D. Application and effectiveness of a mini-implant-and tooth-borne rapid palatal expansion device: The hybrid hyrax. World J. Orthod. 2010, 11, 323–330. [Google Scholar]
- Wilmes, B.; Nienkemper, M.; Drescher, D. Der Beneslider zur Distalisierung im Oberkiefer. Informationen Aus Orthod. Kieferorthopädie 2013, 45, 42–50. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, W.; Xu, T.M. Long-term changes of hard-tissue in borderline cases with extraction vs. non-extraction treatment. Beijing Da Xue Xue Bao Yi Xue Ban 2008, 40, 633–638. [Google Scholar] [PubMed]
- Villard, N.M.; Patcas, R. Does the decision to extract influence the development of gingival recessions? A retrospective long-term evaluation. J. Orofac. Orthop. 2015, 76, 476–492. [Google Scholar] [CrossRef] [PubMed]
Beginning of Treatment (T0) | Total Ex + Non-Ex | Ex | Non-Ex | p Value Welch’s t-Test H0: Ex = Non-Ex H1: Ex ≠ Non-Ex |
---|---|---|---|---|
Number of patients: | ---- | |||
All (female + male) | 140 | 140 | 140 | |
female | 70 | 70 | 70 | |
male | 70 | 70 | 70 | |
Mean age (total) Median | 12.49 ± 2.30 12.11 | 12.58 ± 2.34 12.06 | 12.39 ± 2.27 12.14 | p = 0.62 |
Mean age (female) Median | 12.57 ± 2.38 12.13 | 12.55 ± 2.31 12.12 | 12.59 ± 2.48 12.13 | p = 0.94 |
Mean age (male) Median | 12.41 ± 2.24 12.08 | 12.62 ± 2.40 12.06 | 12.20 ± 2.07 12.15 | p = 0.43 |
Treatment duration (T1–T0) Months Median | 37.97 ± 10.87 36.55 | 37.85 ± 11.66 37.47 | 38.08 ± 10.11 36.19 | p = 0.90 |
Skeletal and Dental Variables | Ex Group Differences (T1–T0) | Welch’s t-Test | Non-Ex Group Differences (T1–T0) | Welch’s t-Test | ||
---|---|---|---|---|---|---|
H0: ♀ = ♂ | H0: ♀ = ♂ | |||||
H1: ♀ ≠ ♂ | H1: ♀ ≠ ♂ | |||||
Female | Male | p Value | Female | Male | p Value | |
SNA° | −0.32 ± 3.28 | −0.55 ± 2.81 | 0.7492 | 0.61 ± 2.52 | 0.21 ± 2.96 | 0.5421 |
SNB° | 0.39 ± 2.80 | 0.01 ± 2.24 | 0.5360 | 1.18 ± 2.30 | 0.70 ± 2.60 | 0.5166 |
ANB° | −0.66 ± 1.90 | −0.57 ± 1.73 | 0.8287 | −0.33 ± 2.02 | −0.58 ± 1.94 | 0.5884 |
SNPg° | 0.99 ± 2.85 | 0.44 ± 2.45 | 0.3907 | 1.39 ± 2.18 | 1.01 ± 2.76 | 0.5193 |
Gn–tGo–Ar° | −1.8 ± 6.71 | −1.43 ± 4.8 | 0.4054 | −2.02 ± 4.39 | −1.83 ± 6.49 | 0.8888 |
NSBa | −0.39 ± 3.3 | 0.17 ± 4.42 | 0.5478 | −0.03 ± 3.40 | −0.46 ± 4.05 | 0.6331 |
NL–NSL° | −0.19 ± 3.56 | 0.19 ± 3.13 | 0.6392 | −0.16 ± 2.41 | 0.15 ± 3.03 | 0.9826 |
ML–NSL° | −1.02 ± 3.33 | 0.01 ± 3.33 | 0.2381 | −1.79 ± 2.85 | −1.01 ± 3.50 | 0.3070 |
ML–NL° | 0.89 ± 2.94 | −0.29 ± 4.15 | 0.4879 | −1.75 ± 2.93 | 1.27 ± 3.38 | 0.5271 |
Norderval° | 3.15 ± 3.29 | 3.06 ± 4.95 | 0.9233 | 0.99 ± 3.21 | 1.91 ± 5.07 | 0.3698 |
N–Sp’ mm | −0.45 ± 5.54 | 0.95 ± 7.71 | 0.4200 | 0.69 ± 6.04 | −4.77 ± 6.37 | 0.0004 |
Sp’–Gn mm | 0.72 ± 6.15 | 1.10 ± 5.59 | 0.8524 | −3.91 ± 6.99 | 2.21 ± 7.22 | 0.0005 |
Hasund Index% | −2.45 ± 6.14 | −0.74 ± 5.24 | 0.2144 | −2.41 ± 6.05 | −2.47 ± 4.27 | 0.9583 |
L1–NB° | −2.83 ± 6.83 | −3.33 ± 6.62 | 0.7553 | 1.23 ± 5.40 | 0.77 ± 5.96 | 0.7315 |
SAi7° | −3.54 ± 5.92 | −1.52 ± 7.73 | 0.2819 | −6.33 ± 6.67 | −3.03 ± 9.50 | 0.9529 |
SAi6° | −2.97 ± 8.05 | −2.83 ± 6.54 | 0.9365 | 0.93 ± 4.26 | −1.63 ± 6.37 | 0.0526 |
SAi5° | −1.4 ± 6.93 | −1.57 ± 6.91 | 0.9204 | 0.53 ± 5.53 | −1.59 ± 5.74 | 0.1212 |
SAi1° | −1.99 ± 7.63 | −3.45 ± 6.39 | 0.3887 | 2.11 ± 4.87 | 0.73 ± 6.17 | 0.3026 |
RaV–CPi7 mm | 4.83 ± 4.06 | 4.49 ± 4.43 | 0.262 | 1.38 ± 3.8 | 1.56 ± 4.19 | 0.8516 |
RaV–CPi6 mm | 3.95 ± 4.55 | 3.47 ± 4.27 | 0.6513 | 1.78 ± 3.52 | 1.11 ± 5.36 | 0.5409 |
RaV–CPi5 mm | 3.72 ± 4.61 | 2.15 ± 6.95 | 0.2721 | 0.22 ± 4.46 | 0.42 ± 6.28 | 0.8768 |
RaV–CRi7 mm | 1.8 ± 3.41 | 1.09 ± 4.23 | 0.4434 | 0.77 ± 3.51 | 0.74 ± 3.16 | 0.9749 |
RaV–CRi6 mm | 4.49 ± 4.06 | 3.47 ± 4.46 | 0.3223 | 2.36 ± 3.60 | 1.73 ± 5.37 | 0.5679 |
RaV–CRi5 mm | 4.11 ± 4.33 | 3.19 ± 5.14 | 0.4222 | 0.84 ± 4.19 | 0.88 ± 6.31 | 0.9734 |
RaV–Ai7 mm | 0.58 ± 4.19 | 0.69 ± 3.97 | 0.9105 | 0.23 ± 3.16 | 0.54 ± 3.56 | 0.7049 |
RaV–Ai6 mm | 4.45 ± 3.91 | 4.37 ± 4.38 | 0.9323 | 1.27 ± 6.00 | 1.62 ± 5.54 | 0.7997 |
RaV–Ai5 mm | 4.11 ± 4.55 | 2.91 ± 5.92 | 0.3483 | 0.90 ± 4.74 | 1.05 ± 6.62 | 0.9179 |
CPi6–lie mm | −6.35 ± 4.95 | −5.87 ± 6.25 | 0.7231 | −4.26 ± 5.25 | −3.06 ± 5.52 | 0.0954 |
Ai6–lia mm | −6.26 ± 4.14 | −5.83 ± 5.60 | 0.4898 | −4.38 ± 4.9 | −2.95 ± 5.60 | 0.2628 |
MP–CRi7 mm | 2.2 ± 5.19 | 3.01 ± 4.61 | 0.4126 | 2.46 ± 6.19 | 2.97 ± 4.38 | 0.1793 |
MP–CRi6 mm | 2.37 ± 3.62 | 2.56 ± 5.45 | 0.8590 | 2.30 ± 2.96 | 2.24 ± 4.46 | 0.2573 |
MP–CRi5 mm | 2.70 ± 4.81 | 2.87 ± 4.81 | 0.8761 | 2.17 ± 4.05 | 2.66 ± 5.12 | 0.1585 |
MP–lie mm | −2.39 ± 6.08 | −2.72 ± 5.76 | 0.5250 | −0.83 ± 4.54 | 0.52 ± 4.01 | 0.4901 |
Skeletal and Dental Variables | Female | Welch’s t-Test | Male | Welch’s t-Test | ||
---|---|---|---|---|---|---|
H0: Ex = Non-Ex | H0: Ex = Non-Ex | |||||
Ex | Non-ex | H1: Ex ≠ Non-Ex | Ex | Non-ex | H1: Ex ≠ Non-Ex | |
T1–T0 | T1–T0 | p Value | T1–T0 | T1–T0 | p Value | |
SNA° | −0.32 ± 3.28 | 0.61 ± 2.52 | 0.1857 | −0.55 ± 2.81 | 0.21 ± 2.96 | 0.2715 |
SNB° | 0.39 ± 2.80 | 1.18 ± 2.30 | 0.2041 | 0.01 ± 2.24 | 0.79 ± 2.60 | 0.1836 |
ANB° | −0.66 ± 1.90 | −0.33 ± 2.02 | 0.4779 | −0.57 ± 1.73 | −0.58 ± 1.94 | 0.9689 |
SNPg° | 0.99 ± 2.85 | 1.39 ± 2.18 | 0.5123 | 0.44 ± 2.45 | 1.01 ± 2.76 | 0.3701 |
Gn–tGo–Ar° | −2.68 ± 7.37 | −2.02 ± 5.34 | 0.6519 | −1.43 ± 4.80 | −1.83 ± 6.49 | 0.7687 |
NSBa | −0.39 ± 3.30 | −0.03 ± 3.40 | 0.6543 | 0.17 ± 4.42 | −0.46 ± 4.05 | 0.5351 |
NL–NSL° | −0.19 ± 3.56 | −0.16 ± 2.41 | 0.9718 | 0.19 ± 3.13 | −0.15 ± 3.03 | 0.6486 |
ML–NSL° | −1.02 ± 3.88 | −1.79 ± 2.85 | 0.3429 | 0.01 ± 3.33 | −1.01 ± 3.50 | 0.2162 |
ML–NL° | −0.89 ± 2.94 | −1.75 ± 2.93 | 0.2259 | −0.29 ± 4.15 | −1.27 ± 3.38 | 0.2837 |
Norderval° | 3.15 ± 3.29 | 0.99 ± 3.21 | 0.0069 | 3.06 ± 4.95 | 1.91 ± 5.07 | 0.3414 |
N–Sp’ mm | −0.45 ± 6.73 | −4.77 ± 6.37 | 0.0074 | 0.95 ± 7.7 | 0.69 ± 6.04 | 0.8745 |
Sp’–Gn mm | 0.72 ± 8.14 | −3.91 ± 6.99 | 0.0128 | 1.1 ± 8.59 | 2.21 ± 7.22 | 0.5586 |
Hasund Index% | −2.45 ± 6.14 | −2.41 ± 6.05 | 0.9750 | −0.74 ± 5.24 | −2.47 ± 4.27 | 0.1348 |
L1–NB° | −2.83 ± 6.83 | 1.23 ± 5.40 | 0.0075 | −3.33 ± 6.62 | 0.77 ± 5.96 | 0.0083 |
SAi7° | −3.83 ± 9.95 | −2.89 ± 10.25 | 0.6966 | −1.52 ± 7.73 | −3.03 ± 9.50 | 0.4696 |
SAi6° | −1.97 ± 8.05 | 0.93 ± 4.26 | 0.1435 | −2.83 ± 6.54 | −1.63 ± 6.37 | 0.4393 |
SAi5° | −1.40 ± 6.93 | 0.53 ± 5.53 | 0.2030 | −1.57 ± 6.9 | −1.59 ± 5.74 | 0.9880 |
SAi1° | −1.99 ± 7.63 | 2.11 ± 4.87 | 0.0095 | −3.45 ± 6.39 | 0.73 ± 6.17 | 0.0069 |
RaV–CPi7 mm | 2.83 ± 4.06 | 1.38 ± 3.88 | 0.1319 | 0.33 ± 5.07 | 1.56 ± 4.19 | 0.2721 |
RaV–CPi6 mm | 3.95 ± 4.55 | 1.78 ± 3.52 | 0.0287 | 3.47 ± 4.27 | 1.11 ± 5.36 | 0.0455 |
RaV–CPi5 mm | 3.72 ± 4.61 | 0.22 ± 4.46 | 0.0019 | 3.15 ± 7.00 | 0.42 ± 6.28 | 0.0281 |
RaV–CRi7 mm | 1.80 ± 3.41 | 0.77 ± 3.51 | 0.2149 | 1.09 ± 4.23 | 0.74 ± 3.16 | 0.6932 |
RaV–CRi6 mm | 4.49 ± 4.06 | 2.36 ± 3.02 | 0.0233 | 3.47 ± 4.46 | 0.73 ± 5.37 | 0.0345 |
RaV–CRi5 mm | 4.11 ± 4.33 | 0.84 ± 4.19 | 0.0020 | 3.19 ± 5.14 | 0.88 ± 6.31 | 0.0982 |
RaV–Ai7 mm | 0.58 ± 4.19 | 0.23 ± 3.16 | 0.6968 | 0.69 ± 3.97 | 0.54 ± 3.56 | 0.8673 |
RaV–Ai6 mm | 4.37 ± 6.01 | 1.27 ± 4.38 | 0.0110 | 4.37 ± 4.38 | 1.62 ± 5.54 | 0.0247 |
RaV–Ai5 mm | 4.11 ± 4.55 | 0.90 ± 4.74 | 0.0052 | 3.91 ± 5.92 | 1.05 ± 6.62 | 0.0378 |
CPi6–lie mm | −6.35 ± 4.95 | −3.26 ± 5.25 | 0.0457 | −5.87 ± 6.25 | −1.67 ± 6.27 | 0.0065 |
Ai6–lia mm | −6.26 ± 4.14 | −3.38 ± 4.50 | 0.0421 | −5.43 ± 5.71 | −1.95 ± 5.60 | 0.0143 |
MP–CRi7 mm | 1.92 ± 5.19 | 1.36 ± 6.10 | 0.2507 | 2.88 ± 4.54 | 2.97 ± 4.38 | 0.9398 |
MP–CRi6 mm | 2.37 ± 3.62 | 1.30 ± 2.96 | 0.1120 | 2.56 ± 5.45 | 2.24 ± 4.46 | 0.7846 |
MP–CRi5 mm | 2.70 ± 4.26 | −1.17 ± 4.05 | 0.0052 | 2.87 ± 4.81 | 2.66 ± 5.12 | 0.8612 |
MP–lie mm | −0.39 ± 5.73 | −2.53 ±4.85 | 0.0969 | 0.55 ± 6.57 | 0.57 ± 7.71 | 0.9917 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longerich, U.; Crismani, A.; Mayr, A.; Walch, B.; Kolk, A. Development of a New Ramus Anterior Vertical Reference Line for the Evaluation of Skeletal and Dental Changes as a Decision Aid for the Treatment of Crowding in the Lower Jaw: Extraction vs. Nonextraction. J. Clin. Med. 2025, 14, 2884. https://doi.org/10.3390/jcm14092884
Longerich U, Crismani A, Mayr A, Walch B, Kolk A. Development of a New Ramus Anterior Vertical Reference Line for the Evaluation of Skeletal and Dental Changes as a Decision Aid for the Treatment of Crowding in the Lower Jaw: Extraction vs. Nonextraction. Journal of Clinical Medicine. 2025; 14(9):2884. https://doi.org/10.3390/jcm14092884
Chicago/Turabian StyleLongerich, Ulrich, Adriano Crismani, Alexandra Mayr, Benjamin Walch, and Andreas Kolk. 2025. "Development of a New Ramus Anterior Vertical Reference Line for the Evaluation of Skeletal and Dental Changes as a Decision Aid for the Treatment of Crowding in the Lower Jaw: Extraction vs. Nonextraction" Journal of Clinical Medicine 14, no. 9: 2884. https://doi.org/10.3390/jcm14092884
APA StyleLongerich, U., Crismani, A., Mayr, A., Walch, B., & Kolk, A. (2025). Development of a New Ramus Anterior Vertical Reference Line for the Evaluation of Skeletal and Dental Changes as a Decision Aid for the Treatment of Crowding in the Lower Jaw: Extraction vs. Nonextraction. Journal of Clinical Medicine, 14(9), 2884. https://doi.org/10.3390/jcm14092884