Validation of Identified Susceptible Gene Variants for New-Onset Diabetes in Renal Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Selection of SNPs and Genotyping
2.3. Data Collection and Definition
2.4. Statistical Analysis
3. Results
3.1. Baseline Clinical Characteristics and SNP Information
3.2. Allelic Frequency and Association between SNPs and NODAT
3.3. Genotype Distribution and Association between KCNQ1 rs2237892 and NODAT
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kasiske, B.L.; Snyder, J.J.; Gilbertson, D.; Matas, A.J. Diabetes mellitus after kidney transplantation in the United States. Am. J. Transplant. 2003, 3, 178–185. [Google Scholar] [CrossRef]
- Choi, Y.K.; Kim, Y.; Choi, N.; Kim, M.Y.; Baek, N.N.; Youm, J.Y.; Lee, J.E.; Kim, D.J.; Kim, Y.; Oh, H.Y.; et al. Risk Factors for New Onset Diabetes after Transplantation among Renal Transplant Recipients Treated with Tacrolimus. Kidney Res. Clin. Pract. 2010, 29, 761–767. [Google Scholar]
- Chakkera, H.A.; Weil, E.J.; Pham, P.T.; Pomeroy, J.; Knowler, W.C. Can new-onset diabetes after kidney transplant be prevented? Diabetes Care 2013, 36, 1406–1412. [Google Scholar] [CrossRef]
- González-Posada, J.M.; Hernández, D.; Genís, B.B.; Tamajón, L.P.; Pérez, J.G.; Maceira, B.; Sánchez, M.R.; Serón, D.; Spanish Chronic Allograft Nephropathy Study Group. Increased cardiovascular risk profile and mortality in kidney allograft recipients with post-transplant diabetes mellitus in Spain. Clin. Transplant. 2006, 20, 650–658. [Google Scholar]
- Hjelmesaeth, J.; Hartmann, A.; Leivestad, T.; Holdaas, H.; Sagedal, S.; Olstad, M.; Jenssen, T. The impact of early-diagnosed new-onset post-transplantation diabetes mellitus on survival and major cardiac events. Kidney Int. 2006, 69, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Cosio, F.G.; Pesavento, T.E.; Kim, S.; Osei, K.; Henry, M.; Ferguson, R.M. Patient survival after renal transplantation: IV. Impact of post-transplant diabetes. Kidney Int. 2002, 62, 1440–1446. [Google Scholar] [CrossRef]
- Miles, A.M.; Sumrani, N.; Horowitz, R.; Homel, P.; Maursky, V.; Markell, M.S.; Distant, D.A.; Hong, J.H.; Sommer, B.G.; Friedman, E.A. Diabetes mellitus after renal transplantation: As deleterious as non-transplant-associated diabetes? Transplantation 1998, 65, 380–384. [Google Scholar] [CrossRef]
- Woodward, R.S.; Schnitzler, M.A.; Baty, J.; Lowell, J.A.; Lopez-Rocafort, L.; Haider, S.; Woodworth, T.G.; Brennan, D.C. Incidence and cost of new onset diabetes mellitus among U.S. wait-listed and transplanted renal allograft recipients. Am. J. Transplant. 2003, 3, 590–598. [Google Scholar] [CrossRef]
- Rodrigo, E.; Fernández-Fresnedo, G.; Valero, R.; Ruiz, J.C.; Piñera, C.; Palomar, R.; González-Cotorruelo, J.; Gómez-Alamillo, C.; Arias, M. New-onset diabetes after kidney transplantation: Risk factors. J. Am. Soc. Nephrol. 2006, 17, S291–S295. [Google Scholar] [CrossRef]
- Israni, A.K.; Snyder, J.J.; Skeans, M.A.; Kasiske, B.L.; PORT Investigators. Clinical diagnosis of metabolic syndrome: Predicting new-onset diabetes, coronary heart disease, and allograft failure late after kidney transplant. Transpl. Int. 2012, 25, 748–757. [Google Scholar] [CrossRef]
- Fabrizi, F.; Martin, P.; Dixit, V.; Bunnapradist, S.; Kanwal, F.; Dulai, G. Post-transplant diabetes mellitus and HCV seropositive status after renal transplantation: Meta-analysis of clinical studies. Am. J. Transplant. 2005, 5, 2433–2440. [Google Scholar] [CrossRef] [PubMed]
- Hjelmesaeth, J.; Sagedal, S.; Hartmann, A.; Rollag, H.; Egeland, T.; Hagen, M.; Nordal, K.P.; Jenssen, T. Asymptomatic cytomegalovirus infection is associated with increased risk of new-onset diabetes mellitus and impaired insulin release after renal transplantation. Diabetologia 2004, 47, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
- Räkel, A.; Karelis, A.D. New-onset diabetes after transplantation: Risk factors and clinical impact. Diabetes Metab. 2011, 37, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cheungpasitporn, W.; Thongprayoon, C.; Vijayvargiya, P.; Anthanont, P.; Erickson, S.B. The Risk for New-Onset Diabetes Mellitus after Kidney Transplantation in Patients with Autosomal Dominant Polycystic Kidney Disease: A Systematic Review and Meta-Analysis. Can. J. Diabetes 2016, 40, 521–528. [Google Scholar] [CrossRef]
- Cheungpasitporn, W.; Thongprayoon, C.; Harindhanavudhi, T.; Edmonds, P.J.; Erickson, S.B. Hypomagnesemia linked to new-onset diabetes mellitus after kidney transplantation: A systematic review and meta-analysis. Endocr. Res. 2016, 41, 142–147. [Google Scholar] [CrossRef]
- Cole, E.H.; Johnston, O.; Rose, C.L.; Gill, J.S. Impact of acute rejection and new-onset diabetes on long-term transplant graft and patient survival. Clin. J. Am. Soc. Nephrol. 2008, 3, 814–821. [Google Scholar] [CrossRef]
- Tavira, B.; Coto, E.; Díaz-Corte, C.; Ortega, F.; Arias, M.; Torres, A.; Díaz, J.M.; Selgas, R.; López-Larrea, C.; Campistol, J.M.; et al. KCNQ1 gene variants and risk of new-onset diabetes in tacrolimus-treated renal-transplanted patients. Clin. Transplant. 2011, 25, E284–E291. [Google Scholar] [CrossRef]
- Benson, K.A.; Maxwell, A.P.; McKnight, A.J. A HuGE Review and Meta-Analyses of Genetic Associations in New Onset Diabetes after Kidney Transplantation. PLoS ONE 2016, 11, e0147323. [Google Scholar] [CrossRef]
- Kang, E.S.; Kim, M.S.; Kim, C.H.; Nam, C.M.; Han, S.J.; Hur, K.Y.; Ahn, C.W.; Cha, B.S.; Kim, S.I.; Lee, H.C.; et al. Association of common type 2 diabetes risk gene variants and posttransplantation diabetes mellitus in renal allograft recipients in Korea. Transplantation 2009, 88, 693–698. [Google Scholar] [CrossRef]
- Kim, Y.G.; Ihm, C.G.; Lee, T.W.; Lee, S.H.; Jeong, K.H.; Moon, J.Y.; Chung, J.H.; Kim, S.K.; Kim, Y.H. Association of genetic polymorphisms of interleukins with new-onset diabetes after transplantation in renal transplantation. Transplantation 2012, 93, 900–907. [Google Scholar] [CrossRef]
- McCaughan, J.A.; McKnight, A.J.; Maxwell, A.P. Genetics of new-onset diabetes after transplantation. J. Am. Soc. Nephrol. 2014, 25, 1037–1049. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.; Sanders, M.; Velez Edwards, D.; Ikizler, T.; Roden, D.; Birdwell, K. A Genome Wide Association Study of New Onset Diabetes after Transplant in Kidney Transplantation. Am. J. Transplant. 2016, 16, 578–579. [Google Scholar]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004, 27, S5–S10. [Google Scholar] [CrossRef] [PubMed]
- Ensembl. Available online: https://asia.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=1:15556749-15557749;v=rs7533125;vdb=variation;vf=502267474 (accessed on 30 August 2019).
- Hur, K.Y.; Kim, M.S.; Kim, Y.S.; Kang, E.S.; Nam, J.H.; Kim, S.H.; Nam, C.M.; Ahn, C.W.; Cha, B.S.; Kim, S.I.; et al. Risk factors associated with the onset and progression of posttransplantation diabetes in renal allograft recipients. Diabetes Care 2007, 30, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.H.; Mun, J.I.; Kim, S.I.; Kang, S.W.; Choi, K.H.; Park, K.; Ahn, C.W.; Cha, B.S.; Song, Y.D.; Lim, S.K.; et al. beta-Cell dysfunction rather than insulin resistance is the main contributing factor for the development of postrenal transplantation diabetes mellitus. Transplantation 2001, 71, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, K.; Miyake, K.; Horikawa, Y.; Hara, K.; Osawa, H.; Furuta, H.; Hirota, Y.; Mori, H.; Jonsson, A.; Sato, Y.; et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 2008, 40, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Unoki, H.; Takahashi, A.; Kawaguchi, T.; Hara, K.; Horikoshi, M.; Andersen, G.; Ng, D.P.; Holmkvist, J.; Borch-Johnsen, K.; Jørgensen, T.; et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 2008, 40, 1098–1102. [Google Scholar] [CrossRef]
- Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445, 881–885. [Google Scholar] [CrossRef]
- Saxena, R.; Voight, B.F.; Lyssenko, V.; Burtt, N.P.; de Bakker, P.I.; Chen, H.; Roix, J.J.; Kathiresan, S.; Hirschhorn, J.N.; Daly, M.J.; et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316, 1331–1336. [Google Scholar]
- Brambillasca, S.; Altkrueger, A.; Colombo, S.F.; Friederich, A.; Eickelmann, P.; Mark, M.; Borgese, N.; Solimena, M. CDK5 regulatory subunit-associated protein 1-like 1 (CDKAL1) is a tail-anchored protein in the endoplasmic reticulum (ER) of insulinoma cells. J. Biol. Chem. 2012, 287, 41808–41819. [Google Scholar] [CrossRef]
- Nakajo, K. Gating modulation of the KCNQ1 channel by KCNE proteins studied by voltage-clamp fluorometry. Biophys. Physicobiol. 2019, 16, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K.; Senokuchi, T.; Lu, M.; Takemoto, M.; Fazlul Karim, M.; Go, C.; Sato, Y.; Hatta, M.; Yoshizawa, T.; Araki, E.; et al. Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 β-cell line. Biochem. Biophys. Res. Commun. 2011, 407, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, F.; Lu, H.; Ren, X.; Zou, J. Chromanol 293B, an inhibitor of KCNQ1 channels, enhances glucose-stimulated insulin secretion and increases glucagon-like peptide-1 level in mice. Islets 2014, 6, e962386. [Google Scholar] [CrossRef] [PubMed]
- Asahara, S.; Etoh, H.; Inoue, H.; Teruyama, K.; Shibutani, Y.; Ihara, Y.; Kawada, Y.; Bartolome, A.; Hashimoto, N.; Matsuda, T.; et al. Paternal allelic mutation at the Kcnq1 locus reduces pancreatic β-cell mass by epigenetic modification of Cdkn1c. Proc. Natl. Acad. Sci. USA 2015, 112, 8332–8337. [Google Scholar] [CrossRef] [PubMed]
- Ensembl. Available online: http://asia.ensembl.org/Homo_sapiens/Variation/Population?db=core;v=rs2237892;vdb=variation#population_freq_EUR (accessed on 30 August 2019).
- International Genetics & Translational Research in Transplantation Network (iGeneTRAiN). Design and Implementation of the International Genetics and Translational Research in Transplantation Network. Transplantation 2015, 99, 2401–2412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todd, J.A.; Walker, N.M.; Cooper, J.D.; Smyth, D.J.; Downes, K.; Plagnol, V.; Bailey, R.; Nejentsev, S.; Field, S.F.; Payne, F.; et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 2007, 39, 857–864. [Google Scholar] [CrossRef]
- Santiago, J.L.; Alizadeh, B.Z.; Martínez, A.; Espino, L.; de la Calle, H.; Fernández-Arquero, M.; Figueredo, M.A.; de la Concha, E.G.; Roep, B.O.; Koeleman, B.P.; et al. Study of the association between the CAPSL-IL7R locus and type 1 diabetes. Diabetologia 2008, 51, 1653–1658. [Google Scholar] [CrossRef] [Green Version]
NODAT (n = 254) | Controls (n = 848) | p | |
---|---|---|---|
Recipient | |||
Age (years) | 52.2 ± 10.4 | 45.1 ± 12.0 | <0.001 |
Male (%) | 152 (59.8) | 445 (52.5) | 0.039 |
Dialysis duration (months) | 63.7 ± 72.0 | 59.1 ± 67.0 | 0.384 |
BMI | 23.2 ± 3.3 | 22.3 ± 3.2 | <0.001 |
Donor | |||
Age (years) | 48.6 ± 12.5 | 45.7 ± 12.9 | 0.001 |
Male (%) | 136 (53.5) | 467 (55.1) | 0.668 |
Deceased (%) | 108 (42.5) | 310 (36.6) | 0.086 |
HLA mismatch number | 3.4 ± 1.7 | 3.2 ± 1.7 | 0.083 |
Desensitization for HLA incompatibility (%) | 42 (16.5) | 189 (22.3) | 0.048 |
ABO incompatibility (%) | 18 (7.1) | 75 (8.8) | 0.377 |
Anti-thymocyte globulin induction (%) | 64 (25.2) | 196 (23.1) | 0.493 |
Tacrolimus (%) | 252 (99.2) | 831 (98.0) | 0.191 |
Steroid (%) | 252 (99.2) | 845 (99.6) | 0.367 |
Biopsy-proven acute rejection (%) | 35 (13.8) | 96 (11.3) | 0.288 |
Gene | SNP | Chr: Position | Minor Allele | MAF | |||
---|---|---|---|---|---|---|---|
All | NODAT | Control | p | ||||
CDKAL1 | rs10946398 | 6:20660803 | C | 0.48 | 0.52 | 0.47 | 0.080 |
KCNQ1 | rs2237892 | 11:2818521 | T | 0.37 | 0.30 | 0.39 | 8.5 × 10−5 |
ATP5F1P6 | rs10484821 | 6:139547773 | C | 0.33 | 0.32 | 0.33 | 0.583 |
DNAJC16 | rs7533125 | 1:15557249 | C | 0.07 | 0.07 | 0.07 | 0.747 |
CELA2B | rs2861484 | 1:15486170 | T | 0.07 | 0.07 | 0.06 | 0.599 |
CASP9 | rs2020902 | 1:15507865 | G | 0.04 | 0.04 | 0.04 | 0.930 |
NOX4 | rs1836882 | 11:89498993 | C | 0.27 | 0.28 | 0.27 | 0.587 |
INPP5A | rs4394754 | 10:132529558 | T | 0.09 | 0.10 | 0.09 | 0.632 |
IL7R | rs2172749 | 5:3585516 | C | 0.40 | 0.40 | 0.40 | 0.976 |
IL17R | rs4819554 | 22:17084145 | G | 0.43 | 0.45 | 0.42 | 0.256 |
IL17RB | rs1025689 | 3:53849695 | C | 0.45 | 0.47 | 0.44 | 0.226 |
IL17RB | rs1043261 | 3:53865249 | T | 0.10 | 0.11 | 0.10 | 0.256 |
PLXDC1 | rs72823322 | 17:39130161 | G | 0.21 | 0.22 | 0.21 | 0.185 |
Gene | SNP | Allele | Crude | Adjusted * | ||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | |||
CDKAL1 | rs10946398 | C (vs. A) | 1.20 (0.98, 1.46) | 0.078 | 1.22 (0.98, 1.50) | 0.070 |
KCNQ1 | rs2237892 | T (vs. C) | 0.66 (0.53, 0.82) | 1.3 × 10−4 | 0.63 (0.51, 0.79) | 5.5 × 10−5 |
ATP5F1P6 | rs10484821 | C (vs. T) | 0.94 (0.76, 1.17) | 0.583 | 0.96 (0.77, 1.20) | 0.726 |
DNAJC16 | rs7533125 | C (vs. T) | 0.94 (0.65, 1.37) | 0.756 | 0.96 (0.65, 1.43) | 0.855 |
CELA2B | rs2861484 | T (vs. G) | 1.11 (0.76, 1.62) | 0.607 | 1.07 (0.71, 1.60) | 0.751 |
CASP9 | rs2020902 | G (vs. A) | 0.98 (0.61, 1.56) | 0.933 | 0.92 (0.56, 1.50) | 0.733 |
NOX4 | rs1836882 | C (vs. T) | 1.06 (0.85, 1.33) | 0.588 | 1.02 (0.80, 1.29) | 0.904 |
INPP5A | rs4394754 | T (vs. C) | 1.08 (0.78, 1.51) | 0.635 | 1.08 (0.76, 1.54) | 0.657 |
IL7R | rs2172749 | C (vs. G) | 1.00 (0.81, 1.22) | 0.976 | 1.07 (0.86, 1.33) | 0.535 |
IL17R | rs4819554 | G (vs. A) | 1.12 (0.92, 1.37) | 0.255 | 1.09 (0.88, 1.35) | 0.415 |
IL17RB | rs1025689 | C (vs. G) | 1.13 (0.93, 1.38) | 0.226 | 1.15 (0.93, 1.41) | 0.204 |
IL17RB | rs1043261 | T (vs. C) | 1.21 (0.87, 1.67) | 0.252 | 1.21 (0.86, 1.71) | 0.265 |
PLXDC1 | rs72823322 | G (vs. A) | 0.85 (0.66, 1.09) | 0.190 | 0.84 (0.65, 1.10) | 0.199 |
Model | Type | N (%) | OR (95% CI) * | p | |
---|---|---|---|---|---|
NODAT | Control | ||||
Codominant | CC | 128 (50.4) | 317 (37.4) | Reference | |
CT | 101 (39.8) | 395 (46.6) | 0.62 (0.45, 0.85) | 2.8 × 10−3 | |
TT | 25 (9.8) | 136 (16.0) | 0.41 (0.25, 0.67) | 4.7 × 10−4 | |
Dominant | CC | 128 (50.4) | 317 (37.4) | Reference | |
CT/TT | 126 (49.6) | 531 (62.6) | 0.56 (0.42, 0.76) | 2.0 × 10−4 | |
Recessive | CC/CT | 229 (90.2) | 712 (84.0) | Reference | |
TT | 25 (9.8) | 136 (16.0) | 0.53 (0.33, 0.84) | 0.0051 | |
Log-additive | - | 0.63 (0.51, 0.79) | <1.0 × 10−4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, H.S.; Hong, K.-W.; Kim, J.S.; Kim, Y.G.; Moon, J.Y.; Jeong, K.H.; Lee, S.H.; The Korean Organ Transplantation Registry Study Group. Validation of Identified Susceptible Gene Variants for New-Onset Diabetes in Renal Transplant Recipients. J. Clin. Med. 2019, 8, 1696. https://doi.org/10.3390/jcm8101696
Hwang HS, Hong K-W, Kim JS, Kim YG, Moon JY, Jeong KH, Lee SH, The Korean Organ Transplantation Registry Study Group. Validation of Identified Susceptible Gene Variants for New-Onset Diabetes in Renal Transplant Recipients. Journal of Clinical Medicine. 2019; 8(10):1696. https://doi.org/10.3390/jcm8101696
Chicago/Turabian StyleHwang, Hyeon Seok, Kyung-Won Hong, Jin Sug Kim, Yang Gyun Kim, Ju Young Moon, Kyung Hwan Jeong, Sang Ho Lee, and The Korean Organ Transplantation Registry Study Group. 2019. "Validation of Identified Susceptible Gene Variants for New-Onset Diabetes in Renal Transplant Recipients" Journal of Clinical Medicine 8, no. 10: 1696. https://doi.org/10.3390/jcm8101696
APA StyleHwang, H. S., Hong, K. -W., Kim, J. S., Kim, Y. G., Moon, J. Y., Jeong, K. H., Lee, S. H., & The Korean Organ Transplantation Registry Study Group. (2019). Validation of Identified Susceptible Gene Variants for New-Onset Diabetes in Renal Transplant Recipients. Journal of Clinical Medicine, 8(10), 1696. https://doi.org/10.3390/jcm8101696