Comparison of the Effects of Denosumab and Alendronate on Cardiovascular and Renal Outcomes in Osteoporotic Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Cohort
2.2. Comparison Groups
2.3. Outcomes
2.4. Study Covariates
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. CVD Incidence
3.3. Renal Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sprini, D.; Rini, G.B.; Di Stefano, L.; Cianferotti, L.; Napoli, N. Correlation between osteoporosis and cardiovascular disease. Clin. Cases Miner. Bone Metab. 2014, 11, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Laroche, M.; Pécourneau, V.; Blain, H.; Breuil, V.; Chapurlat, R.; Cortet, B.; Sutter, B.; Degboe, Y. Osteoporosis and ischemic cardiovascular disease. Jt. Bone Spine 2017, 84, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Lampropoulos, C.E.; Papaioannou, I.; D’cruz, D.P. Osteoporosis—A risk factor for cardiovascular disease? Nat. Rev. Rheumatol. 2012, 8, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-J.; Lin, C.-S.; Lin, C.-L.; Kao, C.-H. Osteoporosis is associated with high risk for coronary heart disease: A population-based cohort study. Medicine 2015, 94, e1146. [Google Scholar] [CrossRef]
- Jamal, S.; West, S.; Miller, P. Fracture risk assessment in patients with chronic kidney disease. Osteoporos. Int. 2012, 23, 1191–1198. [Google Scholar] [CrossRef]
- Naylor, K.L.; McArthur, E.; Leslie, W.D.; Fraser, L.-A.; Jamal, S.A.; Cadarette, S.M.; Pouget, J.G.; Lok, C.E.; Hodsman, A.B.; Adachi, J.D. The three-year incidence of fracture in chronic kidney disease. Kidney Int. 2014, 86, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Mathew, R.O.; Bangalore, S.; Lavelle, M.P.; Pellikka, P.A.; Sidhu, M.S.; Boden, W.E.; Asif, A. Diagnosis and management of atherosclerotic cardiovascular disease in chronic kidney disease: A review. Kidney Int. 2017, 91, 797–807. [Google Scholar] [CrossRef]
- Liberman, M.; Pesaro, A.E.P.; Carmo, L.S.; Serrano, C.V., Jr. Vascular calcification: Pathophysiology and clinical implications. Einstein (São Paulo) 2013, 11, 376–382. [Google Scholar] [CrossRef]
- Disthabanchong, S. Vascular calcification in chronic kidney disease: Pathogenesis and clinical implication. World J. Nephrol. 2012, 1, 43–53. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2009, 76, S1–S130. [Google Scholar]
- Karwowski, W.; Naumnik, B.; Szczepański, M.; Myśliwiec, M. The mechanism of vascular calcification–a systematic review. Med. Sci. Monit. Int. Med J. Exp. Clin. Res. 2012, 18, RA1–RA11. [Google Scholar] [CrossRef] [PubMed]
- Ndip, A.; Wilkinson, F.L.; Jude, E.B.; Boulton, A.J.; Alexander, M.Y. RANKL–OPG and RAGE modulation in vascular calcification and diabetes: Novel targets for therapy. Diabetologia 2014, 57, 2251–2260. [Google Scholar] [CrossRef]
- Kearns, A.E.; Khosla, S.; Kostenuik, P.J. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev. 2007, 29, 155–192. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, B.; Zhou, S.-Q.; Fang, X.; Zhang, S.-Y.; Guan, S.-M. The function and meaning of receptor activator of NF-κB ligand in arterial calcification. J. Huazhong Univ. Sci. Technol. 2015, 35, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Kiechl, S.; Schett, G.; Schwaiger, J.; Seppi, K.; Eder, P.; Egger, G.; Santer, P.; Mayr, A.; Xu, Q.; Willeit, J. Soluble receptor activator of nuclear factor-kB ligand and risk for cardiovascular disease. Circulation 2007, 116, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Helas, S.; Goettsch, C.; Schoppet, M.; Zeitz, U.; Hempel, U.; Morawietz, H.; Kostenuik, P.J.; Erben, R.G.; Hofbauer, L.C. Inhibition of receptor activator of NF-κB ligand by denosumab attenuates vascular calcium deposition in mice. Am. J. Pathol. 2009, 175, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Cummings, S.R.; Martin, J.S.; McClung, M.R.; Siris, E.S.; Eastell, R.; Reid, I.R.; Delmas, P.; Zoog, H.B.; Austin, M.; Wang, A.; et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 2009, 361, 756–765. [Google Scholar] [CrossRef]
- Brown, J.P.; Prince, R.L.; Deal, C.; Recker, R.R.; Kiel, D.P.; De Gregorio, L.H.; Hadji, P.; Hofbauer, L.C.; Álvaro-Gracia, J.M.; Wang, H. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: A randomized, blinded, phase 3 trial. J. Bone Miner. Res. 2009, 24, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Freemantle, N.; Satram-Hoang, S.; Tang, E.-T.; Kaur, P.; Macarios, D.; Siddhanti, S.; Borenstein, J.; Kendler, D. Final results of the DAPS (Denosumab Adherence Preference Satisfaction) study: A 24-month, randomized, crossover comparison with alendronate in postmenopausal women. Osteoporos. Int. 2012, 23, 317–326. [Google Scholar] [CrossRef]
- Enjuanes, A.; Ruiz-Gaspà, S.; Peris, P.; Ozalla, D.; Álvarez, L.; Combalia, A.; de Osaba, M.J.M.; Monegal, A.; Pares, A.; Guañabens, N. The effect of the alendronate on OPG/RANKL system in differentiated primary human osteoblasts. Endocrine 2010, 37, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Hanley, D.; Adachi, J.; Bell, A.; Brown, V. Denosumab: Mechanism of action and clinical outcomes. Int. J. Clin. Pract. 2012, 66, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Chang Gung Memorial Hospital. About CGMH: Medical Service Overview: Chang Gung Medical Foundation. 2015. Available online: http://www.webcitation.org/76ciBI4kH (accessed on 4 March 2019).
- Cheng, T.-M. Taiwan’s new national health insurance program: Genesis and experience so far. Health Aff. 2003, 22, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Parsons, L.S. Performing a 1: N Case-Control Match on Propensity Score. In Proceedings of the 29th Annual SAS Users Group International Conference, Montreal, QC, Canada, 9–12 May 2004; pp. 165–229, SUGI 29 Paper. [Google Scholar]
- Austin, P.C. Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Commun. Stat. Simul. Comput. 2009, 38, 1228–1234. [Google Scholar] [CrossRef]
- Hofbauer, L.; Brueck, C.; Shanahan, C.; Schoppet, M.; Dobnig, H. Vascular calcification and osteoporosis—From clinical observation towards molecular understanding. Osteoporos. Int. 2007, 18, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Kiechl, S.; Schett, G.; Wenning, G.; Redlich, K.; Oberhollenzer, M.; Mayr, A.; Santer, P.; Smolen, J.; Poewe, W.; Willeit, J. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation 2004, 109, 2175–2180. [Google Scholar] [CrossRef] [PubMed]
- Tschiderer, L.; Willeit, J.; Schett, G.; Kiechl, S.; Willeit, P. Osteoprotegerin concentration and risk of cardiovascular outcomes in nine general population studies: Literature-based meta-analysis involving 26,442 participants. PLoS ONE 2017, 12, e0183910. [Google Scholar] [CrossRef]
- Sandberg, W.J.; Yndestad, A.; Øie, E.; Smith, C.; Ueland, T.; Ovchinnikova, O.; Robertson, A.-K.L.; Müller, F.; Semb, A.G.; Scholz, H.; et al. Enhanced T-cell expression of RANK ligand in acute coronary syndrome: Possible role in plaque destabilization. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 857–863. [Google Scholar] [CrossRef]
- Collin-Osdoby, P. Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ. Res. 2004, 95, 1046–1057. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, A.; Micari, A.; Altavilla, D.; Saporito, F.; Sardella, A.; Passaniti, M.; Raffa, S.; D’anneo, G.; Lucà, F.; Mioni, C.; et al. Serum levels of osteoprotegerin and RANKL in patients with ST elevation acute myocardial infarction. Clin. Sci. 2005, 109, 389–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samelson, E.J.; Miller, P.D.; Christiansen, C.; Daizadeh, N.S.; Grazette, L.; Anthony, M.S.; Egbuna, O.; Wang, A.; Siddhanti, S.R.; Cheung, A.M.; et al. RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J. Bone Miner. Res. 2014, 29, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Kendler, D.; McClung, M.; Freemantle, N.; Lillestol, M.; Moffett, A.; Borenstein, J.; Satram-Hoang, S.; Yang, Y.-C.; Kaur, P.; Macarios, D.; et al. Adherence, preference, and satisfaction of postmenopausal women taking denosumab or alendronate. Osteoporos. Int. 2011, 22, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Mascelli, M.A.; Zhou, H.; Sweet, R.; Getsy, J.; Davis, H.M.; Graham, M.; Abernethy, D. Molecular, biologic, and pharmacokinetic properties of monoclonal antibodies: Impact of these parameters on early clinical development. J. Clin. Pharmacol. 2007, 47, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Lewiecki, E.M. Denosumab: An investigational drug for the management of postmenopausal osteoporosis. Biol. Targets Ther. 2008, 2, 645–653. [Google Scholar] [CrossRef]
- Jamal, S.A.; Ljunggren, Ö.; Stehman-Breen, C.; Cummings, S.R.; McClung, M.R.; Goemaere, S.; Ebeling, P.R.; Franek, E.; Yang, Y.-C.; Egbuna, O.I.; et al. Effects of denosumab on fracture and bone mineral density by level of kidney function. J. Bone Miner. Res. 2011, 26, 1829–1835. [Google Scholar] [CrossRef]
- Sadowski, C.A.; Spencer, T.; Yuksel, N. Use of oral bisphosphonates by older adults with fractures and impaired renal function. Can. J. Hosp. Pharm. 2011, 64, 36–41. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Acharya, P.; Aeddula, N.R.; Torres-Ortiz, A.; Bathini, T.; Sharma, K.; Ungprasert, P.; Watthanasuntorn, K.; Suarez, M.L.G.; Salim, S.A.; et al. Effects of denosumab on bone metabolism and bone mineral density in kidney transplant patients: A systematic review and meta-analysis. Arch. Osteoporos. 2019, 14, 35. [Google Scholar] [CrossRef]
- Wilson, L.M.; Rebholz, C.M.; Jirru, E.; Liu, M.C.; Zhang, A.; Gayleard, J.; Chu, Y.; Robinson, K.A. Benefits and Harms of Osteoporosis Medications in Patients With Chronic Kidney Disease: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2017, 166, 649–658. [Google Scholar] [CrossRef]
- Yamasaki, M.; Yuasa, T.; Uehara, S.; Fujii, Y.; Yamamoto, S.; Masuda, H.; Fukui, I.; Yonese, J. Improvement of renal function by changing the bone-modifying agent from zoledronic acid to denosumab. Int. J. Clin. Oncol. 2016, 21, 1191–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurata, T.; Nakagawa, K. Efficacy and safety of denosumab for the treatment of bone metastases in patients with advanced cancer. Jpn. J. Clin. Oncol. 2012, 42, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.; Terpos, E.; Willenbacher, W.; Shimizu, K.; García-Sanz, R.; Durie, B.; Legieć, W.; Krejčí, M.; Laribi, K.; Zhu, L.; et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: An international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol. 2018, 19, 370–381. [Google Scholar] [CrossRef]
- Banerjee, D.; Asif, A.; Striker, L.; Preston, R.A.; Bourgoignie, J.J.; Roth, D. Short-term, high-dose pamidronate-induced acute tubular necrosis: The postulated mechanisms of bisphosphonate nephrotoxicity. Am. J. Kidney Dis. 2003, 41, e18.1–e18.6. [Google Scholar] [CrossRef]
- Markowitz, G.S.; Fine, P.L.; Stack, J.I.; Kunis, C.L.; Radhakrishnan, J.; Palecki, W.; Park, J.; Nasr, S.H.; Hoh, S.; Siegel, D.S. Toxic acute tubular necrosis following treatment with zoledronate (Zometa). Kidney Int. 2003, 64, 281–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, P.D.; Jamal, S.A.; Evenepoel, P.; Eastell, R.; Boonen, S. Renal safety in patients treated with bisphosphonates for osteoporosis: A review. J. Bone Miner. Res. 2013, 28, 2049–2059. [Google Scholar] [CrossRef]
Before PSM | After PSM | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Denosumab (n = 3536) | Alendronate (n = 12,883) | SMD | Overall | Denosumab (n = 2523) | Alendronate (n = 2523) | SMD | |||||
n | n | (%) | n | (%) | n | n | (%) | n | (%) | |||
Age at the index date, years Mean ± SD | 16,419 | 72.98 | ±9.87 | 68.72 | ±12.33 | 0.38 | 5046 | 71.59 | ±10.13 | 71.22 | ±10.23 | 0.04 |
Sex | ||||||||||||
Male | 3377 | 486 | (13.74) | 2891 | (22.44) | 0.23 | 841 | 439 | (17.40) | 402 | (15.93) | 0.04 |
Female | 13,042 | 3050 | (86.26) | 9992 | (77.56) | 0.23 | 4205 | 2084 | (82.60) | 2121 | (84.07) | 0.04 |
Baseline eGFR Mean ± SD | 16,419 | 72.13 | (30.57) | 77.01 | (26.47) | 0.17 | 5046 | 78.35 | (29.65) | 78.77 | (26.29) | 0.01 |
Baseline comorbid conditions | ||||||||||||
Peripheral vascular diseases | 237 | 71 | (2.01) | 166 | (1.29) | 0.06 | 90 | 47 | (1.86) | 43 | (1.70) | 0.01 |
Dementia | 642 | 206 | (5.83) | 436 | (3.38) | 0.12 | 224 | 110 | (4.36) | 114 | (4.52) | 0.01 |
Pulmonary disease | 1903 | 435 | (12.30) | 1468 | (11.39) | 0.03 | 575 | 292 | (11.57) | 283 | (11.22) | 0.01 |
Connective tissue disorder | 711 | 167 | (4.72) | 544 | (4.22) | 0.02 | 260 | 123 | (4.88) | 137 | (5.43) | 0.03 |
Peptic ulcer | 2917 | 746 | (21.10) | 2171 | (16.85) | 0.11 | 992 | 489 | (19.38) | 503 | (19.94) | 0.01 |
Liver diseases | 1981 | 496 | (14.03) | 1485 | (11.53) | 0.07 | 710 | 353 | (13.99) | 357 | (14.15) | 0.00 |
Diabetes | 3738 | 963 | (27.23) | 2775 | (21.54) | 0.13 | 1188 | 588 | (23.31) | 600 | (23.78) | 0.01 |
Diabetes complications | 968 | 298 | (8.43) | 670 | (5.20) | 0.13 | 374 | 182 | (7.21) | 192 | (7.61) | 0.02 |
Paraplegia | 142 | 20 | (0.57) | 122 | (0.95) | 0.04 | 40 | 19 | (0.75) | 21 | (0.83) | 0.01 |
Renal disease | 1158 | 531 | (15.02) | 627 | (4.87) | 0.34 | 443 | 231 | (9.16) | 212 | (8.40) | 0.03 |
Severe liver diseases | 82 | 24 | (0.68) | 58 | (0.45) | 0.03 | 25 | 13 | (0.52) | 12 | (0.48) | 0.01 |
Metastatic cancer | 14 | 2 | (0.06) | 12 | (0.09) | 0.01 | 3 | 2 | (0.08) | 1 | (0.04) | 0.02 |
Hypertension | 7195 | 1867 | (52.80) | 5328 | (41.36) | 0.23 | 2388 | 1208 | (47.88) | 1180 | (46.77) | 0.02 |
Hyperlipidemia | 3849 | 1078 | (30.49) | 2771 | (21.51) | 0.21 | 1428 | 718 | (28.46) | 710 | (28.14) | 0.01 |
Thyroid function abnormal | 280 | 96 | (2.71) | 184 | (1.43) | 0.09 | 108 | 53 | (2.10) | 55 | (2.18) | 0.01 |
Obstructive sleep apnea | 131 | 84 | (2.38) | 47 | (0.36) | 0.17 | 98 | 55 | (2.18) | 43 | (1.70) | 0.03 |
Fracture | 5871 | 1358 | (38.40) | 4513 | (35.03) | 0.07 | 1707 | 865 | (34.28) | 842 | (33.37) | 0.02 |
Prior medications | ||||||||||||
Oral anticoagulants | 247 | 85 | (2.40) | 162 | (1.26) | 0.09 | 118 | 59 | (2.34) | 59 | (2.34) | 0.00 |
Anti-platelet agents | 2623 | 584 | (16.52) | 2039 | (15.83) | 0.02 | 792 | 404 | (16.01) | 388 | (15.38) | 0.02 |
Aspirin | 2033 | 447 | (12.64) | 1586 | (12.31) | 0.01 | 626 | 318 | (12.60) | 308 | (12.21) | 0.01 |
Statins | 2825 | 843 | (23.84) | 1982 | (15.38) | 0.21 | 1094 | 551 | (21.84) | 543 | (21.52) | 0.01 |
Fibrates | 355 | 83 | (2.35) | 272 | (2.11) | 0.02 | 110 | 61 | (2.42) | 49 | (1.94) | 0.03 |
Other lipid-lowering agents | 68 | 17 | (0.48) | 51 | (0.40) | 0.01 | 24 | 12 | (0.48) | 12 | (0.48) | 0.00 |
Anti-diabetic agents | 3072 | 768 | (21.72) | 2304 | (17.88) | 0.10 | 1000 | 490 | (19.42) | 510 | (20.21) | 0.02 |
ACEI/ARB/Aliskiren | 4293 | 1170 | (33.09) | 3123 | (24.24) | 0.20 | 1533 | 773 | (30.64) | 760 | (30.12) | 0.01 |
Diuretics | 800 | 151 | (4.27) | 649 | (5.04) | 0.04 | 194 | 99 | (3.92) | 95 | (3.77) | 0.01 |
Bisphosphonates | 18 | 4 | (0.11) | 14 | (0.11) | 0.00 | 5 | 2 | (0.08) | 3 | (0.12) | 0.01 |
Raloxifene | 558 | 188 | (5.32) | 370 | (2.87) | 0.12 | 178 | 97 | (3.84) | 81 | (3.21) | 0.03 |
Teriparatide | 186 | 71 | (2.01) | 115 | (0.89) | 0.09 | 74 | 36 | (1.43) | 38 | (1.51) | 0.01 |
Calcitonin preparations | 368 | 22 | (0.62) | 346 | (2.69) | 0.16 | 40 | 20 | (0.79) | 20 | (0.79) | 0.00 |
Year of index date | ||||||||||||
2012 | 1463 | 324 | (9.16) | 1139 | (8.84) | 0.01 | 608 | 314 | (12.45) | 294 | (11.65) | 0.02 |
2013 | 1446 | 628 | (17.76) | 818 | (6.35) | 0.36 | 1065 | 526 | (20.85) | 539 | (21.36) | 0.01 |
2014 | 1342 | 686 | (19.40) | 656 | (5.09) | 0.45 | 1008 | 493 | (19.54) | 515 | (20.41) | 0.02 |
2015 | 1458 | 786 | (22.23) | 672 | (5.22) | 0.51 | 1126 | 567 | (22.47) | 559 | (22.16) | 0.01 |
2016 | 1077 | 634 | (17.93) | 443 | (3.44) | 0.48 | 789 | 397 | (15.74) | 392 | (15.54) | 0.01 |
2017 | 710 | 478 | (13.52) | 232 | (1.80) | 0.45 | 450 | 226 | (8.96) | 224 | (8.88) | 0.00 |
Denosumab | Alendronate | p-Value | |||
---|---|---|---|---|---|
Overall | n = 2523 | n = 2523 | |||
Any CVD, n (%) | 201 | (7.97) | 170 | (6.74) | 0.0945 |
Myocardial infarction | 26 | (1.03) | 25 | (0.99) | 0.8881 |
Ischemic stroke | 131 | (5.19) | 113 | (4.48) | 0.2375 |
Congestive heart failure | 75 | (2.97) | 55 | (2.18) | 0.0755 |
Time to event, years | |||||
Mean ± SD | 1.57 | ±1.23 | 1.58 | ±1.21 | |
Median (25th, 75th) | 1.31 | (0.54, 2.40) | 1.31 | (0.65, 1.31) | |
MPR of treatment ≥60% | n = 1608 | n = 660 | |||
Any CVD, n (%) | 146 | (9.08) | 68 | (10.30) | 0.3653 |
Myocardial infarction | 16 | (1.00) | 11 | (1.67) | 0.1804 |
Ischemic stroke | 94 | (5.85) | 46 | (6.97) | 0.3124 |
Congestive heart failure | 59 | (3.67) | 23 | (3.48) | 0.8309 |
Time to event, years | |||||
Mean ± SD | 1.29 | ±1.14 | 1.01 | ±1.01 | |
Median (25th, 75th) | 0.99 | (0.38, 1.77) | 0.77 | (0.20, 1.49) | |
MPR of medications <60% | n = 915 | n = 1863 | |||
Any CVD, n (%) | 55 | (6.01) | 102 | (5.48) | 0.5654 |
Myocardial infarction | 10 | (1.09) | 14 | (0.75) | 0.3608 |
Ischemic stroke | 37 | (4.04) | 67 | (3.60) | 0.5594 |
Congestive heart failure | 16 | (1.75) | 32 | (1.72) | 0.9530 |
Time to event, years | |||||
Mean ± SD | 2.31 | ±1.14 | 1.96 | ±1.19 | |
Median (25th, 75th) | 2.48 | (1.46, 3.01) | 1.90 | (1.02, 2.69) |
Variables | Overall | MPR of Medications ≥60% # | MPR of Medications <60% | ||||||
---|---|---|---|---|---|---|---|---|---|
AHR | 95% CI | p-Value | AHR | 95% CI | p-Value | AHR | 95% CI | p-Value | |
Denosumab (vs. Alendronate) | 1.03 | (0.84, 1.26) | 0.8071 | 0.74 | (0.55, 1.00) | 0.0493 | 1.04 | (0.73, 1.50) | 0.8178 |
Median dose of treatment | |||||||||
≥ median dose (vs. < median dose) | 2.37 | (1.91, 2.93) | <0.0001 | 2.59 | (1.57, 4.26) | 0.0002 | 1.65 | (1.11, 2.45) | 0.0130 |
Age group | |||||||||
≥65 (vs. <65) years | 2.84 | (1.93, 4.16) | <0.0001 | 2.92 | (1.76, 4.86) | <0.0001 | 2.75 | (1.54, 4.92) | 0.0006 |
Sex | |||||||||
Male (vs. Female) | 1.31 | (1.00, 1.71) | 0.0479 | 1.15 | (0.81, 1.64) | 0.4281 | 1.40 | (0.94, 2.10) | 0.0984 |
Baseline eGFR group | |||||||||
<60 (vs. ≥60) mL/min/1.73 m2 | 1.77 | (1.43, 2.20) | <0.0001 | 1.74 | (1.31, 2.32) | 0.0001 | 1.83 | (1.32, 2.53) | 0.0003 |
CVD-related risks * | |||||||||
1–2 (vs. 0) | 1.92 | (1.42, 2.58) | <0.0001 | 1.81 | (1.23, 2.64) | 0.0024 | 2.12 | (1.31, 3.44) | 0.0023 |
≥3 (vs. 0) | 1.99 | (1.38, 2.86) | 0.0002 | 2.09 | (1.29, 3.39) | 0.0027 | 1.94 | (1.09, 3.46) | 0.0249 |
Baseline comorbidities | |||||||||
Thyroid function abnormal | 0.85 | (0.38, 1.93) | 0.7038 | 0.28 | (0.04, 2.03) | 0.2087 | 1.43 | (0.58, 3.53) | 0.4447 |
Obstructive sleep apnea | 2.12 | (0.93, 4.83) | 0.0737 | 1.54 | (0.56, 4.20) | 0.4015 | 4.20 | (1.00, 17.71) | 0.0503 |
Fracture | 1.32 | (1.07, 1.62) | 0.0100 | 1.26 | (0.96, 1.67) | 0.0985 | 1.44 | (1.05, 1.98) | 0.0245 |
Concomitant medications | |||||||||
Anti-thrombotic agents | 1.69 | (1.34, 2.12) | <0.0001 | 1.46 | (1.07, 1.99) | 0.0172 | 2.04 | (1.45, 2.87) | <0.0001 |
Lipid-lowering agents | 0.63 | (0.49, 0.81) | 0.0003 | 0.55 | (0.39, 0.77) | 0.0006 | 0.76 | (0.52, 1.11) | 0.1521 |
Anti-diabetic agents | 1.37 | (1.05, 1.79) | 0.0191 | 1.16 | (0.80, 1.68) | 0.4337 | 1.63 | (1.10, 2.40) | 0.0142 |
Anti-hypertensive agents | 0.74 | (0.58, 0.95) | 0.0164 | 0.64 | (0.46, 0.89) | 0.0072 | 0.87 | (0.59, 1.27) | 0.4623 |
Other osteoporosis therapy | 0.60 | (0.37, 0.97) | 0.0366 | 0.44 | (0.16, 1.18) | 0.1019 | 0.68 | (0.39, 1.19) | 0.1803 |
Denosumab (n = 2523) | Alendronate (n = 2523) | p-Value | |
---|---|---|---|
Decline in eGFR (per year), | |||
Mean ± SD | -0.25 ± 30.91 | 1.46 ± 48.24 | |
Median (25th, 75th) | 0.71 (-3.41,4.90) | 0.38 (−3.30,4.90) | |
Decline of eGFR ≥ 30% | |||
Event, n (%) | 302 (11.97) | 257 (10.19) | 0.0436 |
Time to event, years, mean ± SD | 2.42 ± 1.58 | 2.39 ± 1.58 | 0.7564 |
Occurrence of AKI | |||
Even, n (%) | 96 (47.06) | 51 (35.66) | 0.0345 |
Time to event, years, mean ± SD | 2.42 ± 1.59 | 2.28 ± 1.42 | 0.5215 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, T.-W.; Hsu, C.-N.; Wang, S.-W.; Huang, C.-C.; Li, L.-C. Comparison of the Effects of Denosumab and Alendronate on Cardiovascular and Renal Outcomes in Osteoporotic Patients. J. Clin. Med. 2019, 8, 932. https://doi.org/10.3390/jcm8070932
Hsu T-W, Hsu C-N, Wang S-W, Huang C-C, Li L-C. Comparison of the Effects of Denosumab and Alendronate on Cardiovascular and Renal Outcomes in Osteoporotic Patients. Journal of Clinical Medicine. 2019; 8(7):932. https://doi.org/10.3390/jcm8070932
Chicago/Turabian StyleHsu, Tsuen-Wei, Chien-Ning Hsu, Shih-Wei Wang, Chiang-Chi Huang, and Lung-Chih Li. 2019. "Comparison of the Effects of Denosumab and Alendronate on Cardiovascular and Renal Outcomes in Osteoporotic Patients" Journal of Clinical Medicine 8, no. 7: 932. https://doi.org/10.3390/jcm8070932
APA StyleHsu, T. -W., Hsu, C. -N., Wang, S. -W., Huang, C. -C., & Li, L. -C. (2019). Comparison of the Effects of Denosumab and Alendronate on Cardiovascular and Renal Outcomes in Osteoporotic Patients. Journal of Clinical Medicine, 8(7), 932. https://doi.org/10.3390/jcm8070932