Comparison of Methicillin-Resistant Staphylococcus aureus Isolates from Cellulitis and from Osteomyelitis in a Taiwan Hospital, 2016–2018
Abstract
:1. Introduction
2. Methods
2.1. Patients and MRSA Isolates
2.2. Antibiotic Susceptibility Test
2.3. SCCmec Typing
2.4. Multilocus Sequence Typing (MLST)
2.5. spa Typing
2.6. Detection of Panton–Valentine Leukocidin (pvl) Gene
2.7. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Antibiotic Resistance Profiles of CL-MRSA and OM-MRSA Isolates
3.3. Genotypic Characterization of CL-MRSA and OM-MRSA Isolates
3.4. Association between Antibiotic Resistance and Genotypes in CL-MRSA and OM-MRSA
3.5. Correlation between MRSA Genotypes and Diseased States of Patients with Cellulitis and Osteomyelitis
3.6. Differences in Antibiotic Susceptibility and Genotypes Between PJI- and Non-PJI-Associated OM-MRSA
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Melzer, M.; Eykyn, S.; Gransden, W.; Chinn, S. Is methicillin-resistant Staphylococcus aureus more virulent than methicillin-susceptible S. aureus? A comparative cohort study of British patients with nosocomial infection and bacteremia. Clin. Infec. Dis. 2003, 37, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef] [PubMed]
- David, M.Z.; Mennella, C.; Mansour, M.; Boyle-Vavra, S.; Daum, R.S. Predominance of methicillin-resistant Staphylococcus aureus among pathogens causing skin and soft tissue infections in a large urban jail: Risk factors and recurrence rates. J. Clin. Microbiol. 2008, 46, 3222–3227. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Sievert, D.M.; Hageman, J.C.; Boulton, M.L.; Tenover, F.C.; Downes, F.P.; Shah, S.; Rudrik, J.T.; Pupp, G.R.; Brown, W.J. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 2003, 348, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.K.; Sakoulas, G.; Wennersten, C.; Eliopoulos, G.M.; Moellering Jr, R.C.; Ferraro, M.J.; Gold, H.S. Linezolid resistance in Staphylococcus aureus: Characterization and stability of resistant phenotype. J. Infect. Dis. 2002, 186, 1603–1607. [Google Scholar] [CrossRef]
- Wilson, P.; Andrews, J.; Charlesworth, R.; Walesby, R.; Singer, M.; Farrell, D.; Robbins, M. Linezolid resistance in clinical isolates of Staphylococcus aureus. J. Antimicrob. Chemother. 2003, 51, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Flynn, N.M.; King, J.H.; Monchaud, C.; Morita, M.; Cohen, S.H. Comparisons of community-associated methicillin-resistant Staphylococcus aureus (MRSA) and hospital-associated MSRA infections in Sacramento, California. J. Clin. Microbiol. 2006, 44, 2423–2427. [Google Scholar] [CrossRef]
- David, M.Z.; Glikman, D.; Crawford, S.E.; Peng, J.; King, K.J.; Hostetler, M.A.; Boyle-Vavra, S.; Daum, R.S. What is community-associated methicillin-resistant Staphylococcus aureus? J. Infect. Dis. 2008, 197, 1235–1243. [Google Scholar] [CrossRef]
- Ma, X.X.; Ito, T.; Tiensasitorn, C.; Jamklang, M.; Chongtrakool, P.; Boyle-Vavra, S.; Daum, R.S.; Hiramatsu, K. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob. Agents Chemother. 2002, 46, 1147–1152. [Google Scholar] [CrossRef]
- Ito, T.; Ma, X.X.; Takeuchi, F.; Okuma, K.; Yuzawa, H.; Hiramatsu, K. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob. Agents Chemother. 2004, 48, 2637–2651. [Google Scholar] [CrossRef]
- Chambers, H.F. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 2001, 7, 178. [Google Scholar] [CrossRef] [PubMed]
- Zetola, N.; Francis, J.S.; Nuermberger, E.L.; Bishai, W.R. Community-acquired meticillin-resistant Staphylococcus aureus: An emerging threat. Lancet Infect. Dis. 2005, 5, 275–286. [Google Scholar] [CrossRef]
- McDougal, L.K.; Steward, C.D.; Killgore, G.E.; Chaitram, J.M.; McAllister, S.K.; Tenover, F.C. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: Establishing a national database. J. Clin. Microbiol. 2003, 41, 5113–5120. [Google Scholar] [CrossRef] [PubMed]
- Harada, D.; Nakaminami, H.; Miyajima, E.; Sugiyama, T.; Sasai, N.; Kitamura, Y.; Tamura, T.; Kawakubo, T.; Noguchi, N. Change in genotype of methicillin-resistant Staphylococcus aureus (MRSA) affects the antibiogram of hospital-acquired MRSA. J. Infect. Chemother. 2018, 24, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.J.; Goncheva, M.; Richardson, E.; McAdam, P.R.; Raftis, E.; Kearns, A.; Daum, R.S.; David, M.Z.; Lauderdale, T.L.; Edwards, G.F. Identification of source and sink populations for the emergence and global spread of the East-Asia clone of community-associated MRSA. Genome Biol. 2016, 17, 160. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Chen, C.J. Community-associated meticillin-resistant Staphylococcus aureus in children in Taiwan, 2000s. Int. J. Antimicrob. Agents 2011, 38, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Huang, Y.C. New epidemiology of Staphylococcus aureus infection in Asia. Clin. Microbiol. Infect. 2014, 20, 605–623. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.Y.; Huang, Y.C. Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Asia. Lancet Infect. Dis. 2013, 13, 698–708. [Google Scholar] [CrossRef]
- Enright, M.C.; Day, N.P.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar]
- Harmsen, D.; Claus, H.; Witte, W.; Rothgänger, J.; Claus, H.; Turnwald, D.; Vogel, U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J. Clin. Microbiol. 2003, 41, 5442–5448. [Google Scholar] [CrossRef]
- Oliveira, D.C.; de Lencastre, H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 2155–2161. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, K.; Cui, L.; Kuroda, M.; Ito, T. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2001, 9, 486–493. [Google Scholar] [CrossRef]
- Naimi, T.S.; LeDell, K.H.; Como-Sabetti, K.; Borchardt, S.M.; Boxrud, D.J.; Etienne, J.; Johnson, S.K.; Vandenesch, F.; Fridkin, S.; O’Boyle, C. Comparison of community-and health care–associated methicillin-resistant Staphylococcus aureus infection. JAMA 2003, 290, 2976–2984. [Google Scholar] [CrossRef] [PubMed]
- Naas, T.; Fortineau, N.; Spicq, C.; Robert, J.; Jarlier, V.; Nordmann, P. Three-year survey of community-acquired methicillin-resistant Staphylococcus aureus producing Panton-Valentine leukocidin in a French university hospital. J. Hosp. Infect. 2005, 61, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Diep, B.A.; Otto, M. The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol. 2008, 16, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenesch, F.; Naimi, T.; Enright, M.C.; Lina, G.; Nimmo, G.R.; Heffernan, H.; Liassine, N.; Bes, M.; Greenland, T.; Reverdy, M.E. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: Worldwide emergence. Emerg. Infect. Dis. 2003, 9, 978. [Google Scholar] [CrossRef]
- Hsiao, C.H.; Ong, S.J.; Chuang, C.C.; Ma, D.H.; Huang, Y.C. A comparison of clinical features between community-associated and healthcare-associated methicillin-resistant Staphylococcus aureus keratitis. J. Ophthalmol. 2015, 2015. [Google Scholar] [CrossRef]
- Bukharie, H.A. A review of community-acquired methicillin-resistant Staphylococcus aureus for primary care physicians. J. Family Community Med. 2010, 17, 117. [Google Scholar] [CrossRef]
- McCarthy, N.L.; Sullivan, P.S.; Gaynes, R.; Rimland, D. Health care-associated and community-associated methicillin-resistant Staphylococcus aureus infections: A comparison of definitions. Am. J. Infect. Control 2010, 38, 600–606. [Google Scholar] [CrossRef]
- CLSI. CLSI Supplement M100S. Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Campbell, M.L.; Marchaim, D.; Pogue, J.M.; Sunkara, B.; Bheemreddy, S.; Bathina, P.; Pulluru, H.; Chugh, N.; Wilson, M.N.; Moshos, J.; et al. Treatment of methicillin-resistant Staphylococcus aureus infections with a minimal inhibitory concentration of 2 ug/mL to vancomycin: Old (trimethoprim/sulfamethoxazole) versus new (daptomycin or linezolid) agents. Ann. Pharmacother. 2012, 46, 1587–1597. [Google Scholar] [CrossRef]
- Boye, K.; Bartels, M.D.; Andersen, I.S.; Moeller, J.A.; Westh, H. A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I–V. Clin. Microbiol. Infect. 2007, 13, 725–727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; McClure, J.A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2005, 43, 5026–5033. [Google Scholar] [CrossRef] [PubMed]
- McClure, J.A.; Conly, J.M.; Lau, V.; Elsayed, S.; Louie, T.; Hutchins, W.; Zhang, K. Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from-resistant staphylococci. J. Clin. Microbiol. 2006, 44, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
- Jevons, M.P. “Celbenin”-resistant staphylococci. Br. Med. J. 1961, 1, 124. [Google Scholar] [CrossRef]
- Grundmann, H.; Aires-de-Sousa, M.; Boyce, J.; Tiemersma, E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 2006, 368, 874–885. [Google Scholar] [CrossRef]
- Nathwani, D.; Davey, P.G.; Marwick, C.A. MRSA: Treating people with infection. BMJ Clin. Evid. 2010, 2010. [Google Scholar]
- Spellberg, B.; Lipsky, B.A. Systemic antibiotic therapy for chronic osteomyelitis in adults. Clin. Infect. Dis. 2012, 54, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Radovanovic, M.; Dushenkovska, T.; Cvorovic, I.; Radovanovic, N.; Ramasamy, V.; Milosavljevic, K.; Surla, J.; Jecmenica, M.; Radulovic, M.; Milovanovic, T.; et al. Idiosyncratic Drug-Induced Liver Injury Due to Ciprofloxacin: A Report of Two Cases and Review of the Literature. Am. J. Case Rep. 2018, 19, 1152–1161. [Google Scholar] [CrossRef]
- Thompson, J.M.; Saini, V.; Ashbaugh, A.G.; Miller, R.J.; Ordonez, A.A.; Ortines, R.V.; Wang, Y.; Sterling, R.S.; Jain, S.K.; Miller, L.S. Oral-Only Linezolid-Rifampin Is Highly Effective Compared with Other Antibiotics for Periprosthetic Joint Infection: Study of a Mouse Model. J. Bone. Joint Surg. Am. 2017, 99, 656–665. [Google Scholar] [CrossRef]
- Copin, R.; Sause, W.E.; Fulmer, Y.; Balasubramanian, D.; Dyzenhaus, S.; Ahmed, J.M.; Kumar, K.; Lees, J.; Stachel, A.; Fisher, J.C.; et al. Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2019, 116, 1745–1754. [Google Scholar] [CrossRef]
- Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. 2018, 36, 22–32. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Cellulitis (n = 106) | Osteomyelitis (n = 115) | p Value a |
---|---|---|---|
Sex | |||
Female | 39 (37%) | 39 (34%) | |
Male | 67 (63%) | 76 (66%) | 0.65 |
Age (year) | |||
Mean ± SD | 54 ± 21 | 60 ± 18 | <0.05 |
Range | <1–100 | 15–98 | |
Infected sites | |||
head and neck | 30 (28%) | 5 (4%) | <0.0001 |
trunk | 27 (25%) | 4 (3%) | <0.0001 |
limbs | 49 (46%) | 106 (92%) | <0.0001 |
Underlying diseases | |||
CHC | 14 (13%) | 34 (30%) | <0.05 |
CKD | 2 (2%) | 15 (13%) | <0.05 |
DM | 39 (37%) | 50 (43%) | 0.31 |
ESRD | 9 (8%) | 8 (7%) | 0.67 |
Gout | 7 (7%) | 5 (4%) | 0.46 |
Cancer | 8 (8%) | 14 (12%) | 0.25 |
Hospitalization b | |||
Yes | 28 (26%) | 56 (49%) | <0.001 |
No | 78 (74%) | 59 (51%) | |
Surgery c | |||
Yes | 20 (19%) | 47 (41%) | <0.001 |
No | 86 (81%) | 68 (59%) |
Antibiotic | MIC a (µg/mL) | MRSA Isolates, No. (%) | p Value b | |
---|---|---|---|---|
CL-MRSA (n = 106) | OM-MRSA (n = 115) | |||
Ciprofloxacin | (MIC ≥ 4) | 37 (35%) | 69 (60%) | <0.001 |
Fusidic acid | (MIC ≥ 1) | 3 (3%) | 25 (22%) | <0.0001 |
Gentamicin | (MIC ≥ 16) | 24 (23%) | 59 (51%) | <0.0001 |
Rifampicin | (MIC ≥ 4) | 0 | 2 (2%) | 0.17 |
TMP-SMX | (MIC ≥ 4) | 7 (7%) | 30 (26%) | <0.0001 |
Vancomycin | (MIC ≥ 2) | 0 | 6 (5%) | <0.05 |
SCCmec Type, No. (%) | MLST, No. (%) | spa Type, No. (%) | ||||||
---|---|---|---|---|---|---|---|---|
CL-MRSA (n = 106) | OM-MRSA (n = 115) | CL-MRSA (n = 106) | OM-MRSA (n = 115) | CL-MRSA (n = 106) | OM-MRSA (n = 115) | |||
II | – | 3 (3%) | ST5 | 1 (1%) | 4 (3%) | t002 | 1 (1%) | 4 (3%) |
III | 6 (6%) | 27 (24%) | ST7 | – | 1 (1%) | t008 | 19 (18%) | 20 (17%) |
IV | 59 (56%) | 55 (48%) | ST8 | 22 (21%) | 24 (21%) | t015 | – | 2 (2%) |
V | 41 (39%) | 30 (26%) | ST9 | 1 (1%) | 2 (2%) | t019 | 9 (8%) | 2 (2%) |
ST30 | 9 (8%) | 2 (2%) | t026 | 4 (4%) | 1 (1%) | |||
ST45 | 6 (6%) | 7 (6%) | t034 | 3 (3%) | – | |||
ST59 | 54 (51%) | 37 (32%) | t037 | 7 (7%) | 29 (25%) | |||
ST188 | 2 (2%) | 2 (2%) | t091 | – | 1 (1%) | |||
ST239 | 7 (7%) | 28 (24%) | t189 | 2 (2%) | 2 (2%) | |||
ST241 | – | 1 (1%) | t345 | – | 2 (2%) | |||
ST338 | 1 (1%) | – | t437 | 38 (36%) | 27 (23%) | |||
ST398 | 1 (1%) | 2 (2%) | t441 | 12 (11%) | 9 (8%) | |||
ST508 | – | 2 (2%) | t571 | – | 2 (2%) | |||
ST573 | – | 3 (3%) | t574 | – | 1 (1%) | |||
ST1232 | 2 (2%) | – | t899 | 1 (1%) | 2 (2%) | |||
t967 | 1 (1%) | 2 (2%) | ||||||
t1081 | 2 (2%) | 6 (5%) | ||||||
t1380 | 1 (1%) | – | ||||||
t3485 | 1 (1%) | 1 (1%) | ||||||
t3515 | 1 (1%) | – | ||||||
t3525 | – | 1 (1%) | ||||||
t3527 | 1 (1%) | – | ||||||
t8391 | – | 1 (1%) | ||||||
new | 3 (3%) | – |
Antibiotic | MIC a (µg/mL) | CL-MRSA Isolates, % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ST5 (n = 1) | ST8 (n = 22) | ST9 (n = 1) | ST30 (n = 9) | ST45 (n = 6) | ST59 (n = 54) | ST188 (n = 2) | ST239 (n = 7) | ST338 (n = 1) | ST398 (n = 1) | ST1232 (n = 2) | ||
Ciprofloxacin | (MIC ≥ 4) | 100 | 95 | 0 | 11 | 0 | 9 | 100 | 100 | 0 | 0 | 0 |
Fusidic acid | (MIC ≥ 1) | 0 | 5 | 0 | 11 | 0 | 0 | 0 | 14 | 0 | 0 | 0 |
Gentamicin | (MIC ≥ 16) | 100 | 9 | 0 | 11 | 0 | 19 | 100 | 100 | 0 | 0 | 50 |
Rifampicin | (MIC ≥ 4) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
TMP-SMX | (MIC ≥ 4) | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 86 | 0 | 0 | 0 |
Vancomycin | (MIC ≥ 2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Antibiotic | MIC a µg/mL) | OM-MRSA Isolates, % | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ST5 (n = 4) | ST7 (n = 1) | ST8 (n = 24) | ST9 (n = 2) | ST30 (n = 2) | ST45 (n = 7) | ST59 (n = 37) | ST188 (n = 2) | ST239 (n = 28) | ST241 (n = 1) | ST398 (n = 2) | ST508 (n = 2) | ST573 (n = 3) | ||
Ciprofloxacin | (MIC ≥ 4) | 75 | 0 | 83 | 100 | 0 | 100 | 11 | 100 | 100 | 100 | 50 | 0 | 33 |
Fusidic acid | (MIC ≥ 1) | 0 | 100 | 21 | 50 | 0 | 29 | 16 | 0 | 32 | 0 | 0 | 0 | 33 |
Gentamicin | (MIC ≥ 16) | 75 | 0 | 13 | 100 | 50 | 29 | 49 | 50 | 89 | 100 | 0 | 0 | 100 |
Rifampicin | (MIC ≥ 4) | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
TMP-SMX | (MIC ≥ 4) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 100 | 100 | 0 | 0 | 0 |
Vancomycin | (MIC ≥ 2) | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 14 | 100 | 0 | 0 | 0 |
Antibiotic | MIC (µg/mL) | CL-MRSA Isolates, No. (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ST8 (n = 22) | ST45 (n = 6) | ST59 (n = 54) | ST239 (n = 7) | |||||||||
t008-IV (n = 18) | non-t008-IV a (n = 4) | t026-IV (n = 4) | t1081-IV(V) b (n = 2) | t437-IV (n = 10) | t437-V (n = 27) | t441-IV (n = 6) | t441-V (n = 6) | non-t437/non-t441 c (n = 5) | t037-III (n = 6) | non-t037-III d (n = 1) | ||
Ciprofloxacin | (MIC ≥ 4) | 18 (100%) | 3 (75%) | 0 | 0 | 0 | 3 (11%) | 1 (17%) | 0 | 1 (20%) | 6 (100%) | 1 (100%) |
Fusidic acid | (MIC ≥ 1) | 1 (6%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (100%) |
Gentamicin | (MIC ≥ 16) | 1 (6%) | 1 (25%) | 0 | 0 | 0 | 5 (19%) | 2 (33%) | 0 | 3 (60%) | 6 (100%) | 1 (100%) |
Rifampicin | (MIC ≥ 4) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
TMP-SMX | (MIC ≥ 4) | 0 | 0 | 0 | 0 | 0 | 1 (4%) | 0 | 0 | 0 | 6 (100%) | 0 |
Vancomycin | (MIC ≥ 2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Antibiotic | MIC (µg/mL) | OM-MRSA Isolates, No. (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ST8 (n = 24) | ST45 (n = 7) | ST59 (n = 37) | ST239 (n = 28) | |||||||||
t008-IV (n = 18) | non-t008-IV a (n = 6) | t026-IV (n = 1) | t1081-IV(V) b (n = 6) | t437-IV (n = 15) | t437-V (n = 12) | t441-IV (n = 2) | t441-V (n = 6) | non-t437/non-t441 c (n = 2) | t037-III (n = 25) | non-t037-III d (n = 3) | ||
Ciprofloxacin | (MIC ≥ 4) | 16 (89%) | 4 (67%) | 1 (100%) | 6 (100 %) | 2 (13%) | 1 (8%) | 1 (50%) | 0 | 0 | 25 (100%) | 3 (100%) |
Fusidic acid | (MIC ≥ 1) | 5 (28%) | 0 | 0 | 2 (33%) | 1 (7%) | 2 (17%) | 0 | 2 (33%) | 1 (50%) | 6 (12%) | 3 (100%) |
Gentamicin | (MIC ≥ 16) | 2 (11%) | 1 (17%) | 0 | 2 (33%) | 9 (60%) | 5 (42%) | 0 | 4 (67%) | 0 | 22 (88%) | 3 (100%) |
Rifampicin | (MIC ≥ 4) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
TMP-SMX | (MIC ≥ 4) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 (100%) | 3 (100%) |
Vancomycin | (MIC ≥ 2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (17%) | 0 | 3 (12%) | 1 (33%) |
MRSA Isolates | Numbers of Surgical Operations (Debridement) | Numbers of Hospital Admissions | Intervals between Operations (Month) | Intervals between Admissions (Month) | ||||
---|---|---|---|---|---|---|---|---|
Cellulitis | Osteomyelitis | Cellulitis | Osteomyelitis | Cellulitis | Osteomyelitis | Cellulitis | Osteomyelitis | |
Total strains | 1.4 ± 2.5 (n = 106) | 4.2 ± 6.5 (n = 115) | 1.5 ± 2.1 (n = 106) | 3.2 ± 3.4 (n = 115) | 0.6 ± 1.0 (n = 106) | 0.7 ± 0.8 (n = 115) | 0.5 ± 0.5 (n = 106) | 0.4 ± 0.4 (n = 115) |
ST8 | 1.7 ± 2.6 (n = 22) | 4.9 ± 10.9 (n = 24) | 2.1 ± 2.7 (n = 22) | 3.3 ± 3.6 (n = 24) | 0.6 ± 1.0 (n = 22) | 0.8 ± 0.7 (n = 24) | 0.4 ± 0.6 (n = 22) | 0.4 ± 0.4 (n = 24) |
ST59 | 1.1 ± 2.1 (n = 54) | 3.3 ± 3.9 (n = 37) | 1.4 ± 1.7 (n = 54) | 2.6 ± 2.3 (n = 37) | 0.7 ± 1.2 (n = 54) | 0.7 ± 0.8 (n = 37) | 0.7 ± 0.5 (n = 54) | 0.5 ± 0.5 (n = 37) |
ST239 | 5.1 ± 4.2 a, b (n = 7) | 6.1 ± 5.6 (n = 28) | 3.3 ± 4.2 (n = 7) | 3.9 ± 3.4 (n = 28) | 0.7 ± 1.4 (n = 7) | 0.9 ± 1.1 (n = 28) | 0.3 ± 0.3 (n = 7) | 0.3 ± 0.3 (n = 28) |
No. (%) | Numbers of Surgical Operations (Debridement) | Numbers of Hospital Admissions | Intervals between Operations (Month) | Intervals between Admissions (Month) | |
---|---|---|---|---|---|
ST8 (n = 24) | |||||
Yes a | 9 (37.5%) | 4.8 ± 5.7 | 3.7 ± 2.1 | 0.4 ± 0.5 | 0.3 ± 0.3 |
No b | 15 (62.5%) | 4.9 ± 13.3 | 3.1 ± 4.3 | 1.0 ± 0.7 | 0.5 ± 0.5 |
ST59 (n = 37) | |||||
Yes | 11 (30%) | 3.8 ± 3.2 | 2.4 ± 1.6 | 0.9 ± 0.7 | 0.5 ± 0.4 |
No | 26 (70%) | 3.1 ± 4.2 | 2.7 ± 2.5 | 0.6 ± 0.9 | 0.5 ± 0.5 |
ST239 (n = 28) | |||||
Yes | 21 (75%) | 7.4 ± 5.9 c | 4.6 ± 3.6 | 1.1 ± 1.1 | 0.3 ± 0.3 |
No | 7 (25%) | 2.1 ± 1.9 c | 1.9 ± 1.2 | 0.4 ± 0.7 | 0.3 ± 0.3 |
Antibiotic | MIC a (µg/mL) | OM-MRSA Isolates, No. (%) | p Value b | |
---|---|---|---|---|
PJIs (n = 26) | non-PJIs (n = 89) | |||
Ciprofloxacin | (MIC ≥ 4) | 16 (62%) | 53 (60%) | 0.86 |
Fusidic acid | (MIC ≥ 1) | 5 (19%) | 20 (23%) | 0.73 |
Gentamicin | (MIC ≥ 16) | 13 (50%) | 46 (52%) | 0.88 |
Rifampicin | (MIC ≥ 4) | 1 (4%) | 1 (1%) | 0.35 |
TMP-SMX | (MIC ≥ 4) | 9 (35%) | 21 (24%) | 0.26 |
Vancomycin | (MIC ≥ 2) | 0 | 6 (7%) | 0.17 |
SCCmec Type, No. (%) | MLST, No. (%) | spa Type, No. (%) | PVL Positive, No. (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
PJIs (n = 26) | non-PJIs (n = 89) | PJIs (n = 26) | non-PJIs (n = 89) | PJIs (n = 26) | non-PJIs (n = 89) | PJIs (n = 26) | non-PJIs (n = 89) | |||
II | 1 (4%) | 1 (1%) | ST5 | 1 (4%) | 3 (3%) | t002 | 1 (4%) | 3 (3%) | 16 (62%) | 48 (54%) |
III | 10 (39%) | 17 (19%) | ST7 | 1 (4%) | – | t008 | 5 (19%) | 15 (17%) | ||
IV | 8 (31%) | 48 (54%) | ST8 | 6 (23%) | 18 (20%) | t015 | 1 (4%) | 1 (1%) | ||
V | 7 (27%) | 23 (26%) | ST9 | – | 2 (2%) | t019 | – | 2 (2%) | ||
ST30 | – | 2 (2%) | t026 | – | 1 (1%) | |||||
ST45 | – | 7 (8%) | t037 | 9 (35%) | 20 (23%) | |||||
ST59 | 8 (31%) | 29 (33%) | t091 | 1 (4%) | – | |||||
ST188 | – | 2 (2%) | t189 | – | 2 (2%) | |||||
ST239 | 9 (35%) | 19 (21%) | t345 | – | 2 (2%) | |||||
ST241 | – | 1 (1%) | t437 | 8 (31%) | 19 (21%) | |||||
ST398 | – | 2 (2%) | t441 | 1 (4%) | 8 (9%) | |||||
ST508 | 1 (4%) | 1 (1%) | t571 | – | 2 (2%) | |||||
ST573 | – | 3 (3%) | t574 | – | 1 (1%) | |||||
t899 | – | 2 (2%) | ||||||||
t967 | – | 2 (2%) | ||||||||
t1081 | – | 6 (7%) | ||||||||
t3485 | – | 1 (1%) | ||||||||
t3525 | – | 1 (1%) | ||||||||
t8391 | – | 1 (1%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, K.-T.; Huang, T.-Y.; Chiang, Y.-C.; Hsu, Y.-Y.; Chuang, F.-Y.; Lee, C.-W.; Chang, P.-J. Comparison of Methicillin-Resistant Staphylococcus aureus Isolates from Cellulitis and from Osteomyelitis in a Taiwan Hospital, 2016–2018. J. Clin. Med. 2019, 8, 816. https://doi.org/10.3390/jcm8060816
Peng K-T, Huang T-Y, Chiang Y-C, Hsu Y-Y, Chuang F-Y, Lee C-W, Chang P-J. Comparison of Methicillin-Resistant Staphylococcus aureus Isolates from Cellulitis and from Osteomyelitis in a Taiwan Hospital, 2016–2018. Journal of Clinical Medicine. 2019; 8(6):816. https://doi.org/10.3390/jcm8060816
Chicago/Turabian StylePeng, Kuo-Ti, Tsung-Yu Huang, Yao-Chang Chiang, Yu-Yi Hsu, Fang-Yi Chuang, Chiang-Wen Lee, and Pey-Jium Chang. 2019. "Comparison of Methicillin-Resistant Staphylococcus aureus Isolates from Cellulitis and from Osteomyelitis in a Taiwan Hospital, 2016–2018" Journal of Clinical Medicine 8, no. 6: 816. https://doi.org/10.3390/jcm8060816
APA StylePeng, K.-T., Huang, T.-Y., Chiang, Y.-C., Hsu, Y.-Y., Chuang, F.-Y., Lee, C.-W., & Chang, P.-J. (2019). Comparison of Methicillin-Resistant Staphylococcus aureus Isolates from Cellulitis and from Osteomyelitis in a Taiwan Hospital, 2016–2018. Journal of Clinical Medicine, 8(6), 816. https://doi.org/10.3390/jcm8060816