Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use
Abstract
:1. Introduction
2. Objectives
3. Methods
4. Results and Discussion
4.1. The Regulatory Environment of Medical Cannabis Use
4.2. Increasing Consumer and Complementary CBD Use
4.3. Federally Approved CBD Products
4.4. Potential for Adverse Drug Events and Drug–Drug Interactions
4.5. Molecular Targets of CBD
4.6. Metabolic Inhibition and Induction
4.7. Phase II Metabolic Pathways
4.8. Drug Transport, Absorption, and Efflux
4.9. Synergistic Pharmacodynamic Effects
4.9.1. Transaminase Elevation and Hepatic Injury
4.9.2. Somnolence, Sedation, and Asthenic Conditions
4.9.3. Insomnia and Sleep Disruption
4.9.4. Suicidal Thoughts and Behavior
4.9.5. Weight Loss, Infection, and Anemia
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Hall, W.; Renstrom, M.; Poznyak, V. (Eds.) The Health and Social Effects of Nonmedical Cannabis Use; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- State Medical Marijuana Laws. National Conference of State Legislatures (NCSL). Available online: http://www.ncsl.org/research/health/state-medical-marijuana-laws.aspx (accessed on 9 June 2019).
- Jiang, R.; Yamaori, S.; Takeda, S.; Yamamoto, I.; Watanabe, K. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Life Sci. 2011, 89, 165–170. [Google Scholar] [CrossRef]
- Ibeas Bih, C.; Chen, T.; Nunn, A.V.; Bazelot, M.; Dallas, M.; Whalley, B.J. Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics 2015, 12, 699–730. [Google Scholar] [CrossRef] [Green Version]
- Elsohly, M.A.; Slade, D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sci. 2005, 78, 539–548. [Google Scholar] [CrossRef] [PubMed]
- ElSohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis sativa L. Prog. Chem. Org. Nat. Prod. 2017, 103, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, M.M.; Queiroz, R.H.; Zuardi, A.W.; Crippa, J.A. Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr. Drug Saf. 2011, 6, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Iffland, K.; Grotenhermen, F. An Update on Safety and Side Effects of Cannabidiol: A Review of Clinical Data and Relevant Animal Studies. Cannabis Cannabinoid Res. 2017, 2, 139–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sativex(R) (Delta-9-Tetrahydrocannabinol and Cannabidiol). GW Pharma Ltd. Available online: https://www.bayer.ca/omr/online/sativex-pm-en.pdf (accessed on 9 June 2019).
- EPIDIOLEX (Cannabidiol) Prescribing Information. Available online: https://www.epidiolex.com/sites/default/files/EPIDIOLEX_Full_Prescribing_Information.pdf (accessed on 9 June 2019).
- Drug Approval Package: Epidiolex (Cannabidiol). GW Research Ltd. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210365Orig1s000TOC.cfm (accessed on 9 June 2019).
- Number of Legal Medical Marijuana Patients. Available online: https://medicalmarijuana.procon.org/view.resource.php?resourceID=005889 (accessed on 9 June 2019).
- Wong, S.S.; Wilens, T.E. Medical Cannabinoids in Children and Adolescents: A Systematic Review. Pediatrics 2017, 140. [Google Scholar] [CrossRef]
- Sexton, M.; Cuttler, C.; Finnell, J.S.; Mischley, L.K. A Cross-Sectional Survey of Medical Cannabis Users: Patterns of Use and Perceived Efficacy. Cannabis Cannabinoid Res. 2016, 1, 131–138. [Google Scholar] [CrossRef]
- Lucas, P.; Walsh, Z. Medical cannabis access, use, and substitution for prescription opioids and other substances: A survey of authorized medical cannabis patients. Int. J. Drug Policy 2017, 42, 30–35. [Google Scholar] [CrossRef]
- Han, B.H.; Sherman, S.; Mauro, P.M.; Martins, S.S.; Rotenberg, J.; Palamar, J.J. Demographic trends among older cannabis users in the United States, 2006–2013. Addiction 2017, 112, 516–525. [Google Scholar] [CrossRef]
- Whiting, P.F.; Wolff, R.F.; Deshpande, S.; Di Nisio, M.; Duffy, S.; Hernandez, A.V.; Keurentjes, J.C.; Lang, S.; Misso, K.; Ryder, S.; et al. Cannabinoids for Medical Use: A Systematic Review and Meta-analysis. JAMA 2015, 313, 2456–2473. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Burnell-Nugent, M.; Lossignol, D.; Ganae-Motan, E.D.; Potts, R.; Fallon, M.T. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J. Pain Symptom Manag. 2010, 39, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Da Rovare, V.P.; Magalhaes, G.P.A.; Jardini, G.D.A.; Beraldo, M.L.; Gameiro, M.O.; Agarwal, A.; Luvizutto, G.J.; Paula-Ramos, L.; Camargo, S.E.A.; de Oliveira, L.D.; et al. Cannabinoids for spasticity due to multiple sclerosis or paraplegia: A systematic review and meta-analysis of randomized clinical trials. Complement. Ther. Med. 2017, 34, 170–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuardi, A.W.; Shirakawa, I.; Finkelfarb, E.; Karniol, I.G. Action of cannabidiol on the anxiety and other effects produced by delta 9-THC in normal subjects. Psychopharmacology 1982, 76, 245–250. [Google Scholar] [CrossRef] [PubMed]
- De Mello Schier, A.R.; de Oliveira Ribeiro, N.P.; Coutinho, D.S.; Machado, S.; Arias-Carrion, O.; Crippa, J.A.; Zuardi, A.W.; Nardi, A.E.; Silva, A.C. Antidepressant-like and anxiolytic-like effects of cannabidiol: A chemical compound of Cannabis sativa. CNS Neurol Disord. Drug Targets 2014, 13, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Leweke, F.M.; Piomelli, D.; Pahlisch, F.; Muhl, D.; Gerth, C.W.; Hoyer, C.; Klosterkotter, J.; Hellmich, M.; Koethe, D. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl. Psychiatry 2012, 2, e94. [Google Scholar] [CrossRef] [PubMed]
- Crippa, J.A.S.; Hallak, J.E.C.; Zuardi, A.W.; Guimaraes, F.S.; Tumas, V.; Dos Santos, R.G. Is cannabidiol the ideal drug to treat non-motor Parkinson’s disease symptoms? Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 121–133. [Google Scholar] [CrossRef]
- Agriculture Improvement Act of 2018, 115th Congress of the United States of America (2017–2018). 2018.
- Gottlieb, S. Statement from FDA Commissioner Scott Gottlieb, M.D., on Signing of the Agriculture Improvement Act and the Agency’s Regulation of Products Containing Cannabis and Cannabis-Derived Compounds. U.S. Food and Drug Administration. Available online: https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-signing-agriculture-improvement-act-and-agencys (accessed on 9 June 2019).
- FDA Regulation of Cannabis and Cannabis-Derived Products: Questions and Answers. U.S. Food and Drug Administration. Available online: https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-questions-and-answers (accessed on 9 June 2019).
- Azer, V.; Blackledge, J.; Charles, A.M.; Chen, O.; Kernan, J.; Nadeua, P.; Neivert, C.; Osborne, J.; Rhyee, C.; Schenkel, D. Cowen’s Collective View of CBD. Cowen’s Research. Available online: https://www.cowen.com/reports/cowen-collective-view-of-cbd/ (accessed on 9 June 2019).
- Devinsky, O.; Marsh, E.; Friedman, D.; Thiele, E.; Laux, L.; Sullivan, J.; Miller, I.; Flamini, R.; Wilfong, A.; Filloux, F.; et al. Cannabidiol in patients with treatment-resistant epilepsy: An open-label interventional trial. Lancet Neurol. 2016, 15, 270–278. [Google Scholar] [CrossRef]
- Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef]
- Kaur, R.; Ambwani, S.R.; Singh, S. Endocannabinoid System: A Multi-Facet Therapeutic Target. Curr. Clin. Pharmacol. 2016, 11, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Zhornitsky, S.; Potvin, S. Cannabidiol in humans-the quest for therapeutic targets. Pharmaceuticals 2012, 5, 529–552. [Google Scholar] [CrossRef] [PubMed]
- Lunn, C.A.; Reich, E.P.; Bober, L. Targeting the CB2 receptor for immune modulation. Expert Opin. Ther. Targets 2006, 10, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, R.G. Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci. 2005, 76, 1307–1324. [Google Scholar] [CrossRef] [PubMed]
- Pisanti, S.; Malfitano, A.M.; Ciaglia, E.; Lamberti, A.; Ranieri, R.; Cuomo, G.; Abate, M.; Faggiana, G.; Proto, M.C.; Fiore, D.; et al. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol. Ther. 2017, 175, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J. Novel cannabinoid receptors. Br. J. Pharmacol. 2007, 152, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Stott, C.; White, L.; Wright, S.; Wilbraham, D.; Guy, G. A Phase I, open-label, randomized, crossover study in three parallel groups to evaluate the effect of Rifampicin, Ketoconazole, and Omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers. Springerplus 2013, 2, 236. [Google Scholar] [CrossRef]
- Geffrey, A.L.; Pollack, S.F.; Bruno, P.L.; Thiele, E.A. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia 2015, 56, 1246–1251. [Google Scholar] [CrossRef]
- Gaston, T.E.; Bebin, E.M.; Cutter, G.R.; Liu, Y.; Szaflarski, J.P. Interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia 2017, 58, 1586–1592. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Yamaori, S.; Okamoto, Y.; Yamamoto, I.; Watanabe, K. Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19. Drug Metab. Pharmacokinet. 2013, 28, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Yamaori, S.; Okamoto, Y.; Yamamoto, I.; Watanabe, K. Cannabidiol, a major phytocannabinoid, as a potent atypical inhibitor for CYP2D6. Drug Metab. Dispos. 2011, 39, 2049–2056. [Google Scholar] [CrossRef] [PubMed]
- Yamaori, S.; Kushihara, M.; Yamamoto, I.; Watanabe, K. Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes. Biochem. Pharmacol. 2010, 79, 1691–1698. [Google Scholar] [CrossRef] [PubMed]
- Yamaori, S.; Okushima, Y.; Yamamoto, I.; Watanabe, K. Characterization of the structural determinants required for potent mechanism-based inhibition of human cytochrome P450 1A1 by cannabidiol. Chem. Biol. Interact. 2014, 215, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Yamaori, S.; Koeda, K.; Kushihara, M.; Hada, Y.; Yamamoto, I.; Watanabe, K. Comparison in the in vitro inhibitory effects of major phytocannabinoids and polycyclic aromatic hydrocarbons contained in marijuana smoke on cytochrome P450 2C9 activity. Drug Metab. Pharmacokinet. 2012, 27, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Yamaori, S.; Ebisawa, J.; Okushima, Y.; Yamamoto, I.; Watanabe, K. Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: Role of phenolic hydroxyl groups in the resorcinol moiety. Life Sci. 2011, 88, 730–736. [Google Scholar] [CrossRef]
- Arnold, W.R.; Weigle, A.T.; Das, A. Cross-talk of cannabinoid and endocannabinoid metabolism is mediated via human cardiac CYP2J2. J. Inorg. Biochem. 2018, 184, 88–99. [Google Scholar] [CrossRef]
- Zhou, Z.W.; Chen, X.W.; Sneed, K.B.; Yang, Y.X.; Zhang, X.; He, Z.X.; Chow, K.; Yang, T.; Duan, W.; Zhou, S.F. Clinical association between pharmacogenomics and adverse drug reactions. Drugs 2015, 75, 589–631. [Google Scholar] [CrossRef]
- Van Driest, S.L.; Shi, Y.; Bowton, E.A.; Schildcrout, J.S.; Peterson, J.F.; Pulley, J.; Denny, J.C.; Roden, D.M. Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin. Pharmacol. Ther. 2014, 95, 423–431. [Google Scholar] [CrossRef]
- Al Saabi, A.; Allorge, D.; Sauvage, F.L.; Tournel, G.; Gaulier, J.M.; Marquet, P.; Picard, N. Involvement of UDP-glucuronosyltransferases UGT1A9 and UGT2B7 in ethanol glucuronidation, and interactions with common drugs of abuse. Drug Metab. Dispos. 2013, 41, 568–574. [Google Scholar] [CrossRef]
- Ujvary, I.; Hanus, L. Human Metabolites of Cannabidiol: A Review on Their Formation, Biological Activity, and Relevance in Therapy. Cannabis Cannabinoid Res. 2016, 1, 90–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonn-Miller, M.O.; Loflin, M.J.E.; Thomas, B.F.; Marcu, J.P.; Hyke, T.; Vandrey, R. Labeling Accuracy of Cannabidiol Extracts Sold Online. JAMA 2017, 318, 1708–1709. [Google Scholar] [CrossRef] [PubMed]
- Madras, B.K. Are THC Levels in Oral Fluids and Blood Plasma Comparable after Oral Ingestion of Edibles Containing Cannabis or THC? Clin. Chem. 2017, 63, 629–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandrey, R.; Herrmann, E.S.; Mitchell, J.M.; Bigelow, G.E.; Flegel, R.; LoDico, C.; Cone, E.J. Pharmacokinetic Profile of Oral Cannabis in Humans: Blood and Oral Fluid Disposition and Relation to Pharmacodynamic Outcomes. J. Anal. Toxicol. 2017, 41, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Karschner, E.L.; Darwin, W.D.; Goodwin, R.S.; Wright, S.; Huestis, M.A. Plasma cannabinoid pharmacokinetics following controlled oral delta9-tetrahydrocannabinol and oromucosal cannabis extract administration. Clin. Chem. 2011, 57, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Schwope, D.M.; Karschner, E.L.; Gorelick, D.A.; Huestis, M.A. Identification of recent cannabis use: Whole-blood and plasma free and glucuronidated cannabinoid pharmacokinetics following controlled smoked cannabis administration. Clin. Chem. 2011, 57, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.I.; Vizoso, H.P.; Shade, S.B.; Jay, C.; Kelly, M.E.; Benowitz, N.L. Vaporization as a smokeless cannabis delivery system: A pilot study. Clin. Pharmacol. Ther. 2007, 82, 572–578. [Google Scholar] [CrossRef]
- Martin, J.H.; Schneider, J.; Lucas, C.J.; Galettis, P. Exogenous Cannabinoid Efficacy: Merely a Pharmacokinetic Interaction? Clin. Pharmacokinet. 2018, 57, 539–545. [Google Scholar] [CrossRef]
- Ferro, M.A. Major depressive disorder, suicidal behaviour, bipolar disorder, and generalised anxiety disorder among emerging adults with and without chronic health conditions. Epidemiol. Psychiatr. Sci. 2016, 25, 462–474. [Google Scholar] [CrossRef]
- Fassberg, M.M.; Cheung, G.; Canetto, S.S.; Erlangsen, A.; Lapierre, S.; Lindner, R.; Draper, B.; Gallo, J.J.; Wong, C.; Wu, J.; et al. A systematic review of physical illness, functional disability, and suicidal behaviour among older adults. Aging Ment. Health 2016, 20, 166–194. [Google Scholar] [CrossRef]
- Mitchell, J.E.; Crow, S. Medical complications of anorexia nervosa and bulimia nervosa. Curr. Opin. Psychiatry 2006, 19, 438–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salama, A. Drug-induced immune hemolytic anemia. Expert Opin. Drug Saf. 2009, 8, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Hesdorffer, C.S.; Longo, D.L. Drug-Induced Megaloblastic Anemia. N. Engl. J. Med. 2015, 373, 1649–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadoon, K.A.; Tan, G.D.; O’Sullivan, S.E. A single dose of cannabidiol reduces blood pressure in healthy volunteers in a randomized crossover study. JCI Insight 2017, 2. [Google Scholar] [CrossRef] [PubMed]
Product (Approval Date) | Active Ingredient(s) | Dosage Form | Route | Recommended Dose | Indication(s) |
---|---|---|---|---|---|
SATIVEX a (2011–2012) | Delta-9-THC and cannabidiol | Solution, spray | Buccal Spray | Titrated up to 12 sprays per day (patient median is 4–8 sprays). 2.7 mg THC and 2.5 mg CBD per spray. | Adjunctive treatment of spasticity and neuropathic pain in MS |
Adjunctive analgesic for moderate to severe pain in advanced cancer | |||||
EPIDIOLEX (2018) b | Cannabidiol | Solution | Oral | 2.5 mg/kg 2 × daily; maintenance 5 mg/kg 2 × daily; max 10 mg/kg 2 × daily | Seizures associated with Lennox–Gastaut or Dravet syndrome |
Enzyme | Medication Examples | Effect/Recommendation |
---|---|---|
CYP3A4 substrates | Immunosuppressants, chemotherapeutics, antidepressants, antipsychotics, opioids, benzodiazepines, z-hypnotics, statins, calcium channel blockers, others | Increased risk of side effects related to substrate. Avoid co-administration, reduce substrate dose, monitor for adverse effects and toxicity. Avoid prescribing cascade with new treatment for side effects. |
CYP3A4 inhibitors | Strong: Protease inhibitors, ketoconazole, loperamide, nefazodone Moderate: Amiodarone, verapamil, cimetidine, aprepitant, imatinib | Increased CBD bioavailability, possible increase in risk of adverse effects. Reduce CBD dose. |
CYP3A4 inducers | Strong: Enzalutamide, phenytoin Moderate: Carbamazepine, topiramate, phenobarbital, rifampicin, efavirenz, pioglitazone | Decreased CBD bioavailability, possible decrease in CBD effectiveness. Increase CBD dose. |
CYP2C19 substrates | Antidepressants, antiepileptics, proton pump inhibitors, clopidogrel, propranolol, carisoprodol, cyclophosphamide, warfarin | Increased risk of side effects related to substrate. Avoid co-administration, reduce substrate dose, monitor for adverse effects and toxicity. Avoid prescribing cascade with new treatment for side effects. |
CYP2C19 inhibitors | Strong: Fluvoxamine, fluoxetine Other: Proton pump inhibitors, cimetidine, ketoconazole, clopidogrel, fluconazole, efavirenz | Increased CBD bioavailability, possible increase in risk of adverse effects. Reduce CBD dose. |
CYP2C19 inducers | Rifampin, carbamazepine, phenobarbital, phenytoin, St. John’s Wort | Decreased CBD bioavailability, possible decrease in CBD effectiveness. Increase CBD dose. |
CYP2C8/9 substrates | Rosiglitazone, burprenorphine, montelukast, celecoxib, sulfonylureas, losartan, naproxen, phenobarbital, phenytoin, rosuvastatin, valsartan, warfarin | Increased risk of side effects related to substrate. Avoid co-administration, reduce substrate dose, monitor for adverse effects and toxicity. Avoid prescribing cascade with new treatment for side effects. |
Enzyme | Medications | Effect/Recommendation. |
---|---|---|
UGT1A9 | Regorafenib, acetaminophen, canagliflozin, sorafenib, irinotecan, propofol, mycophenolate, valproic acid, haloperidol, ibuprofen, dabigatran, dapagliflozin, others. | Increased risk of side effects related to substrate. Avoid co-administration, reduce substrate dose, monitor for adverse effects and toxicity. |
UGT2B7 | Hydromorphone, losartan, ibuprofen, naproxen, ezetimibe, lovastatin, simvastatin, carbamazepine, valproate, others. | |
BCRP | Glyburide, imatinib, methotrexate, mitoxantrone, nitrofurantoin, prazosin, statins, dipyridamole | |
BSEP | Paclitaxel, digoxin, statins, telmisartan, glyburide, ketoconazole, rosiglitazone, celecoxib |
Adverse Events | Frequency a | Other Medications with Similar ADE | |
---|---|---|---|
Cannabidiol | Placebo | ||
Transaminase elevation | 8%, 16% | 3% | Alcohol, acetaminophen, sulfonamides, antifungals, ACE inhibitors, antipsychotics |
Somnolence, sedation, lethargy, fatigue | 41%, 51% | 15% | Benzodiazepines, opioids, antidepressants, antiepileptics, antihistamines |
Decreased appetite | 16%, 22% | 5% | Stimulants, antibiotics, chemotherapies, antiretrovirals, some antidepressants |
Diarrhea | 9%, 20% | 9% | Metformin, antibiotics, chemotherapy, proton pump inhibitors, antidepressants |
Weight decreased | 3%, 5% | 1% | Stimulants, antibiotics, chemotherapies, antiretrovirals, some antidepressants |
Insomnia, sleep disturbance | 11%, 5% | 4% | Antidepressants, dopamine agonists, stimulants, antiepileptics, steroids, diuretics, and beta-blockers |
Gait disturbance | 3%, 2% | <1% | Benzodiazepines, opioids, antidepressants, antiepileptics, antihistamines, antihypertensives, antiarrhythmics, sedatives/hypnotics, anticholinergics |
Infections | 41%, 40% | 31% | Corticosteroids, tumor necrosis factor inhibitors, non-steroidal anti-inflammatory drugs, chemotherapy |
Pneumonia | 8%, 5% | 1% | |
Viral | 7%, 11% | 6% | |
Suicidal thoughts or behaviors | Relative risk 1.8 to 3.5 b | 1.0 | Antihypertensives, antidepressants, hormones, anxiolytics, analgesics, respiratory agents, and anticonvulsants |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, J.D.; Winterstein, A.G. Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use. J. Clin. Med. 2019, 8, 989. https://doi.org/10.3390/jcm8070989
Brown JD, Winterstein AG. Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use. Journal of Clinical Medicine. 2019; 8(7):989. https://doi.org/10.3390/jcm8070989
Chicago/Turabian StyleBrown, Joshua D., and Almut G. Winterstein. 2019. "Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use" Journal of Clinical Medicine 8, no. 7: 989. https://doi.org/10.3390/jcm8070989
APA StyleBrown, J. D., & Winterstein, A. G. (2019). Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use. Journal of Clinical Medicine, 8(7), 989. https://doi.org/10.3390/jcm8070989