The Prevalence of Hyperuricemia Sharply Increases from the Late Menopausal Transition Stage in Middle-Aged Women
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Johnson, R.J.; Bakris, G.L.; Borghi, C.; Chonchol, M.B.; Feldman, D.; Lanaspa, M.A.; Merriman, T.R.; Moe, O.W.; Mount, D.B.; Sanchez Lozada, L.G.; et al. Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. Am. J. Kidney Dis. 2018, 71, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Kaze, A.D.; McMullan, C.J.; Isakova, T.; Waikar, S.S. Uric Acid and the Risks of Kidney Failure and Death in Individuals with CKD. Am. J. Kidney Dis. 2018, 71, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Guerra, A.F.; Morales-Lopez, H.; Garro-Almendaro, A.K.; Vargas-Ayala, G.; Durán-Salgado, M.B.; Huerta-Ramírez, S.; Lozano-Nuevo, J.J. Circulating Levels of Uric Acid and Risk for Metabolic Syndrome. Curr. Diabetes Rev. 2017, 13, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, H.; Takada, T.; Nakayama, A.; Shimizu, T.; Sakiyama, M.; Shimizu, S.; Chiba, T.; Nakashima, H.; Nakamura, T.; Takada, Y.; et al. ABCG2 dysfunction increases the risk of renal overload hyperuricemia. Nucleosides Nucleotides Nucleic Acids 2014, 33, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Seegmiller, J.E.; Grayzel, A.I.; Laster, L.; Liddle, L. Uric acid production in gout. J. Clin. Investig. 1961, 40, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 2004, 350, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Soriano, L.C.; Zhang, Y.; Rodríguez, L.A. Antihypertensive drugs and risk of incident gout among patients with hypertension: population based case-control study. BMJ 2012, 344. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.C.; Lin, H.Y.; Chou, P. The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricemic men in a prospective study. J. Rheumatol. 2000, 27, 1501–1505. [Google Scholar] [PubMed]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J. STRAW+10 Collaborative Group. Executive summary of the Stages of Reproductive Aging Workshop+10: Addressing the unfinished agenda of staging reproductive aging. Fertil. Steril. 2012, 97, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Derby, C.A.; Crawford, S.L.; Pasternak, R.C.; Sowers, M.; Sternfeld, B.; Matthews, K.A. Lipid changes during the menopause transition in relation to age and weight: the Study of Women’s Health across the Nation. Am. J. Epidemiol. 2009, 169, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Hak, A.E.; Choi, H.K. Menopause, postmenopausal hormone use and serum uric acid levels in US women—The Third National Health and Nutrition Examination Survey. Arthritis Res. Ther. 2008, 10, R116. [Google Scholar] [CrossRef] [PubMed]
- Hak, A.E.; Curhan, G.C.; Grodstein, F.; Choi, H.K. Menopause, postmenopausal hormone use and risk of incident gout. Ann. Rheum. Dis. 2010, 69, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Mumford, S.L.; Dasharathy, S.S.; Pollack, A.Z.; Perkins, N.J.; Mattison, D.R.; Cole, S.R.; Wactawski-Wende, J.; Schisterman, E.F. Serum uric acid in relation to endogenous reproductive hormones during the menstrual cycle: Findings from the BioCycle study. Hum. Reprod. 2013, 28, 1853–1862. [Google Scholar] [CrossRef] [PubMed]
- Messinis, I.E.; Messini, C.I.; Anifandis, G.; Dafopoulos, K. Polycystic ovaries and obesity. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Lizcano, F.; Guzman, G. Estrogen Deficiency and the Origin of Obesity during Menopause. Biomed. Res. Int. 2014, 2014, 757461. [Google Scholar] [CrossRef] [PubMed]
- B, L.; T, W.; Hn, Z.; Ww, Y.; Hp, Y.; Cx, L.; J, Y.; Ry, J.; Hw, N. The prevalence of hyperuricemia in China: A meta-analysis. BMC Public Health 2011, 11, 832. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Tang, Z.; Fang, X.; Wu, X.; Liu, H.; Wang, C.; Hou, C. Prevalence of hyperuricemia among Beijing post-menopausal women in 10 years. Arch. Gerontol. Geriatr. 2016, 64, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Ryu, S.; Choi, Y.; Zhang, Y.; Cho, J.; Kwon, M.J.; Hyun, Y.Y.; Lee, K.B.; Kim, H.; Jung, H.S.; et al. Metabolically Healthy Obesity and Development of Chronic Kidney Disease: A Cohort Study. Ann. Intern. Med. 2016, 164, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Kim, B.K.; Yun, K.E.; Cho, J.; Zhang, Y.; Rampal, S.; Zhao, D.; Jung, H.S.; Choi, Y.; Ahn, J.; et al. Metabolically-healthy obesity and coronary artery calcification. J. Am. Coll. Cardiol. 2014, 63, 2679–2686. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Chang, Y.; Kim, B.; Kang, D.; Kwon, M.J.; Kim, C.W.; Jeong, C.; Ahn, Y.; Park, H.Y.; Ryu, S.; et al. Menopausal stages and serum lipid and lipoprotein abnormalities in middle-aged women. Maturitas 2015, 80, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.P.; David Cheng, T.Y.; Tsai, S.P.; Chan, H.T.; Hsu, H.L.; Hsu, C.C.; Eriksen, M.P. Are Asians at greater mortality risks for being overweight than Caucasians? Redefining obesity for Asians. Public Health Nutr. 2009, 12, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yeh, W.; Chuang, S.; Wu, Y.Y.; Pan, W.H. Gender-specific risk factors for incident gout: A prospective cohort study. Clin. Rheumatol. 2012, 31, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, E.; Bennett, M.; Chen, L. Aging, not menopause, is associated with higher prevalence of hyperuricemia among older women. Menopause 2014, 21, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Stöckl, D.; Doring, A.; Thorand, B.; Heier, M.; Belcredi, P.; Meisinger, C. Reproductive factors and serum uric acid levels in females from the general population: The KORA F4 study. PLoS ONE 2012, 7, e32668. [Google Scholar] [CrossRef] [PubMed]
- Ljubojevic, M.; Herak-Kramberger, C.M.; Hagos, Y.; Bahn, A.; Endou, H.; Burckhardt, G.; Sabolic, I. Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. Am. J. Physiol. Renal. Physiol. 2004, 287, F124–F138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anton, F.M.; Garcia Puig, J.; Ramos, T.; González, P.; Ordás, J. Sex differences in uric acid metabolism in adults: evidence for a lack of influence of estradiol-17 beta (E2) on the renal handling of urate. Metabolism 1986, 35, 343–348. [Google Scholar] [CrossRef]
- Lally, E.V.; Ho, G.; Kaplan, S.R. The clinical spectrum of gouty arthritis in women. Arch. Int. Med. 1986, 146, 2221–2225. [Google Scholar] [CrossRef]
- Puig, J.G.; Mateos, F.A.; Miranda, M.E.; Torres, R.J.; de Miguel, E.; Pérez de Ayala, C.; Gil, A. Purine metabolism in female patients with primary gout. Adv. Exp. Med. Biol. 1994, 370, 69–72. [Google Scholar] [PubMed]
- Nash, D.; Magder, L.S.; Sherwin, R.; Rubin, R.J.; Silbergeld, E.K. Bone density-related predictors of blood lead level among peri- and postmenopausal women in the United States: The Third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Epidemiol. 2004, 160, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Harrold, L.R.; Yood, R.A.; Mikuls, T.R.; Andrade, S.E.; Davis, J.; Fuller, J.; Chan, K.A.; Roblin, D.; Raebel, M.A.; Von Worley, A.; et al. Sex differences in gout epidemiology: Evaluation and treatment. Ann. Rheum. Dis. 2006, 65, 1368–1372. [Google Scholar] [CrossRef] [PubMed]
- Conen, D.; Wietlisbach, V.; Bovet, P.; Shamlaye, C.; Riesen, W.; Paccaud, F.; Burnier, M. Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country. BMC Public Health 2004, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.M.; Korenman, S.G. Hormonal characteristics of the human menstrual cycle throughout reproductive life. J. Clin. Investig. 1975, 55, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.M.; West, J.H.; Korenman, S.G. The menopausal transition: analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. J. Clin. Endocrinol. Metab. 1976, 42, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Burger, H.G.; Dudley, E.C.; Hopper, J.L.; Groome, N.; Guthrie, J.R.; Green, A.; Dennerstein, L. Prospectively measured levels of serum follicle-stimulating hormone, estradiol, and the dimeric inhibins during the menopausal transition in a population-based cohort of women. J. Clin. Endocrinol. Metab. 1999, 84, 4025–4030. [Google Scholar] [PubMed]
- Randolph, J.F., Jr.; Zheng, H.; Sowers, M.R.; Crandall, C.; Crawford, S.; Gold, E.B.; Vuga, M. Change in follicle-stimulating hormone and estradiol across the menopausal transition: effect of age at the final menstrual period. J. Clin. Endocrinol. Metab. 2011, 96, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Su, H.I.; Freeman, E.W. Hormone changes associated with the menopausal transition. Minerva Ginecol. 2009, 61, 483–489. [Google Scholar] [PubMed]
- Sowers, M.R.; Zheng, H.; McConnell, D.; Nan, B.; Harlow, S.D.; Randolph, J.F., Jr. Estradiol rates of change in relation to the final menstrual period in a population-based cohort of women. J. Clin. Endocrinol. Metab. 2008, 93, 3847–3852. [Google Scholar] [CrossRef] [PubMed]
- Puig, J.G.; Mateos, F.A.; Ramos, T.H.; Capitán, C.F.; Michán, A.A.; Mantilla, J.M. Sex differences in uric acid metabolism in adults: Evidence for a lack of influence of estradiol-17 beta (E2). Adv. Exp. Med. Biol. 1986, 195, 317–323. [Google Scholar] [PubMed]
- Takiue, Y.; Hosoyamada, M.; Kimura, M.; Saito, H. The effect of female hormones upon urate transport systems in the mouse kidney. Nucleosides Nucleotides Nucleic Acids 2011, 30, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Akizuki, S. Serum uric acid levels among thirty-four thousand people in Japan. Ann. Rheum. Dis. 1982, 41, 272–274. [Google Scholar] [CrossRef] [PubMed]
- Rho, Y.H.; Zhu, Y.; Choi, H.K. The epidemiology of uric acid and fructose. Semin. Nephrol. 2011, 31, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Carney, P.I. Obesity and reproductive hormone levels in the transition to menopause. Menopause 2010, 17, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, N.; Sakakibara, H. Association between body mass index and high-sensitivity C-reactive protein in male Japanese. Obes. Res. Clin. Pract. 2013, 7, e297–e300. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Suh, B.S.; Chang, Y.; Kwon, M.J.; Yun, K.E.; Jung, H.S.; Kim, C.W.; Kim, B.K.; Kim, Y.J.; Choi, Y.; et al. Menopausal stages and non-alcoholic fatty liver disease in middle-aged women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 190, 65–70. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall | Menopausal Stages | p for Trend | |||
---|---|---|---|---|---|---|
Pre-Menopause | Early Transition | Late Transition | Post-Menopause | |||
Number of Participants | 58,870 | 38,356 | 5637 | 2614 | 12,263 | |
Uric Acid (mg/dL) a | 4.2 (0.9) | 4.2 (0.9) | 4.2 (0.9) | 4.4 (1.0) | 4.5 (1.0) | <0.001 |
Age (years) a | 46.9 (7.3) | 43.9 (3.6) | 43.5 (3.1) | 46.3 (4.0) | 58.0 (7.0) | <0.001 |
Early Menarche (%) b | 2.6 | 3.0 | 3.5 | 2.8 | 0.7 | <0.001 |
Parity (%) c | 14.9 | 10.6 | 9.1 | 10.1 | 32.6 | <0.001 |
Current Smoker (%) | 2.3 | 2.3 | 2.5 | 2.4 | 2.4 | 0.387 |
Alcohol Intake (%) d | 11.3 | 11.8 | 12.0 | 9.6 | 9.2 | <0.001 |
HEPA (%) | 15.5 | 14.9 | 12.3 | 12.1 | 19.6 | <0.001 |
Education Level (%) e | 68.5 | 76.0 | 80.9 | 74.8 | 36.5 | <0.001 |
Diabetes (%) | 3.9 | 2.2 | 1.7 | 3.3 | 10.3 | <0.001 |
Hypertension (%) | 9.8 | 5.2 | 4.8 | 8.5 | 26.7 | <0.001 |
Medication for Dyslipidemia (%) | 4.5 | 1.5 | 1.4 | 2.0 | 15.7 | <0.001 |
Body Mass Index (kg/m2) a | 22.5 (3.1) | 22.2 (3.0) | 22.1 (3.0) | 23.0 (3.6) | 23.5 (3.1) | <0.001 |
Systolic Blood Pressure (mmHg) a | 105.7 (12.7) | 103.7 (11.7) | 104.2 (11.4) | 106.9 (13.4) | 112.1 (14.2) | <0.001 |
Diastolic Blood Pressure (mmHg) a | 67.4 (9.2) | 66.6 (9.0) | 66.6 (8.8) | 68.4 (9.7) | 70.1 (9.2) | <0.001 |
Glucose (mg/dL) a | 94.0 (13.9) | 92.8 (12.3) | 92.6 (11.5) | 94.1 (14.9) | 98.7 (17.7) | <0.001 |
eGFR (mL/min/1.73m2) a | 101.9 (11.3) | 104.2 (10.2) | 105.0 (10.1) | 102.2 (10.5) | 93.0 (10.8) | <0.001 |
Total Cholesterol (mg/dL) a | 195.0 (33.8) | 191.1 (31.5) | 191.3 (31.1) | 201.4 (34.8) | 207.7 (37.8) | <0.001 |
LDL-Cholesterol (mg/dL) a | 120.3 (31.5) | 116.2 (29.1) | 116.5 (28.8) | 126.0 (32.4) | 133.6 (35.7) | <0.001 |
HDL-Cholesterol (mg/dL) a | 65.3 (15.8) | 66.0 (15.6) | 66.6 (15.9) | 65.2 (15.9) | 62.3 (16.0) | <0.001 |
Triglycerides (mg/dL) f | 79 (60–109) | 76 (58–102) | 76 (58–104) | 84 (62–118) | 92 (67–129) | <0.001 |
ALT (u/L) f | 14 (11–19) | 13 (11–17) | 13 (11–17) | 15 (12–21) | 18 (14–25) | <0.001 |
GGT (u/L) f | 14 (11–20) | 13 (11–18) | 13 (11–18) | 15 (11–22) | 17 (13–25) | <0.001 |
hsCRP (mg/L) f | 0.3 (0.2–0.7) | 0.3 (0.2–0.6) | 0.3 (0.2–0.6) | 0.4 (0.2–0.9) | 0.4 (0.3–0.9) | <0.001 |
HOMA-IR f | 1.17 (0.79–1.74) | 1.16 (0.79–1.70) | 1.14 (0.76–1.69) | 1.16 (0.77–1.78) | 1.26 (0.81–1.93) | <0.001 |
Total Energy Intake (kcal/day) f,g | 1210.5 (875.6–1572.5) | 1194.9 (862.6–1557.4) | 1083.6 (769.8–1460.0) | 1052.5 (754.7–1377.3) | 1301.4 (964.4–1642.8) | <0.001 |
Menopausal Stages | p for Trend | ||||
---|---|---|---|---|---|
Pre-Menopause | Early Transition | Late Transition | Post-Menopause | ||
No. | 38,356 | 5,637 | 2,614 | 12,263 | |
Cases of Hyperuricemia (%) | 1020 (2.7) | 174 (3.1) | 140 (5.4) | 821 (6.7) | |
Age-Adjusted OR | 1.0 | 1.18 (1.00–1.39) | 1.98 (1.65–2.37) | 1.99 (1.71–2.32) | <0.001 |
Multivariable-Adjusted OR a | |||||
Model 1 | 1.0 | 1.18 (1.00–1.40) | 1.67 (1.38–2.03) | 1.96 (1.66–2.31) | <0.001 |
Model 2 | 1.0 | 1.19 (0.80–1.77) | 2.13 (1.35–3.36) | 1.65 (1.33–2.04) | <0.001 |
Menopausal Stages | p for Trend | ||||
---|---|---|---|---|---|
Pre-Menopause | Early Transition | Late Transition | Post-Menopause | ||
No. | 2585 | 78 | 59 | 1130 | |
Multivariable-adjusted OR a | 1.0 | 1.36 (0.76–2.44) | 2.27 (1.08–4.76) | 2.14 (1.55–2.95) | <0.001 |
Subgroup | Menopausal Stages | p for Trend | p for Interaction | |||
---|---|---|---|---|---|---|
Pre-Menopause | Early Transition | Late Transition | Post-Menopause | |||
Body mass index | <0.001 | |||||
<25 kg/m2 (n = 48,080) | 1.0 | 1.05 (0.84–1.33) | 1.87 (1.43–2.44) | 2.34 (1.95–2.82) | <0.001 | |
≥25 kg/m2 (n = 10,722) | 1.0 | 1.35 (1.05–1.74) | 1.67 (1.28–2.19) | 1.47 (1.20–1.79) | <0.001 | |
Ever Smoking | 0.72 | |||||
No (n = 52,068) | 1.0 | 1.20 (1.00–1.43) | 1.68 (1.37–2.05) | 1.91 (1.59–2.28) | <0.001 | |
Yes (n = 2305) | 1.0 | 0.79 (0.36–1.74) | 1.49 (0.63–3.53) | 2.05 (1.24–3.40) | 0.064 | |
Alcohol Intake | 0.69 | |||||
<10 g/day (n = 47,581) | 1.0 | 1.22 (1.01–1.47) | 1.59 (1.28–1.96) | 1.91 (1.58–2.30) | <0.001 | |
≥10 g/day (n = 6044) | 1.0 | 1.07 (0.69–1.65) | 1.80 (1.07–3.02) | 1.62 (1.17–2.25) | 0.003 | |
Physical Activity | 0.06 | |||||
Inactive (n = 32,464) | 1.0 | 1.28 (0.84–1.94) | 2.68 (1.72–4.18) | 2.13 (1.77–2.56) | <0.001 | |
Minimally Active (n = 16,876) | 1.0 | 1.02 (0.54–1.92) | 1.49 (0.68–3.26) | 1.67 (1.34–2.08) | <0.001 | |
HEPA (n = 9053) | 1.0 | 1.17 (0.51–2.72) | 3.86 (1.82–8.15) | 1.49 (1.15–1.94) | 0.001 | |
HOMA-IR | 0.35 | |||||
<2.5 (n = 51,645) | 1.0 | 1.12 (0.92–1.37) | 1.79 (1.43–2.25) | 1.91 (1.60–2.28) | <0.001 | |
≥2.5 (n = 5909) | 1.0 | 1.42 (1.02–1.98) | 1.39 (0.96–2.01) | 1.98 (1.55–2.53) | <0.001 | |
hsCRP | 0.01 | |||||
<1.0 mg/L (n = 34,596) | 1.0 | 1.08 (0.83–0.40) | 1.79 (1.32–2.43) | 2.12 (1.68–2.68) | <0.001 | |
≥1.0 mg/L (n = 6859) | 1.0 | 1.43 (1.06–1.93) | 1.26 (0.88–1.80) | 1.52 (1.16–1.99) | 0.012 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.K.; Winkler, C.A.; Lee, S.-J.; Chang, Y.; Ryu, S. The Prevalence of Hyperuricemia Sharply Increases from the Late Menopausal Transition Stage in Middle-Aged Women. J. Clin. Med. 2019, 8, 296. https://doi.org/10.3390/jcm8030296
Cho SK, Winkler CA, Lee S-J, Chang Y, Ryu S. The Prevalence of Hyperuricemia Sharply Increases from the Late Menopausal Transition Stage in Middle-Aged Women. Journal of Clinical Medicine. 2019; 8(3):296. https://doi.org/10.3390/jcm8030296
Chicago/Turabian StyleCho, Sung Kweon, Cheryl A. Winkler, Soo-Jin Lee, Yoosoo Chang, and Seungho Ryu. 2019. "The Prevalence of Hyperuricemia Sharply Increases from the Late Menopausal Transition Stage in Middle-Aged Women" Journal of Clinical Medicine 8, no. 3: 296. https://doi.org/10.3390/jcm8030296
APA StyleCho, S. K., Winkler, C. A., Lee, S.-J., Chang, Y., & Ryu, S. (2019). The Prevalence of Hyperuricemia Sharply Increases from the Late Menopausal Transition Stage in Middle-Aged Women. Journal of Clinical Medicine, 8(3), 296. https://doi.org/10.3390/jcm8030296