Micronutrient Deficiencies in Medical and Surgical Inpatients
Abstract
:1. Introduction
2. Undermining Micronutrients Deficiencies
2.1. Iodine
2.2. Iron
2.3. Selenium
2.4. Zinc
2.5. Copper
2.6. Vitamin A
2.7. Vitamin D
3. Disease Specific Deficiency
3.1. Alcoholism
3.2. Anemia
3.3. Cardiomyopathies and Heart Failure
3.4. Inflammatory Bowel Disease
3.5. Liver Disease
3.6. Obesity & Bariatric Surgery
3.7. Kidney Disease
3.8. Migrant Populations
3.9. Laboratory Investigations
4. Micronutrient Unavailability as Cause of Deficiency
4.1. Nutritional Sources
4.2. Geriatric Population
4.3. Partial or Complete Starving upon Hospital Admission and Refeeding
4.4. Economic Considerations
5. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
DRI | Dietary Reference Intakes |
CKD | Chronic kidney disease |
CM | cardiomyopathy |
CRP | C-reactive protein |
ESC ESPEN | European Society of Cardiology European Society for Clinical Nutrition and Metabolism |
GPX | Glutathione peroxidase |
HF | Heat failure |
IBD | inflammatory bowel disease |
IV | Intravenous |
RDA | recommended daily allowance |
References
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; de Benoist, B.; Dary, O.; Hurrel, R. Guidelines on food fortification with micronutrients. In World Health Organization (WHO) Food and Agricultural Organization (FAO) of the United Nations; WHO: Geneva, Switzerland, 2006; pp. 1–376. Available online: http://www.who.int/nutrition/publications/guide_food_fortification_micronutrients.pdf (accessed on 25 June 2019).
- Trumbo, P.; Yates, A.; Schlicker, S.; Poos, M. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Schuetz, P.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Gomes, F.; Kutz, A.; Tribolet, P.; Bregenzer, T.; Braun, N.; et al. Individualised nutritional support in medical inpatients at nutritional risk: A randomised clinical trial. Lancet 2019, 393, 2312–2321. [Google Scholar] [CrossRef]
- Khalatbari-Soltani, S.; Marques-Vidal, P. The economic cost of hospital malnutrition in Europe; a narrative review. Clin. Nutr. ESPEN 2015, 10, e89–e94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, K.; Pichard, C.; Lochs, H.; Pirlich, M. Prognostic impact of disease-related malnutrition. Clin. Nutr. 2008, 27, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Pawellek, I.; Dokoupil, K.; Koletzko, B. Prevalence of malnutrition in paediatric hospital patients. Clin. Nutr. 2008, 27, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Orlandoni, P.; Venturini, C.; Jukic Peladic, N.; Costantini, A.; Di Rosa, M.; Cola, C.; Giorgini, N.; Basile, R.; Fagnani, D.; Sparvoli, D.; et al. Malnutrition upon Hospital Admission in Geriatric Patients: Why Assess It? Front. Nutr. 2017, 4, 50. [Google Scholar] [CrossRef]
- Sanford, A.M. Anorexia of aging and its role for frailty. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 54–60. [Google Scholar] [CrossRef]
- World Health Organisation. In Nutrition for Health and Development: A Global Agenda for Combating Malnutrition; Docemunt WHO/NHD/00.6; WHO: Geneva, Switzerland, 2000.
- Castaneda-Gameros, D.; Redwood, S.; Thompson, J. Nutrient Intake and Factors Influencing Eating Behaviors in Older Migrant Women Living in the United Kingdom. Ecol. Food Nutr. 2018, 57, 50–68. [Google Scholar] [CrossRef]
- Black, R. Global distribution and disease burden related to micronutrient deficiencies. Nestle Nutr. Inst. Workshop Ser. 2014, 78, 21–28. [Google Scholar] [CrossRef]
- White, J.; Zasoski, R. Mapping soil micronutrients. Field Crop. Res. 1999, 60, 11–26. [Google Scholar] [CrossRef]
- Stein, A.; Qaim, M. The human and economic cost of hidden hunger. Food Nutr. Bull. 2007, 28, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Diaz, J.; de las Cagigas, A.; Rodriguez, R. Micronutrient deficiencies in developing and affluent countries. Eur. J. Clin. Nutr. 2003, 57 (Suppl. 1), S70–S72. [Google Scholar] [CrossRef]
- World Health Orgniasation. Micronutrients. Available online: https://www.who.int/nutrition/topics/micronutrients/en/ (accessed on 25 April 2019).
- Zimmermann, M.B.; Boelaert, K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015, 3, 286–295. [Google Scholar] [CrossRef]
- Stoltzfus, R. Defining iron-deficiency anemia in public health terms: A time for reflection. J. Nutr. 2001, 131, 565S–567S. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Cacoub, P.; Macdougall, I.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2016, 367, 907–917. [Google Scholar] [CrossRef]
- Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuepbach, R.; Bestmann, L.; Bechir, M.; Fehr, J.; Bachli, E. High prevalence of Iron deficiency among educated hospital employees in Switzerland. Int. J. Biomed. Sci. IJBS 2011, 7, 150–157. [Google Scholar]
- Heming, N.; Montravers, P.; Lasocki, S. Iron deficiency in critically ill patients: Highlighting the role of hepcidin. Crit. Care 2011, 15, 210. [Google Scholar] [CrossRef]
- Lasocki, S.; Piednoir, P.; Couffignal, C.; Rineau, E.; Dufour, G.; Lefebvre, T.; Puy, H.; Duval, X.; Driss, F.; Schilte, C. Does IV Iron Induce Plasma Oxidative Stress in Critically Ill Patients? A comparison with healthy volunteers. Crit. Care Med. 2016, 44, 521–530. [Google Scholar] [CrossRef]
- Duncan, A.; Talwar, D.; McMillan, D.; Stefanowicz, F.; O’Reilly, D. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am. J. Clin. Nutr. 2012, 95, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Galesloot, T.E.; Vermeulen, S.H.; Geurts-Moespot, A.J.; Klaver, S.M.; Kroot, J.; van Tienoven, D.; Wetzels, J.F.; Kiemeney, L.; Sweep, F.C.; den Heijer, M.; et al. Serum hepcidin: Reference ranges and biochemical correlates in the general population. Blood 2011, 117, e218–e225. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Wimbley, T.D.; Graham, D.Y. Diagnosis and management of iron deficiency anemia in the 21st century. Ther. Adv. Gastroenterol. 2011, 4, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueda, N.; Takasawa, K. Impact of Inflammation on Ferritin, Hepcidin and the Management of Iron Deficiency Anemia in Chronic Kidney Disease. Nutrients 2018, 10, 1173. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Solal, A.; Leclercq, C.; Deray, G.; Lasocki, S.; Zambrowski, J.; Mebazaa, A.; de Groote, P.; Damy, T.; Galinier, M. Iron deficiency: An emerging therapeutic target in heart failure. Heart 2014, 100, 1414–1420. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Wise, L.A. Environmental Selenium and human health: An update. Curr. Environ. Health Rep. 2018, 5, 464–485. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.D.; Droz, B.; Greve, P.; Gottschalk, P.; Poffet, D.; McGrath, S.P.; Seneviratne, S.I.; Smith, P.; Winkel, L.H. Selenium deficiency risk predicted to increase under future climate change. Proc. Natl. Acad. Sci. USA 2017, 114, 2848–2853. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Alhazzani, W.; Jacobi, J.; Sindi, A.; Hartog, C.; Reinhart, K.; Kokkoris, S.; Gerlach, H.; Andrews, P.; Drabek, T.; Manzanares, W.; et al. The effect of selenium therapy on mortality in patients with sepsis syndrome: A systematic review and meta-analysis of randomized controlled trials. Crit. Care Med. 2013, 41, 1555–1564. [Google Scholar] [CrossRef]
- Berger, M.M.; Soguel, L.; Shenkin, A.; Revelly, J.P.; Pinget, C.; Baines, M.; Chiolero, R.L. Influence of early antioxidant supplements on clinical evolution and organ function in critically ill cardiac surgery, major trauma and subarachnoid hemorrhage patients. Crit. Care 2008, 12, R101. [Google Scholar] [CrossRef]
- Bloos, F.; Trips, E.; Nierhaus, A.; Briegel, J.; Heyland, D.K.; Jaschinski, U.; Moerer, O.; Weyland, A.; Marx, G.; Grundling, M.; et al. Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe sepsis or septic shock: A randomized clinical trial. JAMA Intern. Med. 2016, 176, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc deficiency. BMJ 2003, 326, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Impact of the discovery of human zinc deficiency on health. J. Trace Elem. Med. Biol. 2014, 28, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S.; Beck, F.W.; Bao, B.; Fitzgerald, J.T.; Snell, D.C.; Steinberg, J.D.; Cardozo, L.I. Zinc supplementation decreases incidence of infections in the elderly: Effect of zinc on generation of cytokines and oxidative stress. Am. J. Clin. Nutr. 2007, 85, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Altarelli, M.; Ben-Hamouda, N.; Schneider, A.; Berger, M.M. Copper Deficiency—Causes, Manifestations, and Treatment. Nutr. Clin. Prac. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ben-Hamouda, N.; Charrière, M.; Voirol, P.; Berger, M.M. Massive copper and selenium losses cause life-threatening deficiencies during prolonged continuous renal replacement. Nutrition 2017, 34, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Wapnir, R.A. Copper absorption and bioavailability. Am. J. Clin. Nutr. 1998, 67, 1054S–1060S. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Global Burden of Disease: 2004 Update. 1. Cost of Illness. 2. World Health—Statistics. 3. Mortality—Trends. Available online: http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf (accessed on 30 August 2012).
- Amrein, K.; Papinutti, A.; Mathew, E.; Vila, G.; Parekh, D. Vitamin D and critical illness: What endocrinology can learn from intensive care and vice versa. Endocr. Connect. 2018, 7, R304–R315. [Google Scholar] [CrossRef] [PubMed]
- Gradel, L.; Merker, M.; Mueller, B.; Schuetz, P. Screening and Treatment of Vitamin D Deficiency on Hospital Admission: Is There a Benefit for Medical Inpatients? Am. J. Med. 2016, 129, 116.e111–116.e134. [Google Scholar] [CrossRef] [PubMed]
- Viglianti, E.M.; Zajic, P.; Iwashyna, T.J.; Amrein, K. Neither vitamin D levels nor supplementation are associated with the development of persistent critical illness: A retrospective cohort analysis. Crit. Care Resusc. 2019, 21, 39–44. [Google Scholar] [PubMed]
- Lieber, C.S. Alcohol: Its metabolism and interaction with nutrients. Annu. Rev. Nutr. 2000, 20, 395–430. [Google Scholar] [CrossRef] [PubMed]
- Leo, M.A.; Lieber, C.S. Alcohol, vitamin A, and beta-carotene: Adverse interactions, including hepatotoxicity and carcinogenicity. Am. J. Clin. Nutr. 1999, 69, 1071–1085. [Google Scholar] [CrossRef] [PubMed]
- Leevy, C.M. Thiamin deficiency and alcoholism. Ann. N. Y. Acad. Sci. 1982, 378, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, M.L.; Bowden, S.C.; Whelan, G. Thiamin treatment and working memory function of alcohol-dependent people: Preliminary findings. Alcohol. Clin. Exp. Res. 2001, 25, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Li, S.F.; Jacob, J.; Feng, J.; Kulkarni, M. Vitamin deficiencies in acutely intoxicated patients in the ED. Am. J. Emerg. Med. 2008, 26, 792–795. [Google Scholar] [CrossRef]
- Lee, H.J.; Shin, J.; Hong, K.; Jung, J.H. Vitamin C deficiency of Korean homeless vatients visiting to Emergency Department with acute alcohol intoxication. J. Korean Med Sci. 2015, 30, 1874–1880. [Google Scholar] [CrossRef]
- Ijaz, S.; Jackson, J.; Thorley, H.; Porter, K.; Fleming, C.; Richards, A.; Bonner, A.; Savovic, J. Nutritional deficiencies in homeless persons with problematic drinking: A systematic review. Int. J. Equity Health 2017, 16, 71. [Google Scholar] [CrossRef]
- Ordak, M.; Bulska, E.; Jablonka-Salach, K.; Luciuk, A.; Maj-Zurawska, M.; Matsumoto, H.; Nasierowski, T.; Wojnar, M.; Matras, J.; Muszynska, E.; et al. Effect of Disturbances of Zinc and Copper on the Physical and Mental Health Status of Patients with Alcohol Dependence. Biol. Trace Elem. Res. 2018, 183, 9–15. [Google Scholar] [CrossRef]
- Manzardo, A.M.; He, J.; Poje, A.; Penick, E.C.; Campbell, J.; Butler, M.G. Double-blind, randomized placebo-controlled clinical trial of benfotiamine for severe alcohol dependence. Drug Alcohol. Depend. 2013, 133, 562–570. [Google Scholar] [CrossRef] [Green Version]
- Green, R. Vitamin B12 deficiency from the perspective of a practicing hematologist. Blood 2017, 129, 2603–2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myint, Z.W.; Oo, T.H.; Thein, K.Z.; Tun, A.M.; Saeed, H. Copper deficiency anemia: Review article. Ann. Hematol. 2018, 97, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.C.; Nogueira-Pedro, A.; Santos, E.W.; Hastreiter, A.; Silva, G.B.; Borelli, P.; Fock, R.A. A review of select minerals influencing the haematopoietic process. Nutr. Res. Rev. 2018, 31, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kuhl, U.; Maisch, B.; McKenna, W.J.; et al. Classification of the cardiomyopathies: A position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2008, 29, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.B.; Jones, H.W.; Gordon, A.C. Selenium deficiency, reversible cardiomyopathy and short-term intravenous feeding. Postgrad. Med. J. 1994, 70, 235–236. [Google Scholar] [CrossRef] [PubMed]
- Fleming, C.R.; Lie, J.T.; McCall, J.T.; O’Brien, J.F.; Baillie, E.E.; Thistle, J.L. Selenium deficiency and fatal cardiomyopathy in a patient on home parenteral nutrition. Gastroenterology 1982, 83, 689–693. [Google Scholar]
- Burke, M.P.; Opeskin, K. Fulminant heart failure due to selenium deficiency cardiomyopathy (Keshan disease). Med. Sci. Law 2002, 42, 10–13. [Google Scholar] [CrossRef]
- Oropeza-Moe, M.; Wisloff, H.; Bernhoft, A. Selenium deficiency associated porcine and human cardiomyopathies. J. Trace Elem. Med. Biol. 2015, 31, 148–156. [Google Scholar] [CrossRef]
- Dabar, G.; Harmouche, C.; Habr, B.; Riachi, M.; Jaber, B. Shoshin Beriberi in Critically-Ill patients: Case series. Nutr. J. 2015, 14, 51. [Google Scholar] [CrossRef]
- Ben-Hamouda, N.; Haesler, L.; Liaudet, L. Hyperlactatemia and lactic acidosis in the critically ill patient. Rev. Med. Suisse 2013, 9, 2335–2340. [Google Scholar] [PubMed]
- Smithline, H.A. Thiamine for the treatment of acute decompensated heart failure. Am. J. Emerg. Med. 2007, 25, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Rai, V.; Agrawal, D.K. Role of Vitamin D in Cardiovascular Diseases. Endocrinol. Metab. Clin. N. Am. 2017, 46, 1039–1059. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, H.; Barekat, S.M.; Maracy, M.R.; Azadbakht, L.; Shahshahan, Z. Nutritional status in patients with ulcerative colitis in Isfahan, Iran. Adv. Biomed. Res. 2014, 3, 58. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M. Symposium on The challenge of translating nutrition research into public health nutrition. Session 3: Joint Nutrition Society and Irish Nutrition and Dietetic Institute Symposium on ‘Nutrition and autoimmune disease’. Nutrition in Crohn’s disease. Proc. Nutr. Soc. 2009, 68, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, J.; Asadi, J.; Amiriani, T.; Besharat, S.; Roshandel, G.R.; Joshaghani, H.R. Serum vitamins A and E deficiencies in patients with inflammatory bowel disease. Saudi Med. J. 2013, 34, 432–434. [Google Scholar] [PubMed]
- Torki, M.; Gholamrezaei, A.; Mirbagher, L.; Danesh, M.; Kheiri, S.; Emami, M.H. Vitamin D Deficiency Associated with Disease Activity in Patients with Inflammatory Bowel Diseases. Dig. Dis. Sci. 2015, 60, 3085–3091. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.K.; Grzybowska-Chlebowczyk, U.; Landowski, P.; Szaflarska-Poplawska, A.; Klincewicz, B.; Adamczak, D.; Banasiewicz, T.; Plawski, A.; Walkowiak, J. Prevalence and correlates of vitamin K deficiency in children with inflammatory bowel disease. Sci. Rep. 2014, 4, 4768. [Google Scholar] [CrossRef]
- Bermejo, F.; Algaba, A.; Guerra, I.; Chaparro, M.; De-La-Poza, G.; Valer, P.; Piqueras, B.; Bermejo, A.; Garcia-Alonso, J.; Perez, M.J.; et al. Should we monitor vitamin B12 and folate levels in Crohn’s disease patients? Scand. J. Gastroenterol. 2013, 48, 1272–1277. [Google Scholar] [CrossRef]
- Larnaout, A.; El-Euch, G.; Kchir, N.; Filali, A.; Hamida, M.B.; Hentati, F. Wernicke’s encephalopathy in a patient with Crohn’s disease: A pathological study. J. Neurol. 2001, 248, 57–60. [Google Scholar] [CrossRef]
- Hiller, F.; Oldorff, L.; Besselt, K.; Kipp, A.P. Differential acute effects of selenomethionine and sodium selenite on the severity of colitis. Nutrients 2015, 7, 2687–2706. [Google Scholar] [CrossRef] [PubMed]
- Saod, W.M.; Darwish, N.T.; Zaidan, T.A.; Alfalujie, A.W.A. Trace Elements in Sera of Patients with Hepatitis B: Determination and Analysis. In Proceedings of the Advanced nanotechnology in engineering and medical sciences (ANEMS) – International conference 2017, Langkawi, Malaysia, 20–21 November 2017. [Google Scholar]
- Vagianos, K.; Bector, S.; McConnell, J.; Bernstein, C.N. Nutrition assessment of patients with inflammatory bowel disease. JPEN J. Parenter. Enter. Nutr. 2007, 31, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Himoto, T.; Masaki, T. Associations between Zinc Deficiency and Metabolic Abnormalities in Patients with Chronic Liver Disease. Nutrients 2018, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Avarebeel, S.; Choudhary, N.S.; Goudar, M.; Tejaswini, C.J. Correlation of Trace Elements in Patients of Chronic Liver Disease with Respect to Child- Turcotte- Pugh Scoring System. J. Clin. Diagn. Res. 2017, 11, OC25–OC28. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Koyabu, T.; Kawashima, A.; Kakibuchi, N.; Kawakami, T.; Takaguchi, K.; Kita, K.; Okita, M. Zinc supplementation prevents the increase of transaminase in chronic hepatitis C patients during combination therapy with pegylated interferon alpha-2b and ribavirin. J. Nutr. Sci. Vitaminol. (Tokyo) 2007, 53, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Schenker, S.; Halff, G.A. Nutritional therapy in alcoholic liver disease. Semin. Liver Dis. 1993, 13, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Ermens, A.A.; Vlasveld, L.T.; Lindemans, J. Significance of elevated cobalamin (vitamin B12) levels in blood. Clin. Biochem. 2003, 36, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Lindor, K.D. Management of osteopenia of liver disease with special emphasis on primary biliary cirrhosis. Semin. Liver Dis. 1993, 13, 367–373. [Google Scholar] [CrossRef]
- Konstantakis, C.; Tselekouni, P.; Kalafateli, M.; Triantos, C. Vitamin D deficiency in patients with liver cirrhosis. Ann. Gastroenterol. 2016, 29, 297–306. [Google Scholar] [CrossRef]
- Kitson, M.T.; Roberts, S.K. D-livering the message: The importance of vitamin D status in chronic liver disease. J. Hepatol. 2012, 57, 897–909. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.J.; Mundi, M.S.; Hurt, R.T.; Wolfe, B.; Martindale, R.G. Micronutrient Deficiencies After Bariatric Surgery: An Emphasis on Vitamins and Trace Minerals [Formula: See text]. Nutr. Clin. Pract. 2017, 32, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Roust, L.R.; DiBaise, J.K. Nutrient deficiencies prior to bariatric surgery. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, A. Wernicke encephalopathy after obesity surgery: A systematic review. Neurology 2007, 68, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Koffman, B.M.; Greenfield, L.J.; Ali, I.I.; Pirzada, N.A. Neurologic complications after surgery for obesity. Muscle Nerve 2006, 33, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Parrott, J.; Frank, L.; Rabena, R.; Craggs-Dino, L.; Isom, K.; Greiman, L. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update: Micronutrient. Surg. Obes. Relat. Dis. 2017, 13, 727–741. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.; Rutkowski, B.; Debska-Slizien, A. Vitamins and Microelement Bioavailability in Different Stages of Chronic Kidney Disease. Nutrients 2017, 9, 282. [Google Scholar] [CrossRef] [PubMed]
- Jensen, G.; Goransson, L.; Fernstrom, A.; Furuland, H.; Christensen, J. Treatment of iron deficiency in patients with chronic kidney disease: A prospective observational study of iron isomaltoside (NIMO Scandinavia). Clin. Nephrol. 2019, 91, 246–253. [Google Scholar] [CrossRef]
- Valenti, L.; Messa, P.; Pelusi, S.; Campostrini, N.; Girelli, D. Hepcidin levels in chronic hemodialysis patients: A critical evaluation. Clin. Chem. Lab. Med. 2014, 52, 613–619. [Google Scholar] [CrossRef]
- Santos-Silva, A.; Ribeiro, S.; Reis, F.; Belo, L. Hepcidin in chronic kidney disease anemia. Vitam. Horm. 2019, 110, 243–264. [Google Scholar] [CrossRef]
- Cozzolino, M.; Mangano, M.; Galassi, A.; Ciceri, P.; Messa, P.; Nigwekar, S. Vitamin K in Chronic Kidney Disease. Nutrients 2019, 11, 168. [Google Scholar] [CrossRef]
- Hou, Y.C.; Lu, C.L.; Zheng, C.M.; Chen, R.M.; Lin, Y.F.; Liu, W.C.; Yen, T.H.; Chen, R.; Lu, K.C. Emerging Role of Vitamins D and K in Modulating Uremic Vascular Calcification: The aspect of passive calcification. Nutrients 2019, 11, 152. [Google Scholar] [CrossRef] [PubMed]
- Richard, M.; Ducros, V.; Foret, M.; Arnaud, J.; Coudray, C.; Fusselier, M.; Favier, A. Reversal of selenium and zinc deficiencies in chronic hemodialysis patients by intravenous sodium selenite and zinc gluconate supplementation—Time-course of glutathione peroxidase repletion and lipid peroxidation decrease. Biol. Trace Elem. Res. 1993, 39, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Wiebe, N.; Bello, A.; Field, C.J.; Gill, J.S.; Hemmelgarn, B.R.; Holmes, D.T.; Jindal, K.; Klarenbach, S.W.; Manns, B.J.; et al. Concentrations of Trace Elements and Clinical Outcomes in Hemodialysis Patients: A prospective cohort study. Clin. J. Am. Soc. Nephrol. 2018, 13, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Shenkin, A.; Bollmann, M.D.; Revelly, J.P.; Cayeux, M.C.; Schaller, M.D.; Tappy, L.; Chioléro, R. Trace element balances during continuous venovenous hemodiafiltration (CVVHD). Kardiovasc. Med. 2003, 6 (Suppl. 5), 81S. [Google Scholar]
- Schindler, K.; Themessl-Huber, M.; Hiesmayr, M.J.; Kosak, S.; Lainscak, M.; Laviano, A.; Ljungqvist, O.; Mouhieddine, M.; Schneider, S.; de van der Schueren, M.; et al. To eat or not to eat? Indicators for reduced food intake in 91,245 patients hospitalized on nutritionDays 2006–2014 in 56 countries worldwide: A descriptive analysis. Am. J. Clin. Nutr. 2016, 104, 1393–1402. [Google Scholar] [CrossRef] [PubMed]
- Alberda, C.; Gramlich, L.; Jones, N.; Jeejeebhoy, K.; Day, A.G.; Dhaliwal, R.; Heyland, D.K. The relationship between nutritional intake and clinical outcomes in critically ill patients: Results of an international multicenter observational study. Intensive Care Med. 2009, 35, 1728–1737. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Reintam-Blaser, A.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.; Hiesmayr, M.J.; Mayer, K.; Montejo, J.M.; Pichard, C.; et al. ESPEN Guidelines: Nutrition in the ICU. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [PubMed]
- Pannerec, A.; Migliavacca, E.; De Castro, A.; Michaud, J.; Karaz, S.; Goulet, L.; Rezzi, S.; Ng, T.; Bosco, N.; Larbi, A.; et al. Vitamin B12 deficiency and impaired expression of amnionless during aging. J. Cachexia Sarcopenia Muscle 2018, 9, 41–52. [Google Scholar] [CrossRef]
- Deutz, N.E.; Matheson, E.M.; Matarese, L.E.; Luo, M.; Baggs, G.E.; Nelson, J.L.; Hegazi, R.A.; Tappenden, K.A.; Ziegler, T.R.; Group, Nourish Study. Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: A randomized clinical trial. Clin. Nutr. 2016, 35, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Friedli, N.; Stanga, Z.; Sobotka, L.; Culkin, A.; Kondrup, J.; Laviano, A.; Mueller, B.; Schuetz, P. Revisiting the refeeding syndrome: Results of a systematic review. Nutrition 2017, 35, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Sauer, A.; Goates, S.; Malone, A.; Mogensen, K.; Gewirtz, G.; Sulz, I.; Moick, S.; Laviano, A.; Hiesmayr, M. Prevalence of Malnutrition Risk and the Impact of Nutrition Risk on Hospital Outcomes: Results From nutritionDay in the U.S. JPEN. J. Parenter. Enter. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Pruckner, N.; Baumgartner, J.; Hinterbuchinger, B.; Glahn, A.; Vyssoki, S.; Vyssoki, B. Thiamine Substitution in Alcohol Use Disorder: A Narrative Review of Medical Guidelines. Eur. Addict. Res. 2019, 25, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Curtis, L.; Bernier, P.; Jeejeebhoy, K.; Allard, J.; Duerksen, D.; Gramlich, L.; Laporte, M.; Keller, H. Costs of hospital malnutrition. Clin. Nutr. 2017, 36, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Hercberg, S.; Galan, P.; Preziosi, P.; Bertrais, S.; Mennen, L.; Malvy, D.; Roussel, A.; Favier, A.; Briancon, S. The SU.VI.MAX Study: A randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch. Intern. Med. 2004, 164, 2335–2342. [Google Scholar] [CrossRef]
- Visser, J.; Labadarios, D.; Blaauw, R. Micronutrient supplementation for critically ill adults: A systematic review and meta-analysis. Nutrition 2011, 27, 745–758. [Google Scholar] [CrossRef]
- Wieser, S.; Brunner, B.; Tzogiou, C.; Plessow, R.; Zimmermann, M.B.; Farebrother, J.; Soofi, S.; Bhatti, Z.; Ahmed, I.; Bhutta, Z.A. Societal costs of micronutrient deficiencies in 6- to 59-month-old children in Pakistan. Food Nutr. Bull. 2017, 38, 485–500. [Google Scholar] [CrossRef]
- Berger, M.M.; Reintam-Blaser, A.; Calder, P.C.; Casaer, M.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, P.; Preiser, J.; van Zanten, A.; et al. Monitoring nutrition in the ICU. Clin. Nutr. 2019, 38, 584–593. [Google Scholar] [CrossRef]
- Gagnon, G.; Voirol, P.; Soguel, L.; Boulat, O.; Berger, M.M. Trace element monitoring in the ICU: Quality and economic impact of a change in sampling practice. Clin. Nutr. 2014, 34, 422–427. [Google Scholar] [CrossRef]
Situation | Stress Profile in High Risk Patients in Organ Failure * | Parenteral Nutrition (and Combined Feeding) | Enteral Nutrition |
---|---|---|---|
Micro-Nutrients | 1 vial multi-trace element (Addaven®, Fresenius Kabi, Oberdorf, Switzerland) + 5 mg Zinc + 1 vial multi-vitamin (Cernevit®, Baxter, Volketswil, Switzerland) + 500 mg vitamin C + 100 mg vitamin B1 | Same as stress profile | Multi-micronutrient providing DRI needs (Supradyn®, Roche, Basel, Switzerland) |
Duration Route | Diluted in 100 ml de NaCl 0.9% over 6 hours from admission for first 6 days during night shift | Daily with parenteral nutrition | Daily Mixed with enteral feeding |
Disease | Micronutrients at Risk |
---|---|
Alcoholism | Zn Vitamins A, D, E, K, B12, B9, B6, B1, B2, C |
Anemia | Fe, Cu, Co Vitamins B12, B9 |
Cardiomyopathies/ Heart failure | Se, Fe Vitamin B1, D ? |
Inflammatory bowel diseases | Se, Zn Vitamins B12, A, D, E, K |
Liver diseases | Se, Zn Vitamins B12, A, D, E |
Obesity and Bariatric surgery | Cu, Zn, Fe Vitamins A, D, E, K, B1, B9, B12, C |
Kidney diseases (chronic & acute) | Chronic: Vitamins K, D Acute: B1, Fe, Se, Zn, Cu |
Abbott | Abbott | Nestlé | Nestlé | Nestlé | Fresenius K | Fresenius K | Fresenius K | Nutricia | Nutricia | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Values for 1000 kcal | Promote Fibres Plus | Jevity Plus | NovaSource GI Advance | Isosource Energy | Peptamen Intense | Fresubin 2 kcal HP | Fresubin HP Energy | Fresubin Intensive | Nutrison Protein + Mulitf | Nutrison | DRI Adults |
Energy density kcal/ml | 1.3 | 1.2 | 1.55 | 1.57 | 1.0 | 2.0 | 1.5 | 1.2 | 1.3 | 1.0 | |
Proteins g/1000 kcal | 62.5 | 46.3 | 61.9 | 38.9 | 93.0 | 50.0 | 50.0 | 83.3 | 49.2 | 40.0 | |
Fer (Fe) mg | 12.3 | 15.0 | 11.0 | 10.2 | 16.0 | 13.5 | 8.7 | 16.7 | 15.6 | 16.0 | 18 |
Zinc (Zn) mg | 13.1 | 11.7 | 11.6 | 9.6 | 13 | 12 | 8.0 | 12.5 | 11.7 | 12 | 8 |
Cuivre (Cu) mg | 1.5 | 1.7 | 1.5 | 1.5 | 1.8 | 1.5 | 0.7 | 1.7 | 1.8 | 1.8 | 0.9 |
Manganèse (Mn) mg | 3.1 | 3.5 | 2.3 | 2.3 | 1.4 | 2.5 | 2.0 | 4.2 | 3.2 | 3.3 | 1.8 |
Fluor | 0.0 | 0.0 | 1.0 | 1.3 | 1.6 | 1.5 | 0.7 | 1.7 | 1.0 | 1.0 | 3 |
Iode (I) μg | 123 | 125 | 142 | 146 | 120 | 134 | 89 | 183 | 102 | 130 | 150 |
Molybdène (Mo) μg | 92 | 108 | 116 | 115 | 170 | 100 | 67 | 117 | 102 | 100 | 45 |
Chrome (Cr) μg | 54 | 67 | 97 | 96 | 60 | 67 | 45 | 92 | 65 | 67 | 20 |
Selenium (Se) μg | 65 | 63 | 65 | 64 | 80 | 67 | 45 | 88 | 55 | 57 | 55 |
A (RE) μg | 1154 | 700 | 1097 | 1083 | 650 | 925 | 613 | 1500 | 797 | 820 | 750 |
D μg | 6.9 | 8.3 | 14.2 | 14 | 14 | 10 | 8.7 | 17 | 13.3 | 10 | 10 |
E (α-TE) mg | 18.2 | 20 | 17.4 | 16.6 | 14 | 13.5 | 8.7 | 25 | 12.5 | 13 | 15 |
K μg | 54 | 67 | 71 | 76 | 44 | 67 | 45 | 75 | 52 | 53 | 90 |
C mg | 154 | 100 | 123 | 102 | 80 | 67 | 45 | 183 | 102 | 100 | 75 |
B1 mg | 1.5 | 1.6 | 1.6 | 1.5 | 1.0 | 1.5 | 0.7 | 1.7 | 1.5 | 1.5 | 1.1 |
B2 Riboflavin mg | 2.2 | 1.8 | 1.7 | 1.7 | 1.3 | 2.0 | 1.3 | 1.7 | 1.6 | 1.6 | 1.1 |
B3 Niacin mg | 21.5 | 18.3 | 20.0 | 17.2 | 30 | 16 | 11 | 20 | 18 | 18 | 14 |
B5 Pantothenic acid mg | 7.7 | 8.3 | 5.2 | 5.5 | 4.5 | 4.5 | 3.3 | 7.5 | 5.2 | 5.3 | 5 |
B6 Pyridoxin mg | 2.2 | 2.2 | 1.8 | 1.8 | 1.7 | 1.5 | 0.8 | 2.5 | 1.6 | 1.7 | 1.5 |
B12 Cyancobalamin μg | 4.6 | 2.9 | 3.8 | 3.7 | 2.9 | 2.5 | 2.0 | 4.2 | 2.0 | 2.1 | 2.4 |
B9 Folic acid μg | 231 | 250 | 290 | 287 | 300 | 267 | 180 | 263 | 258 | 270 | 400 |
B8 Biotin μg | 46 | 43 | 45 | 45 | 30 | 50 | 33 | 57 | 39 | 40 | 30 |
Choline mg | 462 | 500 | 368 | 382 | 670 | 0 | 178 | 0 | 359 | 370 | 425 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berger, M.M.; Pantet, O.; Schneider, A.; Ben-Hamouda, N. Micronutrient Deficiencies in Medical and Surgical Inpatients. J. Clin. Med. 2019, 8, 931. https://doi.org/10.3390/jcm8070931
Berger MM, Pantet O, Schneider A, Ben-Hamouda N. Micronutrient Deficiencies in Medical and Surgical Inpatients. Journal of Clinical Medicine. 2019; 8(7):931. https://doi.org/10.3390/jcm8070931
Chicago/Turabian StyleBerger, Mette M, Olivier Pantet, Antoine Schneider, and Nawfel Ben-Hamouda. 2019. "Micronutrient Deficiencies in Medical and Surgical Inpatients" Journal of Clinical Medicine 8, no. 7: 931. https://doi.org/10.3390/jcm8070931
APA StyleBerger, M. M., Pantet, O., Schneider, A., & Ben-Hamouda, N. (2019). Micronutrient Deficiencies in Medical and Surgical Inpatients. Journal of Clinical Medicine, 8(7), 931. https://doi.org/10.3390/jcm8070931