Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components
Abstract
:1. Introduction
2. SRM Definitions
3. SRM Clinical Presentation
4. SRM Frequency
5. SRM Pathogenesis
6. Factors Associated with Statin Pharmacokinetics and Myotoxicity
6.1. Clinical Factors
6.2. Pharmacogenomic Factors that Affect Statin Pharmacokinetics
6.2.1. CYP Phase 1 Hydroxylation
6.2.2. UGT1A3 Phase 2 Glucuronidation
6.2.3. SLCO1B1 Influx Transporter
6.2.4. ABCB1 and ABCG2 Efflux Transporters
6.3. Drug–Statin Interactions
7. Statin Uptake into Skeletal Muscle
8. Statin-Induced Myocyte Dysfunction
8.1. Exercise
8.2. Pre-Existing Neuromuscular Disorders
8.3. Mitochondrial Impairment
8.4. HMGCR Pathway Mediated Effects
8.4.1. Coenzyme Q10 Depletion
8.4.2. Reduced Protein Prenylation
8.4.3. Cholesterol Depletion
8.5. Atrogin-1 Upregulation
8.6. Calcium Signalling Disruption
8.7. Glycine Amidinotransferase (GATM)
8.8. Immunologically-Mediated Statin Myopathy
8.8.1. LILRB5
8.8.2. HLA-DRB1*11:01
8.9. Pain Perception
8.10. Muscle Transcriptomics
8.11. Vitamin D
9. Management of SRM
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Postmus, I.; Verschuren, J.J.; de Craen, A.J.; Slagboom, P.E.; Westendorp, R.G.; Jukema, J.W.; Trompet, S. Pharmacogenetics of statins: Achievements, whole-genome analyses and future perspectives. Pharmacogenomics 2012, 13, 831–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NHS Choices. Nice Publishes New Draft Guidelines on Statins Use. Available online: http://www.nhs.uk/news/2014/02February/Pages/NICE-publishes-new-draft-guidelines-on-statins-use.aspx (accessed on 19 October 2016).
- Endo, A.; Kuroda, M.; Tsujita, Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by penicillium citrinium. J. Antibiot. 1976, 29, 1346–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, A. The origin of the statins. Atherosclerosis. Suppl. 2004, 5, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, J.; Shi, Y.; Grimsgaard, S.; Alraek, T.; Fonnebo, V. Chinese red yeast rice (Monascus purpureus) for primary hyperlipidemia: A meta-analysis of randomized controlled trials. Chin. Med. 2006, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Gunde-Cimerman, N.; Cimerman, A. Pleurotus fruiting bodies contain the inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme a reductase—Lovastatin. Exp. Mycol. 1995, 19, 1–6. [Google Scholar] [CrossRef]
- NICE. Cardiovascular Disease: Risk Assessment and Reduction, Including Lipid Modification (Clinical Guideline 181). Available online: https://www.nice.org.uk/guidance/cg181 (accessed on 23 October 2019).
- National Statistics. Prescriptions Dispensed in the Community, England 2004-14. Available online: http://content.digital.nhs.uk/catalogue/PUB17644/pres-disp-com-eng-2004-14-rep.pdf (accessed on 19 July 2017).
- Goldstein, J.L.; Brown, M.S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Rosenson, R.S. Statins: Actions, Side Effects, and Administration. Available online: https://www.uptodate.com/contents/statins-actions-side-effects-and-administration (accessed on 15 March 2019).
- Trialists, C.T. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar]
- Kavalipati, N.; Shah, J.; Ramakrishan, A.; Vasnawala, H. Pleiotropic effects of statins. Indian J. Endocrinol. Metab. 2015, 19, 554–562. [Google Scholar]
- Wu, L.M.; Wu, S.G.; Chen, F.; Wu, Q.; Wu, C.M.; Kang, C.M.; He, X.; Zhang, R.Y.; Lu, Z.F.; Li, X.H.; et al. Atorvastatin inhibits pyroptosis through the lncrna nexn-as1/nexn pathway in human vascular endothelial cells. Atherosclerosis 2019, 293, 26–34. [Google Scholar] [CrossRef]
- Gorabi, A.M.; Kiaie, N.; Hajighasemi, S.; Banach, M.; Penson, P.E.; Jamialahmadi, T.; Sahebkar, A. Statin-induced nitric oxide signaling: Mechanisms and therapeutic implications. J. Clin. Med. 2019, 8, 2051. [Google Scholar] [CrossRef] [Green Version]
- Cannon, C.P.; Braunwald, E.; McCabe, C.H.; Rader, D.J.; Rouleau, J.L.; Belder, R.; Joyal, S.V.; Hill, K.A.; Pfeffer, M.A.; Skene, A.M. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med. 2004, 350, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Verdoodt, A.; Honore, P.M.; Jacobs, R.; De Waele, E.; Van Gorp, V.; De Regt, J.; Spapen, H.D. Do statins induce or protect from acute kidney injury and chronic kidney disease: An update review in 2018. J. Transl. Int. Med. 2018, 6, 21–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmeijer, K.; Dekkers, O.M.; de Fijter, J.W.; Dekker, F.W.; Hoogeveen, E.K. Effect of different types of statins on kidney function decline and proteinuria: A network meta-analysis. Sci Rep 2019, 9, 16632. [Google Scholar] [CrossRef] [PubMed]
- Kraker, K.; O’Driscoll, J.M.; Schutte, T.; Herse, F.; Patey, O.; Golic, M.; Geisberger, S.; Verlohren, S.; Birukov, A.; Heuser, A.; et al. Statins reverse postpartum cardiovascular dysfunction in a rat model of preeclampsia. Hypertension 2020, 75, 202–210. [Google Scholar] [CrossRef]
- Schirris, T.J.; Ritschel, T.; Bilos, A.; Smeitink, J.A.; Russel, F.G. Statin lactonization by uridine 5′-diphospho-glucuronosyltransferases (UGTs). Mol. Pharm. 2015, 12, 4048–4055. [Google Scholar] [CrossRef]
- Jacobsen, W.; Kuhn, B.; Soldner, A.; Kirchner, G.; Sewing, K.F.; Kollman, P.A.; Benet, L.Z.; Christians, U. Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-coa reductase inhibitor atorvastatin. Drug Metab. Dispos. Biol. Fate Chem. 2000, 28, 1369–1378. [Google Scholar]
- Pfizer Inc. Lipitor- Atorvastatin Calcium Trihydrate Tablet, Film Coated. Highlights of Prescribing Information. Available online: http://labeling.pfizer.com/ShowLabeling.aspx?id=587 (accessed on 13 May 2019).
- Catapano, A.L. Pitavastatin—Pharmacological profile from early phase studies. Atheroscler. Suppl. 2010, 11, 3–7. [Google Scholar] [CrossRef]
- Black, A.E.; Sinz, M.W.; Hayes, R.N.; Woolf, T.F. Metabolism and excretion studies in mouse after single and multiple oral doses of the 3-hydroxy-3-methylglutaryl-coa reductase inhibitor atorvastatin. Drug Metab. Dispos. Biol. Fate Chem. 1998, 26, 755–763. [Google Scholar]
- Knauer, M.J.; Urquhart, B.L.; Meyer zu Schwabedissen, H.E.; Schwarz, U.I.; Lemke, C.J.; Leake, B.F.; Kim, R.B.; Tirona, R.G. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ. Res. 2010, 106, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Generaux, G.T.; Bonomo, F.M.; Johnson, M.; Doan, K.M. Impact of SLCO1B1 (OATP1B1) and ABCG2 (BCRP) genetic polymorphisms and inhibition on LDL-C lowering and myopathy of statins. Xenobiotica 2011, 41, 639–651. [Google Scholar] [CrossRef]
- Jemal, M.; Rao, S.; Salahudeen, I.; Chen, B.C.; Kates, R. Quantitation of cerivastatin and its seven acid and lactone biotransformation products in human serum by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 1999, 736, 19–41. [Google Scholar] [CrossRef]
- Muck, W. Clinical pharmacokinetics of cerivastatin. Clin. Pharmacokinet. 2000, 39, 99–116. [Google Scholar] [PubMed]
- Muck, W.; Park, S.; Jager, W.; Voith, B.; Wandel, E.; Galle, P.R.; Schwarting, A. The pharmacokinetics of cerivastatin in patients on chronic hemodialysis. Int. J. Clin. Pharmacol. Ther. 2001, 39, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Novartis. Lescol (Fluvastatin Dosium)—Highlights of Prescribing Information. Available online: https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/Lescol.pdf (accessed on 7 July 2019).
- Merck & Co. Mevacor (Lovastatin) Tablets Description. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/019643s085lbl.pdf (accessed on 19 December 2019).
- Neuvonen, P.J.; Backman, J.T.; Niemi, M. Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin. Pharmacokinet. 2008, 47, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Fujino, H.; Yamada, I.; Shimada, S.; Yoneda, M.; Kojima, J. Metabolic fate of pitavastatin, a new inhibitor of HMG-CoA reductase: Human UDP-Glucuronosyltransferase enzymes involved in lactonization. Xenobiotica 2003, 33, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Kowa Pharmaceuticals. Livalo (Pitavastatin) Tablet—Highlights of Prescribing Information. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022363s008s009lbl.pdf (accessed on 7 July 2019).
- Bristol-Myers Squibb Company. Pravachol (Pravastatin) Tablets—Highlights of Prescribing Information. Available online: http://packageinserts.bms.com/pi/pi_pravachol.pdf (accessed on 7 July 2019).
- Hoffman, M.F.; Preissner, S.C.; Nickel, J.; Dunkel, M.; Preissner, R.; Preissner, S. The transformer database: Biotransformation of xenobiotics. Nucleic Acids Res. 2014, 42, 1113–1117. [Google Scholar] [CrossRef] [Green Version]
- Van Haandel, L.; Gibson, K.T.; Leeder, J.S.; Wagner, J.B. Quantification of pravastatin acid, lactone and isomers in human plasma by UHPLC-MS/MS and its application to a pediatric pharmacokinetic study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1012–1013, 169–177. [Google Scholar] [CrossRef]
- Riedmaier, S. Pharmacogenetic Determinants of Atorvastatin Metabolism and Response (Dissertation). Available online: https://publikationen.uni-tuebingen.de/xmlui/bitstream/handle/10900/49571/pdf/2011_Dissertation_Stephan_Riedmaier.pdf?sequence=1 (accessed on 7 July 2016).
- Hirano, M.; Maeda, K.; Hayashi, H.; Kusuhara, H.; Sugiyama, Y. Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J. Pharmacol. Exp. Ther. 2005, 314, 876–882. [Google Scholar] [CrossRef]
- McCormick, A.D.; McKillop, D.; Butters, C.J.; Miles, G.S.; Baba, T.; Touchi, A.; Yamaguchi, Y. Zd4522—An HMG-CoA reductase inhibitor free of metabolically mediated drug interactions: Metabolic studies in human in vitro systems (abstract 46). J. Clin. Pharmacol. 2000, 40, 1055. [Google Scholar]
- Cooper, K.J.; Martin, P.D.; Dane, A.L.; Warwick, M.J.; Schneck, D.W.; Cantarini, M.V. The effect of fluconazole on the pharmacokinetics of rosuvastatin. Eur. J. Clin. Pharmacol. 2002, 58, 527–531. [Google Scholar]
- Cooper, K.J.; Martin, P.D.; Dane, A.L.; Warwick, M.J.; Schneck, D.W.; Cantarini, M.V. Effect of itraconazole on the pharmacokinetics of rosuvastatin. Clin. Pharmacol. Ther. 2003, 73, 322–329. [Google Scholar] [CrossRef]
- Finkelman, R.D.; Wang, T.D.; Wang, Y.; Azumaya, C.T.; Birmingham, B.K.; Wissmar, J.; Mosqueda-Garcia, R. Effect of CYP2C19 polymorphism on the pharmacokinetics of rosuvastatin in healthy taiwanese subjects. Clin. Pharmacol. Drug Dev. 2015, 4, 33–40. [Google Scholar] [CrossRef] [PubMed]
- AstraZeneca. Crestor (Rosuvastatin Calcium Tablets)—Highlights of Prescribing Information. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021366s016lbl.pdf (accessed on 3 October 2019).
- Jemnitz, K.; Veres, Z.; Tugyi, R.; Vereczkey, L. Biliary efflux transporters involved in the clearance of rosuvastatin in sandwich culture of primary rat hepatocytes. Toxicol. In Vitro 2010, 24, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Alakhali, K.; Hassan, Y.; Mohamed, N.; Mordi, M.N. Pharmacokinetic of simvastatin study in malaysian subjects. ISOR J. Pharm. 2013, 3, 46–51. [Google Scholar] [CrossRef]
- Merck & Co. Zocor (Simvastatin) Tablets—Highlights of Prescribing Information. Available online: https://www.merck.com/product/usa/pi_circulars/z/zocor/zocor_pi.pdf (accessed on 17 October 2019).
- Prueksaritanont, T.; Ma, B.; Yu, N. The human hepatic metabolism of simvastatin hydroxy acid is mediated primarily by CYP3A, and not CYP2D6. Br. J. Clin. Pharmacol. 2003, 56, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Kitzmiller, J.P.; Luzum, J.A.; Baldassarre, D.; Krauss, R.M.; Medina, M.W. CYP3A4*22 and CYP3A5*3 are associated with increased levels of plasma simvastatin concentrations in the cholesterol and pharmacogenetics study cohort. Pharm. Genom. 2014, 24, 486–491. [Google Scholar] [CrossRef]
- DeGorter, M.K.; Tirona, R.G.; Schwarz, U.I.; Choi, Y.-H.; Dresser, G.K.; Suskin, N.; Myers, K.; Zou, G.; Iwuchukwu, O.; Wei, W.-Q.; et al. Clinical and pharmacogenetic predictors of circulating atorvastatin and rosuvastatin concentration in routine clinical care. Circ. Cardiovasc. Genet. 2013, 6, 400–408. [Google Scholar] [CrossRef] [Green Version]
- Collins, R.; Reith, C.; Emberson, J.; Armitage, J.; Baigent, C.; Blackwell, L.; Blumenthal, R.; Danesh, J.; Smith, G.D.; DeMets, D.; et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 2016, 388, 2532–2561. [Google Scholar] [CrossRef] [Green Version]
- Golomb, B.A.; Evans, M.A. Statin adverse effects: A review of the literature and evidence for a mitochondrial mechanism. Am. J. Cardiovasc. Drugs 2008, 8, 373–418. [Google Scholar] [CrossRef]
- The Electronic Medicines Compendium (eMC). Simvastatin 40 mg. Available online: https://www.medicines.org.uk/emc/product/7167/smpc (accessed on 17 July 2019).
- Golomb, B.A.; Evans, M.A.; Dimsdale, J.E.; White, H.L. Effects of statins on energy and fatigue with exertion: Results from a randomized controlled trial. Arch. Intern. Med. 2012, 172, 1180–1182. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Markwardt, S.; Goeres, L.; Lee, C.G.; Eckstrom, E.; Williams, C.; Fu, R.; Orwoll, E.; Cawthon, P.M.; Stefanick, M.L.; et al. Statins and physical activity in older men: The osteoporotic fractures in men study. JAMA Intern. Med. 2014, 174, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Noyes, A.M.; Thompson, P.D. The effects of statins on exercise and physical activity. J. Clin. Lipidol. 2017, 11, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, J.M.; Massicotte, A. Statins and their effect on cognition: Let’s clear up the confusion. Can. Pharm. J. Rev. des Pharm. du Can. 2015, 148, 150–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samaras, K.; Makkar, S.R.; Crawford, J.D.; Kochan, N.A.; Slavin, M.J.; Wen, W.; Trollor, J.N.; Brodaty, H.; Sachdev, P.S. Effects of statins on memory, cognition, and brain volume in the elderly. J. Am. Coll. Cardiol. 2019, 74, 2554–2568. [Google Scholar] [CrossRef] [PubMed]
- Bruckert, E.; Hayem, G.; Dejager, S.; Yau, C.; Begaud, B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—The primo study. Cardiovasc. Drugs Ther. 2005, 19, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Mendes, P.; Robles, P.G.; Mathur, S. Statin-induced rhabdomyolysis: A comprehensive review of case reports. Physiother. Can. 2014, 66, 124–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naderi, S.H.; Bestwick, J.P.; Wald, D.S. Adherence to drugs that prevent cardiovascular disease: Meta-analysis on 376,162 patients. Am. J. Med. 2012, 125, 882–887.e881. [Google Scholar] [CrossRef]
- Wei, M.Y.; Ito, M.K.; Cohen, J.D.; Brinton, E.A.; Jacobson, T.A. Predictors of statin adherence, switching, and discontinuation in the usage survey: Understanding the use of statins in america and gaps in patient education. J. Clin. Lipidol. 2013, 7, 472–483. [Google Scholar] [CrossRef]
- De Vera, M.A.; Bhole, V.; Burns, L.C.; Lacaille, D. Impact of statin adherence on cardiovascular disease and mortality outcomes: A systematic review. Br. J. Clin. Pharmacol. 2014, 78, 684–698. [Google Scholar] [CrossRef]
- Turner, R.M.; Yin, P.; Hanson, A.; FitzGerald, R.; Morris, A.P.; Stables, R.H.; Jorgensen, A.L.; Pirmohamed, M. Investigating the prevalence, predictors, and prognosis of suboptimal statin use early after a non-st elevation acute coronary syndrome. J. Clin. Lipidol. 2017, 11, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Alfirevic, A.; Neely, D.; Armitage, J.; Chinoy, H.; Cooper, R.G.; Laaksonen, R.; Carr, D.F.; Bloch, K.M.; Fahy, J.; Hanson, A.; et al. Phenotype standardization for statin-induced myotoxicity. Clin. Pharmacol. Ther. 2014, 96, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.A.; Capizzi, J.A.; Grimaldi, A.S.; Clarkson, P.M.; Cole, S.M.; Keadle, J.; Chipkin, S.; Pescatello, L.S.; Simpson, K.; White, C.M.; et al. Effect of statins on skeletal muscle function. Circulation 2013, 127, 96–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banach, M.; Rizzo, M.; Toth, P.P.; Farnier, M.; Davidson, M.H.; Al-Rasadi, K.; Aronow, W.S.; Athyros, V.; Djuric, D.M.; Ezhov, M.V.; et al. Statin intolerance—An attempt at a unified definition. Position paper from an international lipid expert panel. Expert Opin. Drug Saf. 2015, 14, 935–955. [Google Scholar] [CrossRef] [PubMed]
- Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgozoglu, L.; Nordestgaard, B.G.; et al. Statin-associated muscle symptoms: Impact on statin therapy-european atherosclerosis society consensus panel statement on assessment, aetiology and management. Eur. Heart J. 2015, 36, 1012–1022. [Google Scholar] [CrossRef]
- Raju, S.B.; Varghese, K.; Madhu, K. Management of statin intolerance. Indian J. Endocrinol. Metab. 2013, 17, 977–982. [Google Scholar]
- Elam, M.B.; Majumdar, G.; Mozhui, K.; Gerling, I.C.; Vera, S.R.; Fish-Trotter, H.; Williams, R.W.; Childress, R.D.; Raghow, R. Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene expression following statin re-challenge. PLoS ONE 2017, 12, e0181308. [Google Scholar] [CrossRef] [Green Version]
- Hippisley-Cox, J.; Coupland, C. Unintended effects of statins in men and women in england and wales: Population based cohort study using the qresearch database. BMJ 2010, 340, c2197. [Google Scholar] [CrossRef] [Green Version]
- Kashani, A.; Phillips, C.O.; Foody, J.M.; Wang, Y.; Mangalmurti, S.; Ko, D.T.; Krumholz, H.M. Risks associated with statin therapy: A systematic overview of randomized clinical trials. Circulation 2006, 114, 2788–2797. [Google Scholar] [CrossRef] [Green Version]
- Abd, T.T.; Jacobson, T.A. Statin-induced myopathy: A review and update. Expert Opin. Drug Saf. 2011, 10, 373–387. [Google Scholar] [CrossRef]
- Davidson, M.H.; Robinson, J.G. Safety of aggressive lipid management. J. Am. Coll. Cardiol. 2007, 49, 1753–1762. [Google Scholar] [CrossRef] [Green Version]
- Furberg, C.D.; Pitt, B. Withdrawal of cerivastatin from the world market. Curr. Control. Trials Cardiovasc. Med. 2001, 2, 205–207. [Google Scholar] [CrossRef] [PubMed]
- Godlee, F. Adverse effects of statins. BMJ 2014, 348, g3306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Thompson, D.; Whitehouse, A.; Collier, T.; Dahlof, B.; Poulter, N.; Collins, R.; Sever, P. Adverse events associated with unblinded, but not with blinded, statin therapy in the anglo-scandinavian cardiac outcomes trial-lipid-lowering arm (ASCOT-LLA): A randomised double-blind placebo-controlled trial and its non-randomised non-blind extension phase. Lancet 2017, 389, 2473–2481. [Google Scholar]
- Taylor, B.A.; Lorson, L.; White, C.M.; Thompson, P.D. A randomized trial of coenzyme Q10 in patients with confirmed statin myopathy. Atherosclerosis 2015, 238, 329–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nissen, S.E.; Stroes, E.; Dent-Acosta, R.E.; Rosenson, R.S.; Lehman, S.J.; Sattar, N.; Preiss, D.; Bruckert, E.; Ceska, R.; Lepor, N.; et al. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: The GAUSS-3 randomized clinical trial. JAMA 2016, 315, 1580–1590. [Google Scholar] [CrossRef]
- Zhou, Q.; Ruan, Z.R.; Yuan, H.; Xu, D.H.; Zeng, S. ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421C > A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Die Pharm. 2013, 68, 129–134. [Google Scholar]
- Birmingham, B.K.; Bujac, S.R.; Elsby, R.; Azumaya, C.T.; Wei, C.; Chen, Y.; Mosqueda-Garcia, R.; Ambrose, H.J. Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in caucasian and asian subjects: A class effect? Eur. J. Clin. Pharmacol. 2015, 71, 341–355. [Google Scholar] [CrossRef]
- Simonson, S.G.; Martin, P.D.; Mitchell, P.; Schneck, D.W.; Lasseter, K.C.; Warwick, M.J. Pharmacokinetics and pharmacodynamics of rosuvastatin in subjects with hepatic impairment. Eur. J. Clin. Pharmacol. 2003, 58, 669–675. [Google Scholar] [CrossRef]
- Pasternak, R.C.; Smith, S.C.; Bairey-Merz, C.N.; Grundy, S.M.; Cleeman, J.I.; Lenfant, C. Acc/aha/nhlbi clinical advisory on the use and safety of statins. Circulation 2002, 106, 1024. [Google Scholar]
- Simon, L.; Jolley, S.E.; Molina, P.E. Alcoholic myopathy: Pathophysiologic mechanisms and clinical implications. Alcohol. Res. 2017, 38, 207–217. [Google Scholar]
- Appel-Dingemanse, S.; Smith, T.; Merz, M. Pharmacokinetics of fluvastatin in subjects with renal impairment and nephrotic syndrome. J. Clin. Pharmacol. 2002, 42, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Voora, D.; Shah, S.H.; Spasojevic, I.; Ali, S.; Reed, C.R.; Salisbury, B.A.; Ginsburg, G.S. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 2009, 54, 1609–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Link, E.; Parish, S.; Armitage, J.; Bowman, L.; Heath, S.; Matsuda, F.; Gut, I.; Lathrop, M.; Collins, R. SLCO1B1 variants and statin-induced myopathy—A genomewide study. N. Engl. J. Med. 2008, 359, 789–799. [Google Scholar] [PubMed]
- Schech, S.; Graham, D.; Staffa, J.; Andrade, S.E.; La Grenade, L.; Burgess, M.; Blough, D.; Stergachis, A.; Chan, K.A.; Platt, R.; et al. Risk factors for statin-associated rhabdomyolysis. Pharmacoepidemiol. Drug Saf. 2007, 16, 352–358. [Google Scholar] [CrossRef]
- ClinRisk Ltd. Qstatin—2014 Update Information. Available online: http://qintervention.org/QStatin-2014-Update-Information.pdf (accessed on 24 July 2017).
- Carr, D.F.; O’Meara, H.; Jorgensen, A.L.; Campbell, J.; Hobbs, M.; McCann, G.; van Staa, T.; Pirmohamed, M. SLCO1B1 genetic variant associated with statin-induced myopathy: A proof-of-concept study using the clinical practice research datalink. Clin. Pharmacol. Ther. 2013, 94, 695–701. [Google Scholar] [CrossRef]
- Cziraky, M.J.; Willey, V.J.; McKenney, J.M.; Kamat, S.A.; Fisher, M.D.; Guyton, J.R.; Jacobson, T.A.; Davidson, M.H. Risk of hospitalized rhabdomyolysis associated with lipid-lowering drugs in a real-world clinical setting. J. Clin. Lipidol. 2013, 7, 102–108. [Google Scholar] [CrossRef]
- Ahmed, W.; Khan, N.; Glueck, C.J.; Pandey, S.; Wang, P.; Goldenberg, N.; Uppal, M.; Khanal, S. Low serum 25 (OH) vitamin D levels (<32 ng/ml) are associated with reversible myositis-myalgia in statin-treated patients. Transl. Res. 2009, 153, 11–16. [Google Scholar]
- Khayznikov, M.; Kumar, A.; Wang, P.; Glueck, C.J. Statin intolerance and vitamin d supplementation. N. Am. J. Med. Sci. 2015, 7, 339–340. [Google Scholar]
- Michalska-Kasiczak, M.; Sahebkar, A.; Mikhailidis, D.P.; Rysz, J.; Muntner, P.; Toth, P.P.; Jones, S.R.; Rizzo, M.; Kees Hovingh, G.; Farnier, M.; et al. Analysis of vitamin d levels in patients with and without statin-associated myalgia—A systematic review and meta-analysis of 7 studies with 2420 patients. Int. J. Cardiol. 2015, 178, 111–116. [Google Scholar] [CrossRef]
- Thompson, P.D.; Zmuda, J.M.; Domalik, L.J.; Zimet, R.J.; Staggers, J.; Guyton, J.R. Lovastatin increases exercise-induced skeletal muscle injury. Metabolism 1997, 46, 1206–1210. [Google Scholar] [CrossRef]
- Meador, B.M.; Huey, K.A. Statin-associated myopathy and its exacerbation with exercise. Muscle Nerve 2010, 42, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Dreier, J.P.; Endres, M. Statin-associated rhabdomyolysis triggered by grapefruit consumption. Neurology 2004, 62, 670. [Google Scholar] [CrossRef] [PubMed]
- Armitage, J. The safety of statins in clinical practice. Lancet 2007, 370, 1781–1790. [Google Scholar] [CrossRef]
- Patel, A.M.; Shariff, S.; Bailey, D.G.; Juurlink, D.N.; Gandhi, S.; Mamdani, M.; Gomes, T.; Fleet, J.; Hwang, Y.J.; Garg, A.X. Statin toxicity from macrolide antibiotic coprescription: A population-based cohort study. Ann. Intern. Med. 2013, 158, 869–876. [Google Scholar] [CrossRef] [Green Version]
- Neuvonen, P.J.; Niemi, M.; Backman, J.T. Drug interactions with lipid-lowering drugs: Mechanisms and clinical relevance. Clin. Pharmacol. Ther. 2006, 80, 565–581. [Google Scholar] [CrossRef]
- Lees, R.S.; Lees, A.M. Rhabdomyolysis from the coadministration of lovastatin and the antifungal agent itraconazole. N. Engl. J. Med. 1995, 333, 664–665. [Google Scholar] [CrossRef]
- Cheng, C.H.; Miller, C.; Lowe, C.; Pearson, V.E. Rhabdomyolysis due to probable interaction between simvastatin and ritonavir. Am. J. Health Syst. Pharm. AJHP Off. J. Am. Soc. Health Syst. Pharm. 2002, 59, 728–730. [Google Scholar] [CrossRef]
- Chanson, N.; Bossi, P.; Schneider, L.; Bourry, E.; Izzedine, H. Rhabdomyolysis after ezetimibe/simvastatin therapy in an HIV-infected patient. NDT Plus 2008, 1, 157–161. [Google Scholar] [CrossRef]
- Roten, L.; Schoenenberger, R.A.; Krahenbuhl, S.; Schlienger, R.G. Rhabdomyolysis in association with simvastatin and amiodarone. Ann. Pharmacother. 2004, 38, 978–981. [Google Scholar] [CrossRef]
- Saliba, W.R.; Elias, M. Severe myopathy induced by the co-administration of simvastatin and itraconazole. Eur. J. Intern. Med. 2005, 16, 305. [Google Scholar] [CrossRef]
- Mirosevic Skvrce, N.; Bozina, N.; Zibar, L.; Barisic, I.; Pejnovic, L.; Macolic Sarinic, V. CYP2C9 and ABCG2 polymorphisms as risk factors for developing adverse drug reactions in renal transplant patients taking fluvastatin: A case-control study. Pharmacogenomics 2013, 14, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, S.; Maeda, K.; Wang, Y.; Sugiyama, Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab. Dispos. 2008, 36, 2014–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, R.H.; Tirona, R.G.; Leake, B.F.; Glaeser, H.; Lee, W.; Lemke, C.J.; Wang, Y.; Kim, R.B. Drug and bile acid transporters in rosuvastatin hepatic uptake: Function, expression, and pharmacogenetics. Gastroenterology 2006, 130, 1793–1806. [Google Scholar] [CrossRef] [PubMed]
- Elsby, R.; Hilgendorf, C.; Fenner, K. Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: It’s not just about OATP1B1. Clin. Pharmacol. Ther. 2012, 92, 584–598. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, B.; Wang, P.; Wang, G.-L.; Li, J.-L.; Wen, D.-S.; Long, X.-Z.; Sun, H.-S.; Liu, Y.-B.; Huang, M.; et al. Effects of SLCO1B1 and gatm gene variants on rosuvastatin-induced myopathy are unrelated to high plasma exposure of rosuvastatin and its metabolites. Acta Pharmacol. Sin. 2019, 40, 492–499. [Google Scholar] [CrossRef]
- Carr, D.F.; Francis, B.; Jorgensen, A.L.; Zhang, E.; Chinoy, H.; Heckbert, S.R.; Bis, J.C.; Brody, J.A.; Floyd, J.; Psaty, B.M.; et al. Genome-wide association study of statin-induced myopathy in patients recruited using the UK clinical practice research datalink. Clin. Pharmacol. Ther. 2019, 106, 1353–1361. [Google Scholar] [CrossRef] [Green Version]
- Floyd, J.S.; Bloch, K.M.; Brody, J.A.; Maroteau, C.; Siddiqui, M.K.; Gregory, R.; Carr, D.F.; Molokhia, M.; Liu, X.; Bis, J.C.; et al. Pharmacogenomics of statin-related myopathy: Meta-analysis of rare variants from whole-exome sequencing. PLoS ONE 2019, 14, e0218115. [Google Scholar] [CrossRef] [Green Version]
- Danik, J.S.; Chasman, D.I.; MacFadyen, J.G.; Nyberg, F.; Barratt, B.J.; Ridker, P.M. Lack of association between SLCO1B1 polymorphisms and clinical myalgia following rosuvastatin therapy. Am. Heart J. 2013, 165, 1008–1014. [Google Scholar] [CrossRef]
- De Keyser, C.E.; Peters, B.J.; Becker, M.L.; Visser, L.E.; Uitterlinden, A.G.; Klungel, O.H.; Verstuyft, C.; Hofman, A.; Maitland-van der Zee, A.H.; Stricker, B.H. The SLCO1B1 c.521T > C polymorphism is associated with dose decrease or switching during statin therapy in the rotterdam study. Pharm. Genom. 2014, 24, 43–51. [Google Scholar] [CrossRef]
- Puccetti, L.; Ciani, F.; Auteri, A. Genetic involvement in statins induced myopathy. Preliminary data from an observational case-control study. Atherosclerosis 2010, 211, 28–29. [Google Scholar] [CrossRef]
- Marciante, K.D.; Durda, J.P.; Heckbert, S.R.; Lumley, T.; Rice, K.; McKnight, B.; Totah, R.A.; Tamraz, B.; Kroetz, D.L.; Fukushima, H.; et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharm. Genom. 2011, 21, 280–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, Q.; Chen, S.Q.; Ma, L.Y.; Hu, K.; Zhang, Z.; Mu, G.Y.; Xie, Q.F.; Zhang, X.D.; Cui, Y.M. Association between SLCO1B1 T521C polymorphism and risk of statin-induced myopathy: A meta-analysis. Pharm. J. 2018, 18, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Guasti, L.; Maresca, A.; Mirabile, M.; Contini, S.; Grandi, A.M.; Marino, F.; Cosentino, M. Association between statin-induced creatine kinase elevation and genetic polymorphisms in SLCO1B1, ABCB1 and ABCG2. Eur. J. Clin. Pharmacol. 2014, 70, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Fiegenbaum, M.; da Silveira, F.R.; Van der Sand, C.R.; Van der Sand, L.C.; Ferreira, M.E.; Pires, R.C.; Hutz, M.H. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin. Pharmacol. Ther. 2005, 78, 551–558. [Google Scholar] [CrossRef]
- Hoenig, M.R.; Walker, P.J.; Gurnsey, C.; Beadle, K.; Johnson, L. The C3435T polymorphism in ABCB1 influences atorvastatin efficacy and muscle symptoms in a high-risk vascular cohort. J. Clin. Lipidol. 2011, 5, 91–96. [Google Scholar] [CrossRef]
- Mirosevic Skvrce, N.; Macolic Sarinic, V.; Simic, I.; Ganoci, L.; Muacevic Katanec, D.; Bozina, N. ABCG2 gene polymorphisms as risk factors for atorvastatin adverse reactions: A case-control study. Pharmacogenomics 2015, 16, 803–815. [Google Scholar] [CrossRef]
- Becker, M.L.; Visser, L.E.; van Schaik, R.H.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H. Influence of genetic variation in CYP3A4 and ABCB1 on dose decrease or switching during simvastatin and atorvastatin therapy. Pharmacoepidemiol. Drug Saf. 2010, 19, 75–81. [Google Scholar] [CrossRef]
- Frudakis, T.N.; Thomas, M.J.; Ginjupalli, S.N.; Handelin, B.; Gabriel, R.; Gomez, H.J. CYP2D6*4 polymorphism is associated with statin-induced muscle effects. Pharm. Genom. 2007, 17, 695–707. [Google Scholar] [CrossRef]
- Mulder, A.B.; van Lijf, H.J.; Bon, M.A.; van den Bergh, F.A.; Touw, D.J.; Neef, C.; Vermes, I. Association of polymorphism in the cytochrome CYP2D6 and the efficacy and tolerability of simvastatin. Clin. Pharmacol. Ther. 2001, 70, 546–551. [Google Scholar] [CrossRef]
- Wilke, R.A.; Moore, J.H.; Burmester, J.K. Relative impact of CYP3A genotype and concomitant medication on the severity of atorvastatin-induced muscle damage. Pharm. Genom. 2005, 15, 415–421. [Google Scholar] [CrossRef]
- Zuccaro, P.; Mombelli, G.; Calabresi, L.; Baldassarre, D.; Palmi, I.; Sirtori, C.R. Tolerability of statins is not linked to CYP450 polymorphisms, but reduced CYP2D6 metabolism improves cholesteraemic response to simvastatin and fluvastatin. Pharmacol. Res. 2007, 55, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Mangravite, L.M.; Engelhardt, B.E.; Medina, M.W.; Smith, J.D.; Brown, C.D.; Chasman, D.I.; Mecham, B.H.; Howie, B.; Shim, H.; Naidoo, D.; et al. A statin-dependent qtl for gatm expression is associated with statin-induced myopathy. Nature 2013, 502, 377–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.; Ban, M.R.; Miskie, B.A.; Pollex, R.L.; Hegele, R.A. Genetic determinants of statin intolerance. Lipids Health Dis. 2007, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruano, G.; Windemuth, A.; Wu, A.H.; Kane, J.P.; Malloy, M.J.; Pullinger, C.R.; Kocherla, M.; Bogaard, K.; Gordon, B.R.; Holford, T.R.; et al. Mechanisms of statin-induced myalgia assessed by physiogenomic associations. Atherosclerosis 2011, 218, 451–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vladutiu, G.D.; Simmons, Z.; Isackson, P.J.; Tarnopolsky, M.; Peltier, W.L.; Barboi, A.C.; Sripathi, N.; Wortmann, R.L.; Phillips, P.S. Genetic risk factors associated with lipid-lowering drug-induced myopathies. Muscle Nerve 2006, 34, 153–162. [Google Scholar] [CrossRef]
- Tsivgoulis, G.; Spengos, K.; Karandreas, N.; Panas, M.; Kladi, A.; Manta, P. Presymptomatic neuromuscular disorders disclosed following statin treatment. Arch. Intern. Med. 2006, 166, 1519–1524. [Google Scholar] [CrossRef]
- Echaniz-Laguna, A.; Mohr, M.; Tranchant, C. Neuromuscular symptoms and elevated creatine kinase after statin withdrawal. N. Engl. J. Med. 2010, 362, 564–565. [Google Scholar] [CrossRef]
- Knoblauch, H.; Schoewel, V.; Kress, W.; Rosada, A.; Spuler, S. Another side to statin-related side effects. Ann. Intern. Med. 2010, 152, 478–479. [Google Scholar] [CrossRef]
- Voermans, N.C.; Lammens, M.; Wevers, R.A.; Hermus, A.R.; van Engelen, B.G. Statin-disclosed acid maltase deficiency. J. Intern. Med. 2005, 258, 196–197. [Google Scholar] [CrossRef]
- Zeharia, A.; Shaag, A.; Houtkooper, R.H.; Hindi, T.; de Lonlay, P.; Erez, G.; Hubert, L.; Saada, A.; de Keyzer, Y.; Eshel, G.; et al. Mutations in lpin1 cause recurrent acute myoglobinuria in childhood. Am. J. Hum. Genet. 2008, 83, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Vladutiu, G.D.; Isackson, P.J.; Kaufman, K.; Harley, J.B.; Cobb, B.; Christopher-Stine, L.; Wortmann, R.L. Genetic risk for malignant hyperthermia in non-anesthesia-induced myopathies. Mol. Genet. Metab. 2011, 104, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isackson, P.J.; Wang, J.; Zia, M.; Spurgeon, P.; Levesque, A.; Bard, J.; James, S.; Nowak, N.; Lee, T.K.; Vladutiu, G.D. Ryr1 and cacna1s genetic variants identified with statin-associated muscle symptoms. Pharmacogenomics 2018, 19, 1235–1249. [Google Scholar] [CrossRef] [PubMed]
- Limaye, V.; Bundell, C.; Hollingsworth, P.; Rojana-Udomsart, A.; Mastaglia, F.; Blumbergs, P.; Lester, S. Clinical and genetic associations of autoantibodies to 3-hydroxy-3-methyl-glutaryl-coenzyme a reductase in patients with immune-mediated myositis and necrotizing myopathy. Muscle Nerve 2015, 52, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Mammen, A.L.; Gaudet, D.; Brisson, D.; Christopher-Stine, L.; Lloyd, T.E.; Leffell, M.S.; Zachary, A.A. Increased frequency of drb1*11:01 in anti-hydroxymethylglutaryl-coenzyme a reductase-associated autoimmune myopathy. Arthritis Care Res. 2012, 64, 1233–1237. [Google Scholar]
- Siddiqui, M.K.; Maroteau, C.; Veluchamy, A.; Tornio, A.; Tavendale, R.; Carr, F.; Abelega, N.U.; Carr, D.; Bloch, K.; Hallberg, P.; et al. A common missense variant of LILRB5 is associated with statin intolerance and myalgia. Eur. Heart J. 2017, 38, 3569–3575. [Google Scholar] [CrossRef] [Green Version]
- Ruano, G.; Thompson, P.D.; Windemuth, A.; Seip, R.L.; Dande, A.; Sorokin, A.; Kocherla, M.; Smith, A.; Holford, T.R.; Wu, A.H. Physiogenomic association of statin-related myalgia to serotonin receptors. Muscle Nerve 2007, 36, 329–335. [Google Scholar] [CrossRef]
- Isackson, P.J.; Ochs-Balcom, H.M.; Ma, C.; Harley, J.B.; Peltier, W.; Tarnopolsky, M.; Sripathi, N.; Wortmann, R.L.; Simmons, Z.; Wilson, J.D.; et al. Association of common variants in the human eyes shut ortholog (EYS) with statin-induced myopathy: Evidence for additional functions of EYS. Muscle Nerve 2011, 44, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Wienkers, L.C.; Heath, T.G. Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discov. 2005, 4, 825–833. [Google Scholar] [CrossRef]
- Gordon, A.S.; Tabor, H.K.; Johnson, A.D.; Snively, B.M.; Assimes, T.L.; Auer, P.L.; Ioannidis, J.P.; Peters, U.; Robinson, J.G.; Sucheston, L.E.; et al. Quantifying rare, deleterious variation in 12 human cytochrome P450 drug-metabolism genes in a large-scale exome dataset. Hum. Mol. Genet. 2014, 23, 1957–1963. [Google Scholar] [CrossRef] [Green Version]
- Park, J.E.; Kim, K.B.; Bae, S.K.; Moon, B.S.; Liu, K.H.; Shin, J.G. Contribution of cytochrome P450 3A4 and 3A5 to the metabolism of atorvastatin. Xenobiotica 2008, 38, 1240–1251. [Google Scholar] [CrossRef]
- Wang, D.; Guo, Y.; Wrighton, S.A.; Cooke, G.E.; Sadee, W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharm. J. 2011, 11, 274–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Sadee, W. CYP3A4 intronic snp rs35599367 (CYP3A4*22) alters RNA splicing. Pharm. Genom. 2016, 26, 40–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, A.; Akanni, W.; Amode, M.R.; Barrell, D.; Billis, K.; Carvalho-Silva, D.; Cummins, C.; Clapham, P.; Fitzgerald, S.; Gil, L.; et al. Ensembl 2016. Nucleic Acids Res. 2016, 44, D710–D716. [Google Scholar] [CrossRef] [PubMed]
- Klein, K.; Thomas, M.; Winter, S.; Nussler, A.K.; Niemi, M.; Schwab, M.; Zanger, U.M. PPARA: A novel genetic determinant of CYP3A4 in vitro and in vivo. Clin. Pharmacol. Ther. 2012, 91, 1044–1052. [Google Scholar] [CrossRef]
- Kozyra, M.; Ingelman-Sundberg, M.; Lauschke, V.M. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet. Med. 2017, 19, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Tsamandouras, N.; Dickinson, G.; Guo, Y.; Hall, S.; Rostami-Hodjegan, A.; Galetin, A.; Aarons, L. Identification of the effect of multiple polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid using a population-modeling approach. Clin. Pharmacol. Ther. 2014, 96, 90–100. [Google Scholar] [CrossRef]
- Elens, L.; van Gelder, T.; Hesselink, D.A.; Haufroid, V.; van Schaik, R.H. CYP3A4*22: Promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 2013, 14, 47–62. [Google Scholar] [CrossRef]
- Shin, J.; Pauly, D.F.; Pacanowski, M.A.; Langaee, T.; Frye, R.F.; Johnson, J.A. Effect of cytochrome P450 3A5 genotype on atorvastatin pharmacokinetics and its interaction with clarithromycin. Pharmacotherapy 2011, 31, 942–950. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.A.; Park, P.W.; Lee, O.J.; Kang, D.K.; Park, J.Y. Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J. Clin. Pharmacol. 2007, 47, 87–93. [Google Scholar] [CrossRef]
- Yin, O.Q.; Chang, Q.; Tomlinson, B.; Chow, M.S. The effect of CYP2D6 genotype on the pharmacokinetics of lovastatin in Chinese subjects. Clin. Pharmacol. Ther. 2004, 75, P18. [Google Scholar] [CrossRef]
- Yin, O.Q.; Mak, V.W.; Hu, M.; Fok, B.S.; Chow, M.S.; Tomlinson, B. Impact of CYP2D6 polymorphisms on the pharmacokinetics of lovastatin in Chinese subjects. Eur. J. Clin. Pharmacol. 2012, 68, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.Y.; Bae, K.S.; Cho, S.H.; Ghim, J.L.; Choe, S.; Jung, J.A.; Jin, S.J.; Kim, H.S.; Lim, H.S. Impact of CYP2D6, CYP3A5, CYP2C19, CYP2A6, SLCO1B1, ABCB1, and ABCG2 gene polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid. Pharm. Genom. 2015, 25, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Prueksaritanont, T.; Gorham, L.M.; Ma, B.; Liu, L.; Yu, X.; Zhao, J.J.; Slaughter, D.E.; Arison, B.H.; Vyas, K.P. In vitro Metabolism of Simvastatin in Humans [sbt]Identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab. Dispos. 1997, 25, 1191–1199. [Google Scholar] [PubMed]
- Iyer, L.V.; Ho, M.N.; Furimsky, A.M.; Green, C.E.; Green, A.G.; Sharp, L.E.; Koch, S.; Li, Y.; Catz, P.; Furniss, M.; et al. In vitro metabolism and interaction studies with celecoxib and lovastatin. Cancer Res. 2004, 64, 488. [Google Scholar]
- Kirchheiner, J.; Kudlicz, D.; Meisel, C.; Bauer, S.; Meineke, I.; Roots, I.; Brockmoller, J. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (−)-3s,5r-fluvastatin and (+)-3r,5s-fluvastatin in healthy volunteers. Clin. Pharmacol. Ther. 2003, 74, 186–194. [Google Scholar] [CrossRef]
- Lee, C.R.; Goldstein, J.A.; Pieper, J.A. Cytochrome P450 2C9 polymorphisms: A comprehensive review of the in-vitro and human data. Pharmacogenetics 2002, 12, 251–263. [Google Scholar] [CrossRef]
- Riedmaier, S.; Klein, K.; Hofmann, U.; Keskitalo, J.E.; Neuvonen, P.J.; Schwab, M.; Niemi, M.; Zanger, U.M. UDP-Glucuronosyltransferase (UGT) polymorphisms affect atorvastatin lactonization in vitro and in vivo. Clin. Pharmacol. Ther. 2010, 87, 65–73. [Google Scholar] [CrossRef]
- Kearney, A.S.; Crawford, L.F.; Mehta, S.C.; Radebaugh, G.W. The interconversion kinetics, equilibrium, and solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981. Pharm. Res. 1993, 10, 1461–1465. [Google Scholar] [CrossRef]
- Li, C.; Subramanian, R.; Yu, S.; Prueksaritanont, T. Acyl-coenzyme a formation of simvastatin in mouse liver preparations. Drug Metab. Dispos. 2006, 34, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Prueksaritanont, T.; Subramanian, R.; Fang, X.; Ma, B.; Qiu, Y.; Lin, J.H.; Pearson, P.G.; Baillie, T.A. Glucuronidation of statins in animals and humans: A novel mechanism of statin lactonization. Drug Metab. Dispos. 2002, 30, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Skottheim, I.B.; Gedde-Dahl, A.; Hejazifar, S.; Hoel, K.; Asberg, A. Statin induced myotoxicity: The lactone forms are more potent than the acid forms in human skeletal muscle cells in vitro. Eur. J. Pharm. Sci. 2008, 33, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.K.; Oh, E.S.; Park, K.; Park, M.S.; Chung, J.Y. The UGT1A3*2 polymorphism affects atorvastatin lactonization and lipid-lowering effect in healthy volunteers. Pharm. Genom. 2012, 22, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Stormo, C.; Bogsrud, M.P.; Hermann, M.; Asberg, A.; Piehler, A.P.; Retterstol, K.; Kringen, M.K. UGT1A1*28 is associated with decreased systemic exposure of atorvastatin lactone. Mol. Diagn. Ther. 2013, 17, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Nies, A.T.; Niemi, M.; Burk, O.; Winter, S.; Zanger, U.M.; Stieger, B.; Schwab, M.; Schaeffeler, E. Genetics is a major determinant of expression of the human hepatic uptake transporter OATP1B1, but not of OATP1B3 and OATP2B1. Genome Med. 2013, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tornio, A.; Vakkilainen, J.; Neuvonen, M.; Backman, J.T.; Neuvonen, P.J.; Niemi, M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of lovastatin acid. Pharm. Genom. 2015, 25, 382–387. [Google Scholar] [CrossRef]
- Pasanen, M.K.; Neuvonen, M.; Neuvonen, P.J.; Niemi, M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharm. Genom. 2006, 16, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Ieiri, I.; Suwannakul, S.; Maeda, K.; Uchimaru, H.; Hashimoto, K.; Kimura, M.; Fujino, H.; Hirano, M.; Kusuhara, H.; Irie, S.; et al. SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther. 2007, 82, 541–547. [Google Scholar] [CrossRef]
- Pasanen, M.K.; Fredrikson, H.; Neuvonen, P.J.; Niemi, M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 2007, 82, 726–733. [Google Scholar] [CrossRef]
- Niemi, M.; Pasanen, M.K.; Neuvonen, P.J. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin. Pharmacol. Ther. 2006, 80, 356–366. [Google Scholar] [CrossRef]
- Brunham, L.R.; Lansberg, P.J.; Zhang, L.; Miao, F.; Carter, C.; Hovingh, G.K.; Visscher, H.; Jukema, J.W.; Stalenhoef, A.F.; Ross, C.J.; et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharm. J. 2012, 12, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, L.A.; Doney, A.S.; Tavendale, R.; Lang, C.C.; Pearson, E.R.; Colhoun, H.M.; McCarthy, M.I.; Hattersley, A.T.; Morris, A.D.; Palmer, C.N. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: A Go-DARTS study. Clin. Pharmacol. Ther. 2011, 89, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.-E.; Liu, X.-Y.; Chen, S.; Zhang, Y.; Cai, L.-Y.; Yang, M.; Lai, W.-H.; Ren, B.; Zhong, S.-L. SLCO1B1 521T > C polymorphism associated with rosuvastatin-induced myotoxicity in Chinese coronary artery disease patients: A nested case—Control study. Eur. J. Clin. Pharmacol. 2017, 73, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.C.; Gagliardi, A.C.; Miname, M.H.; Chacra, A.P.; Santos, R.D.; Krieger, J.E.; Pereira, A.C. SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in brazilian patients with familial hypercholesterolemia. Eur. J. Clin. Pharmacol. 2012, 68, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Hubacek, J.A.; Dlouha, D.; Adamkova, V.; Zlatohlavek, L.; Viklicky, O.; Hruba, P.; Ceska, R.; Vrablik, M. SLCO1B1 polymorphism is not associated with risk of statin-induced myalgia/myopathy in a czech population. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2015, 21, 1454–1459. [Google Scholar]
- Food and Drug Administration. FDA Drug Safety Communication: New restrictions, contraindications, and dose limitations for Zocor (simvastatin) to reduce the risk of muscle injury. Available online: http://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-new-restrictions-contraindications-and-dose-limitations-zocor (accessed on 19 December 2019).
- Ramsey, L.B.; Johnson, S.G.; Caudle, K.E.; Haidar, C.E.; Voora, D.; Wilke, R.A.; Maxwell, W.D.; McLeod, H.L.; Krauss, R.M.; Roden, D.M.; et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin. Pharmacol. Ther. 2014, 96, 423–428. [Google Scholar] [CrossRef]
- KNMP. Pharmacogenetic Recommendations. Available online: https://www.knmp.nl/patientenzorg/medicatiebewaking/farmacogenetica/pharmacogenetics-1/pharmacogenetics (accessed on 17 July 2019).
- Krajcsi, P. Drug-transporter interaction testing in drug discovery and development. World J. Pharmacol. 2013, 2, 35–46. [Google Scholar] [CrossRef]
- Ceckova-Novotna, M.; Pavek, P.; Staud, F. P-glycoprotein in the placenta: Expression, localization, regulation and function. Reprod. Toxicol. 2006, 22, 400–410. [Google Scholar] [CrossRef]
- Mao, Q. BCRP/ABCG2 in the placenta: Expression, function and regulation. Pharm. Res. 2008, 25, 1244–1255. [Google Scholar] [CrossRef] [Green Version]
- Keskitalo, J.E.; Kurkinen, K.J.; Neuvoneni, P.J.; Niemi, M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin. Pharmacol. Ther. 2008, 84, 457–461. [Google Scholar] [CrossRef]
- Amundsen, R.; Asberg, A.; Ohm, I.K.; Christensen, H. Cyclosporine A- and Tacrolimus-Mediated Inhibition of CYP3A4 and CYP3A5 In Vitro. Drug Metab. Dispos. 2012, 40, 655–661. [Google Scholar] [CrossRef]
- Zhang, L. Transporter-Mediated Drug-Drug Interactions (DDIs). Available online: https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/UCM207267.pdf (accessed on 18 July 2017).
- Merck Sharp & Dohme Corp. Prevymis (Letermovir) Highlights of Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209939Orig1s000,209940Orig1s000lbl.pdf (accessed on 7 November 2019).
- Wiggins, B.S.; Lamprecht, D.G., Jr.; Page, R.L., II; Saseen, J.J. Recommendations for managing drug-drug interactions with statins and HIV medications. Am. J. Cardiovasc. Drugs 2017, 17, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, B.S.; Saseen, J.J.; Page, R.L., II; Reed, B.N.; Sneed, K.; Kostis, J.B.; Lanfear, D.; Virani, S.; Morris, P.B. Recommendations for management of clinically significant drug-drug interactions with statins and select agents used in patients with cardiovascular disease: A scientific statement from the american heart association. Circulation 2016, 134, e468–e495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirvent, P.; Bordenave, S.; Vermaelen, M.; Roels, B.; Vassort, G.; Mercier, J.; Raynaud, E.; Lacampagne, A. Simvastatin induces impairment in skeletal muscle while heart is protected. Biochem. Biophys. Res. Commun. 2005, 338, 1426–1434. [Google Scholar] [CrossRef] [PubMed]
- Schirris, T.J.; Renkema, G.H.; Ritschel, T.; Voermans, N.C.; Bilos, A.; van Engelen, B.G.; Brandt, U.; Koopman, W.J.; Beyrath, J.D.; Rodenburg, R.J.; et al. Statin-induced myopathy is associated with mitochondrial complex iii inhibition. Cell Metab. 2015, 22, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Parker, B.A.; Augeri, A.L.; Capizzi, J.A.; Ballard, K.D.; Troyanos, C.; Baggish, A.L.; D’Hemecourt, P.A.; Thompson, P.D. Effect of statins on creatine kinase levels before and after a marathon run. Am. J. Cardiol. 2012, 109, 282–287. [Google Scholar] [CrossRef]
- Sinzinger, H.; O’Grady, J. Professional athletes suffering from familial hypercholesterolaemia rarely tolerate statin treatment because of muscular problems. Br. J. Clin. Pharmacol. 2004, 57, 525–528. [Google Scholar] [CrossRef] [Green Version]
- Parker, B.A.; Thompson, P.D. Effect of statins on skeletal muscle: Exercise, myopathy, and muscle outcomes. Exerc. Sport Sci. Rev. 2012, 40, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Min, P.-K.; Park, J.; Isaacs, S.; Taylor, B.A.; Thompson, P.D.; Troyanos, C.; D’Hemecourt, P.; Dyer, S.; Chan, S.Y.; Baggish, A.L. Influence of statins on distinct circulating micrornas during prolonged aerobic exercise. J. Appl. Physiol. 2016, 120, 711–720. [Google Scholar] [CrossRef]
- Lotteau, S.; Ivarsson, N.; Yang, Z.; Restagno, D.; Colyer, J.; Hopkins, P.; Weightman, A.; Himori, K.; Yamada, T.; Bruton, J.; et al. A mechanism for statin-induced susceptibility to myopathy. JACC Basic Transl. Sci. 2019, 4, 509–523. [Google Scholar] [CrossRef]
- Bouitbir, J.; Daussin, F.; Charles, A.L.; Rasseneur, L.; Dufour, S.; Richard, R.; Piquard, F.; Geny, B.; Zoll, J. Mitochondria of trained skeletal muscle are protected from deleterious effects of statins. Muscle Nerve 2012, 46, 367–373. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Baker, S.K. Statin Muscle-Related Adverse Events. Available online: https://www.uptodate.com/contents/statin-muscle-related-adverse-events (accessed on 2 October 2019).
- Brunham, L.R.; Baker, S.; Mammen, A.; Mancini, G.B.J.; Rosenson, R.S. Role of genetics in the prediction of statin-associated muscle symptoms and optimization of statin use and adherence. Cardiovasc. Res. 2018, 114, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.E.; Lee, N.; Thompson, P.D. Statins provoking melas syndrome. Eur. Neurol. 2007, 57, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Tay, S.K.H.; DiMauro, S.; Pang, A.Y.W.; Lai, P.-S.; Yap, H.-K. Myotoxicity of lipid-lowering agents in a teenager with melas mutation. Pediatr. Neurol. 2008, 39, 426–428. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, M.S.; Jeffery, D.R.; Nuss, G.R.; Donofrio, P.D. Statin-associated exacerbation of myasthenia gravis. Neurology 2004, 63, 2188. [Google Scholar] [CrossRef]
- Al-Jubouri, M.A.; Briston, P.G.; Sinclair, D.; Chinn, R.H.; Young, R.M. Myxoedema revealed by simvastatin induced myopathy. BMJ 1994, 308, 588. [Google Scholar] [CrossRef]
- Scalvini, T.; Marocolo, D.; Cerudelli, B.; Sleiman, I.; Balestrieri, G.P.; Giustina, G. Pravastatin-associated myopathy. Report of a case. Recent. Progress. Med. 1995, 86, 198–200. [Google Scholar]
- Baker, S.K.; Tarnopolsky, M.A. Sporadic rippling muscle disease unmasked by simvastatin. Muscle Nerve 2006, 34, 478–481. [Google Scholar] [CrossRef]
- Chariot, P.; Abadia, R.; Agnus, D.; Danan, C.; Charpentier, C.; Gherardi, R.K. Simvastatin-induced rhabdomyolysis followed by a melas syndrome. Am. J. Med. 1993, 94, 109–110. [Google Scholar] [CrossRef]
- De Stefano, N.; Argov, Z.; Matthews, P.M.; Karpati, G.; Arnold, D.L. Impairment of muscle mitochondrial oxidative metabolism in mcardles’s disease. Muscle Nerve 1996, 19, 764–769. [Google Scholar] [CrossRef]
- Hur, J.; Liu, Z.; Tong, W.; Laaksonen, R.; Bai, J.P. Drug-induced rhabdomyolysis: From systems pharmacology analysis to biochemical flux. Chem. Res. Toxicol. 2014, 27, 421–432. [Google Scholar] [CrossRef]
- Hermann, M.; Bogsrud, M.P.; Molden, E.; Asberg, A.; Mohebi, B.U.; Ose, L.; Retterstol, K. Exposure of atorvastatin is unchanged but lactone and acid metabolites are increased several-fold in patients with atorvastatin-induced myopathy. Clin. Pharmacol. Ther. 2006, 79, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Asping, M.; Stride, N.; Sogaard, D.; Dohlmann, T.L.; Helge, J.W.; Dela, F.; Larsen, S. The effects of 2 weeks of statin treatment on mitochondrial respiratory capacity in middle-aged males: The lifestat study. Eur. J. Clin. Pharmacol. 2017, 73, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.-B.; Thalacker-Mercer, A.; Anderson, E.J.; Lin, C.-T.; Kane, D.A.; Lee, N.-S.; Cortright, R.N.; Bamman, M.M.; Neufer, P.D. Simvastatin impairs adp-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes. Free Radic. Biol. Med. 2012, 52, 198–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, B.K.; Gilbert, T.J.; Hanai, J.I.; Imamura, S.; Bodycombe, N.E.; Bon, R.S.; Waldmann, H.; Clemons, P.A.; Sukhatme, V.P.; Mootha, V.K. A small-molecule screening strategy to identify suppressors of statin myopathy. ACS Chem. Biol. 2011, 6, 900–904. [Google Scholar] [CrossRef] [Green Version]
- Wagner, B.K.; Kitami, T.; Gilbert, T.J.; Peck, D.; Ramanathan, A.; Schreiber, S.L.; Golub, T.R.; Mootha, V.K. Large-scale chemical dissection of mitochondrial function. Nat. Biotechnol. 2008, 26, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Saito, S.; Nakanishi, T.; Shirasaki, Y.; Nakajima, M.; Tamai, I. Association of miR-145 with statin-induced skeletal muscle toxicity in human rhabdomyosarcoma RD cells. J. Pharm. Sci. 2017, 106, 2873–2880. [Google Scholar] [CrossRef]
- Deichmann, R.; Lavie, C.; Andrews, S. Coenzyme Q10 and statin-induced mitochondrial dysfunction. Ochsner J. 2010, 10, 16–21. [Google Scholar]
- Quinzii, C.M.; Hirano, M. Primary and secondary CoQ10 deficiencies in humans. Biofactors 2011, 37, 361–365. [Google Scholar] [CrossRef]
- Lamperti, C.; Naini, A.B.; Lucchini, V.; Prelle, A.; Bresolin, N.; Moggio, M.; Sciacco, M.; Kaufmann, P.; DiMauro, S. Muscle coenzyme Q10 level in statin-related myopathy. Arch. Neurol. 2005, 62, 1709–1712. [Google Scholar] [CrossRef] [Green Version]
- Mullen, P.J.; Luscher, B.; Scharnagl, H.; Krahenbuhl, S.; Brecht, K. Effect of simvastatin on cholesterol metabolism in C2C12 myotubes and HepG2 cells, and consequences for statin-induced myopathy. Biochem. Pharmacol. 2010, 79, 1200–1209. [Google Scholar] [CrossRef]
- Montini, G.; Malaventura, C.; Salviati, L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N. Engl. J. Med. 2008, 358, 2849–2850. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Serban, C.; Sahebkar, A.; Ursoniu, S.; Rysz, J.; Muntner, P.; Toth, P.P.; Jones, S.R.; Rizzo, M.; Glasser, S.P.; et al. Effects of coenzyme Q10 on statin-induced myopathy: A meta-analysis of randomized controlled trials. Mayo Clin. Proc. 2015, 90, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Moßhammer, D.; Schaeffeler, E.; Schwab, M.; Mörike, K. Mechanisms and assessment of statin-related muscular adverse effects. Br. J. Clin. Pharmacol. 2014, 78, 454–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint, O.P.; Masters, B.A.; Gregg, R.E.; Durham, S.K. HMG CoA reductase inhibitor-induced myotoxicity: Pravastatin and lovastatin inhibit the geranylgeranylation of low-molecular-weight proteins in neonatal rat muscle cell culture. Toxicol. Appl. Pharmacol. 1997, 145, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Honda, T.; Yokoya, S.; Waguri, S.; Kimura, J. Rab-small gtpases are involved in fluvastatin and pravastatin-induced vacuolation in rat skeletal myofibers. FASEB J. 2007, 21, 4087–4094. [Google Scholar] [CrossRef] [PubMed]
- Itagaki, M.; Takaguri, A.; Kano, S.; Kaneta, S.; Ichihara, K.; Satoh, K. Possible mechanisms underlying statin-induced skeletal muscle toxicity in l6 fibroblasts and in rats. J. Pharmacol. Sci. 2009, 109, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Ronzier, E.; Parks, X.X.; Qudsi, H.; Lopes, C.M. Statin-specific inhibition of Rab-GTPase regulates cPKC-mediated IKs internalization. Sci. Rep. 2019, 9, 17747. [Google Scholar] [CrossRef] [Green Version]
- Cao, P.; Hanai, J.-I.; Tanksale, P.; Imamura, S.; Sukhatme, V.P.; Lecker, S.H. Statin-induced muscle damage and atrogin-1 induction is the result of a geranylgeranylation defect. FASEB J. 2009, 23, 2844–2854. [Google Scholar] [CrossRef] [Green Version]
- Mullen, P.J.; Zahno, A.; Lindinger, P.; Maseneni, S.; Felser, A.; Krähenbühl, S.; Brecht, K. Susceptibility to simvastatin-induced toxicity is partly determined by mitochondrial respiration and phosphorylation state of Akt. Biochim. Biophys. Acta Mol. Cell Res. 2011, 1813, 2079–2087. [Google Scholar] [CrossRef] [Green Version]
- Bonifacio, A.; Sanvee, G.M.; Bouitbir, J.; Krähenbühl, S. The AKT/mTOR signaling pathway plays a key role in statin-induced myotoxicity. Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 1841–1849. [Google Scholar] [CrossRef] [Green Version]
- Draeger, A.; Monastyrskaya, K.; Mohaupt, M.; Hoppeler, H.; Savolainen, H.; Allemann, C.; Babiychuk, E.B. Statin therapy induces ultrastructural damage in skeletal muscle in patients without myalgia. J. Pathol. 2006, 210, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, P.M.; Thompson, P.D.; Cannon, C.P.; Guyton, J.R.; Bergeron, J.; Zieve, F.J.; Bruckert, E.; Jacobson, T.A.; Kopecky, S.L.; Baccara-Dinet, M.T.; et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The odyssey alternative randomized trial. J. Clin. Lipidol. 2015, 9, 758–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, M.D.; Lecker, S.H.; Jagoe, R.T.; Navon, A.; Goldberg, A.L. Atrogin-1, a muscle-specific f-box protein highly expressed during muscle atrophy. Proc. Natl. Acad. Sci. USA 2001, 98, 14440–14445. [Google Scholar] [CrossRef] [Green Version]
- Hanai, J.; Cao, P.; Tanksale, P.; Imamura, S.; Koshimizu, E.; Zhao, J.; Kishi, S.; Yamashita, M.; Phillips, P.S.; Sukhatme, V.P.; et al. The muscle-specific ubiquitin ligase atrogin-1/mafbx mediates statin-induced muscle toxicity. J. Clin. Investig. 2007, 117, 3940–3951. [Google Scholar] [CrossRef]
- Protasi, F.; Takekura, H.; Wang, Y.; Chen, S.R.; Meissner, G.; Allen, P.D.; Franzini-Armstrong, C. Ryr1 and ryr3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys. J. 2000, 79, 2494–2508. [Google Scholar] [CrossRef] [Green Version]
- Robinson, R.; Carpenter, D.; Shaw, M.A.; Halsall, J.; Hopkins, P. Mutations in ryr1 in malignant hyperthermia and central core disease. Hum. Mutat. 2006, 27, 977–989. [Google Scholar] [CrossRef]
- Jungbluth, H. Multi-minicore disease. Orphanet J. Rare Dis. 2007, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Mohaupt, M.G.; Karas, R.H.; Babiychuk, E.B.; Sanchez-Freire, V.; Monastyrskaya, K.; Iyer, L.; Hoppeler, H.; Breil, F.; Draeger, A. Association between statin-associated myopathy and skeletal muscle damage. CMAJ 2009, 181, E11–E18. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, P.J.; Brown, K.M.; Piippo, K.; Swan, H.; Devaney, J.M.; Brahmbhatt, B.; Donarum, E.A.; Marino, M.; Tiso, N.; Viitasalo, M.; et al. Mutations of the cardiac ryanodine receptor (RYR2) gene in familial polymorphic ventricular tachycardia. Circulation 2001, 103, 485–490. [Google Scholar] [CrossRef]
- Luzum, J.A.; Kitzmiller, J.P.; Isackson, P.J.; Ma, C.; Medina, M.W.; Dauki, A.M.; Mikulik, E.B.; Ochs-Balcom, H.M.; Vladutiu, G.D. Gatm polymorphism associated with the risk for statin-induced myopathy does not replicate in case-control analysis of 715 dyslipidemic individuals. Cell Metab. 2015, 21, 622–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, D.F.; Alfirevic, A.; Johnson, R.; Chinoy, H.; van Staa, T.; Pirmohamed, M. Gatm gene variants and statin myopathy risk. Nature 2014, 513, E1. [Google Scholar] [CrossRef] [PubMed]
- Floyd, J.S.; Bis, J.C.; Brody, J.A.; Heckbert, S.R.; Rice, K.; Psaty, B.M. Gatm locus does not replicate in rhabdomyolysis study. Nature 2014, 513, E1–E3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dube, M.P.; Zetler, R.; Barhdadi, A.; Brown, A.; Mongrain, I.; Normand, V.; Laplante, N.; Asselin, G.; Feroz Zada, Y.; Provost, S.; et al. CKM and LILRB5 are associated with serum levels of creatine kinase. Circ. Cardiovasc. Genet. 2014, 7, 880–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ClinicalTrials.gov. Statin Immune Study (Immunostat) nct02984293. Available online: https://clinicaltrials.gov/ct2/show/NCT02984293 (accessed on 24 July 2019).
- Kuswanto, W.; Burzyn, D.; Panduro, M.; Wang, K.K.; Jang, Y.C.; Wagers, A.J.; Benoist, C.; Mathis, D. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory t cells. Immunity 2016, 44, 355–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Needham, M.; Fabian, V.; Knezevic, W.; Panegyres, P.; Zilko, P.; Mastaglia, F.L. Progressive myopathy with up-regulation of MHC-I associated with statin therapy. Neuromuscul. Disord. 2007, 17, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Grable-Esposito, P.; Katzberg, H.D.; Greenberg, S.A.; Srinivasan, J.; Katz, J.; Amato, A.A. Immune-mediated necrotizing myopathy associated with statins. Muscle Nerve 2010, 41, 185–190. [Google Scholar] [CrossRef]
- Christopher-Stine, L.; Casciola-Rosen, L.A.; Hong, G.; Chung, T.; Corse, A.M.; Mammen, A.L. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 2010, 62, 2757–2766. [Google Scholar] [CrossRef] [Green Version]
- Mammen, A.L.; Chung, T.; Christopher-Stine, L.; Rosen, P.; Rosen, A.; Casciola-Rosen, L.A. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme a reductase (HMGCR) in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 2011, 63, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Mammen, A.L. Statin-associated autoimmune myopathy. N. Engl. J. Med. 2016, 374, 664–669. [Google Scholar] [CrossRef]
- Pinal-Fernandez, I.; Casal-Dominguez, M.; Mammen, A.L. Immune-mediated necrotizing myopathy. Curr. Rheumatol. Rep. 2018, 20, 21. [Google Scholar] [CrossRef] [PubMed]
- Werner, J.L.; Christopher-Stine, L.; Ghazarian, S.R.; Pak, K.S.; Kus, J.E.; Daya, N.R.; Lloyd, T.E.; Mammen, A.L. Antibody levels correlate with creatine kinase levels and strength in anti-3-hydroxy-3-methylglutaryl-coenzyme a reductase-associated autoimmune myopathy. Arthritis Rheum. 2012, 64, 4087–4093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arouche-Delaperche, L.; Allenbach, Y.; Amelin, D.; Preusse, C.; Mouly, V.; Mauhin, W.; Tchoupou, G.D.; Drouot, L.; Boyer, O.; Stenzel, W.; et al. Pathogenic role of anti-signal recognition protein and anti-3-hydroxy-3-methylglutaryl-coa reductase antibodies in necrotizing myopathies: Myofiber atrophy and impairment of muscle regeneration in necrotizing autoimmune myopathies. Ann. Neurol. 2017, 81, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Fruen, B.; Farrington, D.T.; Wagenknecht, T.; Liu, Z. Calmodulin-binding locations on the skeletal and cardiac ryanodine receptors. J. Biol. Chem. 2012, 287, 30328–30335. [Google Scholar] [CrossRef] [Green Version]
- Wiel, C.; Lallet-Daher, H.; Gitenay, D.; Gras, B.; Le Calvé, B.; Augert, A.; Ferrand, M.; Prevarskaya, N.; Simonnet, H.; Vindrieux, D.; et al. Endoplasmic reticulum calcium release through itpr2 channels leads to mitochondrial calcium accumulation and senescence. Nat. Commun. 2014, 5, 3792. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Thompson, P.D. The relationship of vitamin d deficiency to statin myopathy. Atherosclerosis 2011, 215, 23–29. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin d metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Mazidi, M.; Rezaie, P.; Vatanparast, H.; Kengne, A.P. Effect of statins on serum vitamin d concentrations: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2017, 47, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Thummel, K.E.; Brimer, C.; Yasuda, K.; Thottassery, J.; Senn, T.; Lin, Y.; Ishizuka, H.; Kharasch, E.; Schuetz, J.; Schuetz, E. Transcriptional control of intestinal cytochrome P-4503A by 1α,25-Dihydroxy vitamin D3. Mol. Pharmacol. 2001, 60, 1399–1406. [Google Scholar] [CrossRef]
- Wang, Z.; Schuetz, E.G.; Xu, Y.; Thummel, K.E. Interplay between vitamin d and the drug metabolizing enzyme CYP3A4. J. Steroid Biochem. Mol. Biol. 2013, 136, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Thirumaran, R.K.; Lamba, J.K.; Kim, R.B.; Urquhart, B.L.; Gregor, J.C.; Chande, N.; Fan, Y.; Qi, A.; Cheng, C.; Thummel, K.E.; et al. Intestinal CYP3A4 and midazolam disposition in vivo associate with vdr polymorphisms and show seasonal variation. Biochem. Pharmacol. 2012, 84, 104–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, J.B. Effects of vitamin d supplementation in atorvastatin-treated patients: A new drug interaction with an unexpected consequence. Clin. Pharmacol. Ther. 2009, 85, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Lee, K.; Prince, M.; Milgrom, A.; Makadia, F.; Wang, P. Low serum vitamin d, statin associated muscle symptoms, vitamin d supplementation. Atherosclerosis 2017, 256, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Jetty, V.; Glueck, C.J.; Wang, P.; Shah, P.; Prince, M.; Lee, K.; Goldenberg, M.; Kumar, A. Safety of 50,000-100,000 units of vitamin d3/week in vitamin D-Deficient, hypercholesterolemic patients with reversible statin intolerance. N. Am. J. Med. Sci. 2016, 8, 156–162. [Google Scholar] [PubMed] [Green Version]
- Kang, J.H.; Nguyen, Q.N.; Mutka, J.; Le, Q.A. Rechallenging statin therapy in veterans with statin-induced myopathy post vitamin d replenishment. J. Pharm. Pract. 2017, 30, 521–527. [Google Scholar] [CrossRef]
- Alonso, R.; Cuevas, A.; Cafferata, A. Diagnosis and management of statin intolerance. J. Atheroscler. Thromb. 2019, 26, 207–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenson, R.S.; Baker, S.K.; Jacobson, T.A.; Kopecky, S.L.; Parker, B.A. The National Lipid Association’s Muscle Safety Expert Panel. An assessment by the statin muscle safety task force: 2014 update. J. Clin. Lipidol. 2014, 8, S58–S71. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Plutzky, J.; Skentzos, S.; Morrison, F.; Mar, P.; Shubina, M.; Turchin, A. Discontinuation of statins in routine care settings: A cohort study. Ann. Intern. Med. 2013, 158, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Keating, A.J.; Campbell, K.B.; Guyton, J.R. Intermittent nondaily dosing strategies in patients with previous statin-induced myopathy. Ann. Pharmacother. 2013, 47, 398–404. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
- Stroes, E.; Colquhoun, D.; Sullivan, D.; Civeira, F.; Rosenson, R.S.; Watts, G.F.; Bruckert, E.; Cho, L.; Dent, R.; Knusel, B.; et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: The GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J. Am. Coll. Cardiol. 2014, 63, 2541–2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oren, O.; Kludtke, E.L.; Kopecky, S.L. Characteristics and outcomes of patients treated with proprotein convertase subtilisin/kexin type 9 inhibitors (the mayo clinic experience). Am. J. Cardiol. 2019, 124, 1669–1673. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.S.; Scopelliti, E.M.; Olugbile, O. The role of PCSK9 inhibitors in the treatment of hypercholesterolemia. Ann. Pharmacother. 2018, 52, 1000–1018. [Google Scholar] [CrossRef] [PubMed]
- Van der Wouden, C.H.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.C.; Davila-Fajardo, C.L.; Deneer, V.H.; Dolzan, V.; Ingelman-Sundberg, M.; Jonsson, S.; Karlsson, M.O.; et al. Implementing pharmacogenomics in europe: Design and implementation strategy of the ubiquitous pharmacogenomics consortium. Clin. Pharmacol. Ther. 2017, 101, 341–358. [Google Scholar] [CrossRef]
- Ray, K.K.; Bays, H.E.; Catapano, A.L.; Lalwani, N.D.; Bloedon, L.T.; Sterling, L.R.; Robinson, P.L.; Ballantyne, C.M. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N. Engl. J. Med. 2019, 380, 1022–1032. [Google Scholar] [CrossRef]
- Ray, K.K.; Stoekenbroek, R.M.; Kallend, D.; Leiter, L.A.; Landmesser, U.; Wright, R.S.; Wijngaard, P.; Kastelein, J.J.P. Effect of an siRNA therapeutic targeting PCSK9 on atherogenic lipoproteins. Circulation 2018, 138, 1304–1316. [Google Scholar] [CrossRef]
- Herrett, E.; Williamson, E.; Beaumont, D.; Prowse, D.; Youssouf, N.; Brack, K.; Armitage, J.; Goldacre, B.; MacDonald, T.; Staa, T.V.; et al. Study protocol for statin web-based investigation of side effects (statinwise): A series of randomised controlled N-of-1 trials comparing atorvastatin and placebo in UK primary care. BMJ Open 2017, 7, e016604. [Google Scholar] [CrossRef]
- Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.; Dose, H.; Mori, H.; et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018, 555, 623. [Google Scholar] [CrossRef]
- Khan, T.J.; Ahmed, Y.M.; Zamzami, M.A.; Mohamed, S.A.; Khan, I.; Baothman, O.A.S.; Mehanna, M.G.; Yasir, M. Effect of atorvastatin on the gut microbiota of high fat diet-induced hypercholesterolemic rats. Sci. Rep. 2018, 8, 662. [Google Scholar] [CrossRef] [Green Version]
- Morelli, M.B.; Wang, X.; Santulli, G. Functional role of gut microbiota and PCSK9 in the pathogenesis of diabetes mellitus and cardiovascular disease. Atherosclerosis 2019, 289, 176–178. [Google Scholar] [CrossRef]
Drug Property | Atorvastatin | Cerivastatin | Fluvastatin | Lovastatin | Pitavastatin | Pravastatin | Rosuvastatin | Simvastatin |
---|---|---|---|---|---|---|---|---|
Year approved | 1996 | 1997 to 2001 | 1993 | 1987 | 2009 | 1991 | 2003 | 1991 |
Generic available | Yes | No | Yes | Yes | No | Yes | No | Yes |
Daily dose (mg) | 10–80 | 0.2–0.3 | 20–80 | 10–80 | 1–4 | 10–80 | 5–40 | 10–40 |
Equipotent dose (mg) | 20 | - | >80 | 80 | 4 | 80 | 5 | 40 |
Marketed drug form | Acid | Acid | Acid | Lactone | Acid | Acid | Acid | Lactone |
log P (N-octanol/H2O partition coefficient) | 1.11 (lipophilic) | 1.70 (lipophilic) | 1.27 (lipophilic) | 1.70 (lipophilic) | 1.49 (lipophilic) | −0.84 (hydrophilic) | −0.33 (hydrophilic) | 1.60 (lipophilic) |
Oral absorption (%) | 30 | >98 | 98 | 31 | 80 | 37 | 50 | 65–85 |
Bioavailability (%) | 14 | 60 | 29 | <5 | 51 | 17 | 20 | 5 |
Effect of food on bioavailability | Decrease | No effect | Decrease | Increase | No effect | Decrease | No effect | No effect |
Time to Cmax (hours) | 1–2 | 2–3 | 2.5–3 | 2 | 1 | 1–1.5 | 3–5 | 1–4 |
Protein binding (%) | ≥98 | >99 | 98 | >95 | >99 | ~50 | 88 | 95 |
Volume of distribution | 381 L | 0.3 L/Kg | 25 | - | 148 L | 0.5 L/Kg | 134 L | 233 L |
Extent of metabolism | High | High | High | High | Low | Low | Low | High |
CYPs that metabolise statin acid form | CYP3A CYP2C8 † | CYP2C8 CYP3A | CYP2C9 CYP2C8 † CYP3A † | CYP3A | CYP2C9 CYP2C8 † | CYP2C9 CYP3A † | CYP2C9 CYP2C19 † CYP3A † | CYP3A CYP2C8 † |
CYPs that metabolise statin lactone form | CYP3A | CYP3A | CYP3A | CYP3A | CYP3A CYP2D6 † | Not known | CYP3A CYP2C9 † CYP2D6 † | CYP3A |
UGTs involved in lactonization of statin acid form | UGT1A1 UGT1A3 UGT2B7 | UGT1A3 | Not known | UGT1A1 UGT1A3 | UGT1A3 UGT2B7 | None identified | UGT1A1 UGT1A3 | None identified |
Transporters for parent statin | OATP1B1, BCRP, MRP1, 2, 4, NTCP, P-gp, OATP1A2, 1B3, 2B1 | OATP1B1, BCRP | OATP1B1, 1B3, 2B1, BCRP | OATP1B1, P-gp | OATP1B1, 1B3, BCRP, MRP2, NTCP, P-gp | OATP1B1, 1B3, 2B1, BSEP, BCRP, MRP2, P-gp; OAT3 in renal elimination | OATP1B1, BCRP, BSEP, MRP1, 2, 4, 5, P-gp, OATP1A2, 1B3, 2B1, NTCP; OAT3 in renal elimination | BCRP, P-gp (SVT acid: OATP1B1) |
Metabolites formed | 2-OH ATV, 4-OH ATV, ATV L, 2-OH ATV L, 4-OH ATV L | M-1 acid, M-23 acid, CVT L, M-1 L, M-23 L | 5-OH FVT, 6-OH FVT, N-deisopropyl FVT, FVT L | LVT acid, 6-OH LVT acid | PIT L | 6-epi PVT, 3α-OH PVT, PVT L, 3α-OH PVT L | N-desmethyl RVT, RVT L | SVT acid, 3′,5′-dihydrodiol, 6′-exomethylene & 3-OH acid metabolites |
Elimination t1/2 (h) | 14 | 2–3 | 3 | 2–5 | 12 | 1–3 | 19 | 2–3 |
Faecal excretion (%) | 98 | 70 | 90 | 83 | 79 | 70 | 90 | 60 |
Renal excretion (%) | <2 | 30 | 5 | 10 | 15 | 20 | 10–28 | 13 |
References | [19,20,21,22,23,24,25] | [19,25,26,27,28] | [22,25,29] | [19,22,25,30,31] | [19,22,25,32,33] | [22,25,34,35,36,37,38] | [19,22,24,25,39,40,41,42,43,44] | [19,22,25,45,46,47,48] |
Category | Risk Factor | Reference |
---|---|---|
Demographics | ||
Advanced age (>80 years old) | [51,82] | |
Female gender | [51,85] | |
Low body mass index | [73,82] | |
Ethnicity | ||
Black African | [70] | |
Caribbean | ||
Co-morbidities | ||
Alcohol abuse | [82] | |
Chronic kidney disease | [51,82,86,87] | |
Chronic liver disease | [70,88] | |
Diabetes mellitus | [88,89] | |
Hypertension | [90] | |
Hypothyroidism | [88] | |
Vitamin D deficiency | [91,92,93] | |
Personal/family factors | ||
Physical exercise | [58,94,95] | |
Personal or family history of muscle pain | [58] | |
Diet | ||
Grapefruit juice (CYP3A inhibition) | [96] | |
Drugs | ||
Higher statin dose | [70,73,97] | |
Corticosteroids | [88] | |
CYP3A inhibitors (particularly for ATV, LVT, SVT)—e.g., amiodarone, ciclosporin, clarithromycin, erythromycin, protease inhibitors (e.g., indinavir, ritonavir) | [98,99,100,101,102,103,104] | |
CYP2C9 inhibitors † (for FVT)—e.g., fluconazole | [105] | |
OATP1B1 inhibition—e.g., gemfibrozil, ciclosporin | [99] |
Study | Design | Genes | Variants | Statin | N | Endpoint | Main Results |
---|---|---|---|---|---|---|---|
Statin Pharmacokinetics | |||||||
Bai 2019 [109] | Co, CG | SLCO1B1 | rs4149056 (521T > C, p.V174A) | RVT | 758 | Muscle symptoms +/− ↑CK | -OR 1.74 (95% CI 1.18–2.57), p = 0.0052 -No associations for ABCB1, ABCG2, CYP2C9, SLCO1B3 -GATM—see ‘Muscle-related’ section below |
Carr 2019 [110] | GWAS, then MA | SVT, CVT, ATV (+ others) | 7764 | CK > 10 × ULN or rhabdomyolysis | -all statins: OR 2.99 (95% CI 2.34–3.82), p = 2.63 × 10−18 -SVT: OR 5.91 (95% CI 4.10–8.51), p = 1.46 × 10−21 -ATV: no clear associations | ||
Carr 2013 [89] | CC, CG | SVT, ATV (+ others) | 448 | Stop statin & CK > 4 × ULN | -all statins: OR 2.08 (95% CI 1.35–3.23), p = 0.005 -SVT: OR 2.13 (95% CI 1.29–3.54), p = 0.014 -COQ2—see ‘Muscle-related’ section below | ||
Floyd 2019 [111] | MA, WES | SVT, CVT, ATV (+ others) | 2552 | Muscle symptoms & CK > 4 × ULN | -No genome-wide significant associations -rs4149056 in non-fibrate users secondary analysis: 4.01-fold ↑ risk (95% CI 2.61–6.17), p = 5.46 × 10−11 | ||
Danik 2013 [112] | RCT, CG | RVT | 4404 | Myalgia | No association detected | ||
de Keyser 2014 [113] | Co, CG | SVT, ATV | 1939 | Statin dose decrease or switch | -SVT: HR 1.74 (95% CI 1.05–2.88), p = 0.033 -ATV > 20 mg: HR 3.26 (95% CI 1.47–7.35), p = 0.004 -No associations for SVT or ATV in replication set | ||
Link 2008 [86] | CC, GWAS | SVT | 175 | CK > 3 × ULN & 5 x baseline, plus ↑ ALT | -SVT 80 mg: OR 4.5 (95% CI 2.6–7.7) -STV 40mg: OR 2.6 (95% CI 1.3–5.0), p = 0.004 | ||
Puccetti 2010 [114] | CC, CG | ATV, RVT | 76 | Muscular intolerance (muscle symptoms or ↑ CK or ↑LFTs) | -ATV: OR 2.7 (95% CI 1.3–4.9), p < 0.001 -RVT: no association -COQ2—see ‘Muscle-related’ section below | ||
Marciante 2011 [115] | CC, CGs & GWAS | CVT | 917 | Muscle symptoms & CK > 10 × ULN | -OR 1.89 (95% CI 1.40–2.56), p = 3.62 × 10−5 -No associations for CYP2C8, UGT1A1/1A3 -RYR2—see ‘Muscle-related’ section below | ||
Voora 2009 [85] | RCT, CG | ATV, SVT, PVT | 452 | Stop statin, myalgia, or CK > 3 × ULN | -OR 1.7 (95% CI 1.04–2.8), p = 0.03. -Risk highest in patients on SVT. -No apparent association for PVT -No associations for CYP2C8, 2C9, 2D6, 3A4 | ||
Xiang 2018 [116] | MA, CG | SVT, CVT, RVT, ATV, PVT | 11,008 | Multiple- myalgia to rhabdomyolysis | -SVT: OR 2.35 (95% CI 1.08–5.12), p = 0.032 -CVT: OR 1.95 (95% 1.47–2.57), p < 0.001 -RVT: OR 1.69 (95% CI 1.07–2.67), p = 0.024 -ATV or PVT: no associations | ||
Elam 2017 [69] | CC, CG | SLCO1B1 | rs4149056 | SVT, ATV, RVT | 19 | Statin myalgia confirmed by re-challenge | -↑ myalgia with rs4149056 variant allele (p = 0.039) -↑ myalgia with rs12422149 variant allele (p = 0.001) -RYR2—see ‘Muscle-related’ section below |
SLCO2B1 | rs12422149 | ||||||
Ferrari 2014 [117] | CC, CG | SLCO1B1 | rs4149056, rs2306283 | ATV, RVT, SVT | 66 | CK > 3 × ULN, irrespective of symptoms | - rs4149056: OR 8.5 (95% CI 1.7–42.3), p = 0.001 - rs2306283: OR 0.3 (95%CI 0.06–0.91), p = 0.022 -ABCB1: OR 4.5 (95% CI 1.4–14.7), p = 0.001 -No association for ABCG2 |
ABCB1 | 1236C > T, 3435C > T | ||||||
Fiegenbaum 2005 [118] | Co, CG | ABCB1 | 1236C > T, 2677G > A/T, 3435C > T | SVT | 116 | Myalgia | -↑ endpoint risk with ABCB1 variants (p < 0.05) -No associations with CYP3A4, 3A5 |
Hoenig 2011 [119] | Co, CG | ABCB1 | 3435C > T | ATV | 117 | Myalgia | ↑ risk carrying T compared to C allele (p = 0.043) |
Mirosevic Skvrce 2015 [120] | CC, CG | SLCO1B1 | rs4149056 | ATV | 130 | Adverse reactions (61.7% myotoxicity); myalgia to rhabdomyolysis | -rs4149056: OR 2.3 (95% CI 1.03–4.98), p = 0.043 -rs2231142: OR 2.75 (95% CI 1.10–6.87), p = 0.03 -No association for CYP3A4*22 |
ABCG2 | rs2231142 | ||||||
Mirosevic Skvrce 2013 [105] | CC, CG | ABCG2 | rs2231142 | FVT | 104 | Adverse reactions in renal transplant patients (90.4% myotoxicity) | -rs2231142: OR 4.89 (95% CI 1.42–16.89) -*2 or *3 carriers: OR 2.44 (95% CI 1.05–5.71), p = 0.037 -↑ risk of endpoint in CYP2C9*2 or *3 carriers on a CYP2C9 drug inhibitor: OR 6.59, p = 0.027 |
CYP2C9 | *2, *3 | ||||||
Becker 2010 [121] | Co, CG | CYP3A4 | *1B | SVT, ATV | 1239 | Statin dose decrease or switch | -SVT/ATV: HR 0.46 (95% CI 0.24–0.90), p = 0.023 -SVT only: HR 0.47 (95% CI 0.23–0.96), p = 0.039 -No association for ABCB1 |
Frudakis 2007 [122] | CC, CG | CYP2D6 | *4 | ATV, SVT | 263 | Stop statin due to muscle events | -ATV: OR 2.5 (95% CI 1.5–4.4), p = 0.001 -SVT: OR 1.7 (95% CI 0.9–3.2), p = 0.067 |
Mulder 2001 [123] | Co, CG | CYP2D6 | *3, *4, *5, *2xN | SVT | 88 | Stop statin | ↑ risk with CYP2D6 variants (RR = 4.7); a gene-dose trend |
Wilke 2005 [124] | CC, CG | CYP3A4/5 | 3A4*1B, 3A5*3 | ATV | 137 | Myalgia | No main associations detected |
Zuccaro 2007 [125] | CC, CG | CYPs | Several | ATV, SVT, PVT (+ others) | 100 | Muscle symptoms +/− ↑CK | No associations for CYP2C9, 2D6, 3A5 |
Muscle-related | |||||||
Bai 2019 [109] | Co, CG | GATM | rs9806699 | RVT | 758 | Muscle symptoms +/− ↑CK | OR 0.62 (95% CI 0.41–0.94), p = 0.024 |
Mangravite 2013 [126] | deQTL CG CCs | GATM | rs9806699 rs1719247 | SVT | 4413 | Muscle symptoms & CK > 3 × ULN | -rs1719247 in LD with top deQTL, rs9806699: r2 = 0.76 -MA: OR 0.60 (95% CI 0.45–0.81), p = 6.0 × 10-4 |
Carr 2013 [89] | CC, CG | COQ2 | rs4693075 | SVT, ATV (+ others) | 448 | Stop statin & CK > 4 × ULN | COQ2 rs4693075: no associations |
Oh 2007 [127] | CC, CG | COQ2 | rs6535454 rs4693075 | ATV, RVT (+ others) | 291 | Muscle symptoms + stop statin or CK > 3 × ULN | -rs6535454: OR 2.42 (95% CI 0.99–5.89), p = 0.047 -rs4693075: OR 2.33 (95% CI 1.13–4.81), p = 0.019 |
Puccetti 2010 [114] | CC, CG | COQ2 | rs4693075 | ATV, RVT | 76 | Muscular intolerance (muscle symptoms or ↑ CK or ↑LFTs) | -RVT: OR 2.6 (95% CI 1.7–4.4), p < 0.001 - ↑ risk of muscular symptoms and ↑ CK with ATV: OR 3.1 (95% CI 1.9–6.4), p < 0.001 |
Ruano 2011 [128] | CC, CG | COQ2 | rs4693570 | ATV, SVT, RVT (+ others) | 793 | Myalgia | -COQ2 rs4693570 (p = 0.000041) or ATP2B1 rs17381194 (p = 0.00079) associated with ↓ risk. -DMPK rs672348 (p = 0.0016) associated with ↑ risk. |
ATP2B1 | rs17381194 | ||||||
DMPK | rs672348 | ||||||
Vladutiu 2006 [129] | CC, CG | CPT2 | Several | ATV, CVT, LVT, SVT | 358 | Muscle symptoms; CK ↑ reported | Overall, a fourfold ↑ in the number of mutant alleles (AMPD1 > CPT2/PYGM) in cases vs. statin-tolerant controls. |
PYGM | R49X, G204S | ||||||
AMPD1 | Q12X, P48L, K287I | ||||||
Tsivgoulis 2006 [130] | CRs, CG | DMPK | CTG repeats | PVT, ATV, SVT | 4 | Muscle symptoms or fatigue & CK ↑ | -1 case of each of type 1 myotonic dystrophy (DMPK), glycogen storage disease V (muscle histochemical diagnosis), mitochondrial myopathy (muscle biopsy & biochemical diagnosis), and Kennedy disease (NR3C4) diagnosed after starting statin and becoming symptomatic |
NR3C4 | CAG repeats | ||||||
Echaniz-Laguna 2010 [131] | Co, CG | NR3C4 | CAG repeats | SVT, PVT, ATV (+ others) | 52 | Abnormal EMG & pathological analysis, if muscle features last > 3 months after statin ceased | -5 patients diagnosed with paraneoplastic polymyositis, Kennedy disease (NR3C4), glycogen storage disease IX (PHKA1), motor neuron disease, and necrotic myopathy of uncertain aetiology |
PHKA1 | Not specified | ||||||
Knoblauch 2010 [132] | CS, CG | CNBP | CCTG repeat | ATV, SVT (+ others) | 3 | Muscle symptoms that last after statin ceased +/− ↑CK | -All 3 cases diagnosed with type II myotonic dystrophy after becoming symptomatic after starting statin treatment |
Voermans 2005 [133] | CR, CG | GAA | IVS1-13T > G 525del T | SVT | 1 | Muscle symptoms & CK ↑ | -1 case of a compound heterozygote for glycogen storage disease II diagnosed after becoming symptomatic on SVT |
Zeharia 2008 [134] | CC, CG | LPIN1 | sequenced | Unknown | 20 | Myopathy with ↑CK | In 2 of 6 cases, exonic nucleotide substitutions thought harmful were found, vs. 0 in 14 statin-tolerant controls. |
Vladutiu 2011 [135] | CC, CG | RYR1 | 34 mutations | Not specified | 493 | Muscle symptoms-often last post statin, +/− ↑CK | RYR1 mutations in 3 of 197 severe & 1 of 163 mild statin myopathies, vs. 0 of 133 statin-tolerant controls |
Isackson 2018 [136] | WES | RYR1 | Pathogenic variants | ATV, RVT, SVT (+ others) | 126 | Muscle symptoms & CK > 5 × ULN | 12 of 76 (16%) of SRM patients had probably pathogenic variants in RYR1 or CACNA1S, which was 4-fold higher than in statin-tolerant controls. |
CACNA1S | |||||||
Elam 2017 [69] | CC, CG | RYR2 | rs2819742 | SVT, ATV, RVT | 19 | Statin myalgia confirmed by re-challenge | -↑ myalgia with rs2819742 variant allele (p = 0.016) -No associations with GATM, COQ2, HTR3B, HTR7 |
Marciante 2011 [115] | CC, CGs & GWAS | RYR2 | rs2819742 | CVT | 917 | Muscle symptoms & CK > 10 × ULN | OR 0.48 (95% CI 0.36-0.63), p = 1.74 × 10−7 |
Immune-system related | |||||||
Limaye 2015 [137] | Co, CG | HLA-DRB1*11 | Typing to ‘two-digit’ resolution | Not specified | 207 | Anti-HMGCR antibodies in patients with idiopathic inflammatory myositis or immune-mediated necrotizing myopathy | -Anti-HMGCR antibodies in 19 of 207 myopathy cases -HLA-DRB1*11 more frequent in myopathy patients positive vs. negative for anti-HMGCR antibodies: OR 56.1 (95% CI 5.0–7739), p = 0.001 -3 anti-HMGCR positive myopathy patients had high resolution typing and all carried HLA-DRB1*11:01 |
Mammen 2012 [138] | CC, HLA typing | HLA-DRB1*11 | Typing resolution: -Intermediate; -High in DR11 | Not specified | 733 | Anti-HMGCR antibodies in patients with myositis/myopathy | -OR for HLA-DRB1*11:01 in anti-HMGCR myopathy patients vs. controls: ~24.5 (p = 3.2 × 10−10) and ~56.5 (p = 3.1 × 10−6) in white & black ethnicities, respectively -HLA-DQA1 and DQB6 less frequent in white anti-HMGCR positive patients than controls (p = 5.5 × 10−4, p = 2.1 × 10−5, respectively) |
DQA | Intermediate resolution | ||||||
DQB | |||||||
Siddiqui 2017 [139] | Co, CG | LILRB5 | rs12975366 | SVT, RVT (+ others) | 1034 | -1. Non-adherence & ↑CK -2. Statin intolerant & switched ≥ 2 other statins | -1: OR 1.81 (95% CI 1.34–2.45) -2: OR 1.36 (95% CI 1.07–1.73) |
Pain perception | |||||||
Ruano 2007 [140] | CC, CG | HTR3B | rs2276307 | ATV, SVT, PVT | 195 | Myalgia | -↑risk for rs2276307 (p = 0.007) & rs1935349 (p = 0.026) -No associations for HTR1D, 2A, 2C, 3A, 5A, 6, SLC6A4 |
HTR7 | rs1935349 | ||||||
Other | |||||||
Isackson 2011 [141] | GWAS | EYS | rs1337512, rs9342288, rs3857532 | ATV (+ others) | 399 | Muscle symptoms-often last post therapy, +/− ↑CK | EYS SNPs conferred ↑ risk (p = 0.0003–0.0008), but did not survive multiple testing correction for GWAS. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turner, R.M.; Pirmohamed, M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J. Clin. Med. 2020, 9, 22. https://doi.org/10.3390/jcm9010022
Turner RM, Pirmohamed M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. Journal of Clinical Medicine. 2020; 9(1):22. https://doi.org/10.3390/jcm9010022
Chicago/Turabian StyleTurner, Richard Myles, and Munir Pirmohamed. 2020. "Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components" Journal of Clinical Medicine 9, no. 1: 22. https://doi.org/10.3390/jcm9010022
APA StyleTurner, R. M., & Pirmohamed, M. (2020). Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. Journal of Clinical Medicine, 9(1), 22. https://doi.org/10.3390/jcm9010022