Growth Differentiation Factor-15 as a Potent Predictor of Long-Term Mortality among Subjects with Osteoarthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Laboratory Methods
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethics Approval
Consent to Participate
Consent for Publication
Availability of Data and Material
References
- Nüesch, E.; Dieppe, P.; Reichenbach, S.; Williams, S.; Iff, S.; Jüni, P. All cause and disease specific mortality in patients with knee or hip osteoarthritis: Population based cohort study. BMJ 2011, 342, d1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, M.J.L.; Symmons, D.P.M.; McCarey, D.; Dijkmans, B. a. C.; Nicola, P.; Kvien, T.K.; McInnes, I.B.; Haentzschel, H.; Gonzalez-Gay, M.A.; Provan, S.; et al. EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann. Rheum. Dis. 2010, 69, 325–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, A.J.; Stubbs, B.; Mamas, M.A.; Myint, P.K.; Smith, T.O. Association between osteoarthritis and cardiovascular disease: Systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2016, 23, 938–946. [Google Scholar] [CrossRef]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the american college of cardiology/american heart association task force on practice guidelines. Circulation 2014, 129, S49–S73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hippisley-Cox, J.; Coupland, C.; Vinogradova, Y.; Robson, J.; Minhas, R.; Sheikh, A.; Brindle, P. Predicting cardiovascular risk in England and Wales: Prospective derivation and validation of QRISK2. BMJ 2008, 336, 1475–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Agostino, R.B.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The framingham heart study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Conroy, R.M.; Pyörälä, K.; Fitzgerald, A.P.; Sans, S.; Menotti, A.; De Backer, G.; De Bacquer, D.; Ducimetière, P.; Jousilahti, P.; Keil, U.; et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The score project. Eur. Heart J. 2003, 24, 987–1003. [Google Scholar] [CrossRef]
- Ridker, P.M.; Paynter, N.P.; Rifai, N.; Gaziano, J.M.; Cook, N.R. C-reactive protein and parental history improve global cardiovascular risk prediction: The reynolds risk score for men. Circulation 2008, 118, 2243–2251. [Google Scholar] [CrossRef] [Green Version]
- Arts, E.E.A.; Popa, C.; Den Broeder, A.A.; Semb, A.G.; Toms, T.; Kitas, G.D.; van Riel, P.L.; Fransen, J. Performance of four current risk algorithms in predicting cardiovascular events in patients with early rheumatoid arthritis. Ann. Rheum. Dis. 2015, 74, 668–674. [Google Scholar] [CrossRef] [Green Version]
- Ozen, G.; Sunbul, M.; Atagunduz, P.; Direskeneli, H.; Tigen, K.; Inanc, N. The 2013 ACC/AHA 10-year atherosclerotic cardiovascular disease risk index is better than SCORE and QRisk II in rheumatoid arthritis: Is it enough? Rheumatology 2016, 55, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Solomon, D.H.; Greenberg, J.; Curtis, J.R.; Liu, M.; Farkouh, M.E.; Tsao, P.; Kremer, J.M.; Etzel, C.J. Derivation and internal validation of an expanded cardiovascular risk prediction score for rheumatoid arthritis: A consortium of rheumatology researchers of north america registry study. Arthritis Rheumatol. 2015, 67, 1995–2003. [Google Scholar] [CrossRef] [PubMed]
- Agca, R.; Heslinga, S.C.; Rollefstad, S.; Heslinga, M.; McInnes, I.B.; Peters, M.J.L.; Kvien, T.K.; Dougados, M.; Radner, H.; Atzeni, F.; et al. Eular recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 2017, 76, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowson, C.S.; Gabriel, S.E.; Semb, A.G.; van Riel, P.L.C.M.; Karpouzas, G.; Dessein, P.H.; Hitchon, C.; Pascual-Ramos, V.; Kitas, G.D.; Douglas, K.; et al. Rheumatoid arthritis-specific cardiovascular risk scores are not superior to general risk scores: A validation analysis of patients from seven countries. Rheumatology 2017, 56, 1102–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahearn, J.; Shields, K.J.; Liu, C.-C.; Manzi, S. Cardiovascular disease biomarkers across autoimmune diseases. Clin. Immunol. 2015, 161, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Stürmer, T.; Brenner, H.; Koenig, W.; Günther, K.-P. Severity and extent of osteoarthritis and low grade systemic inflammation as assessed by high sensitivity C reactive protein. Ann. Rheum. Dis. 2004, 63, 200–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corre, J.; Hébraud, B.; Bourin, P. Concise review: Growth differentiation factor 15 in pathology: A clinical role? Stem Cells Transl. Med. 2013, 2, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Wollert, K.C.; Kempf, T.; Wallentin, L. Growth differentiation factor 15 as a biomarker in cardiovascular disease. Clin. Chem. 2017, 63, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, L.; Yang, X.; Zhong, J. Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. J. Am. Heart Assoc. 2019, 8, e012826. [Google Scholar] [CrossRef]
- Wallentin, L.; Hijazi, Z.; Andersson, U.; Alexander, J.H.; De Caterina, R.; Hanna, M.; Horowitz, J.D.; Hylek, E.M.; Lopes, R.D.; Asberg, S.; et al. Growth differentiation factor 15, a marker of oxidative stress and inflammation, for risk assessment in patients with atrial fibrillation: Insights from the Apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (Aristotle) trial. Circulation 2014, 130, 1847–1858. [Google Scholar] [CrossRef]
- Hagström, E.; James, S.K.; Bertilsson, M.; Becker, R.C.; Himmelmann, A.; Husted, S.; Katus, H.A.; Steg, P.G.; Storey, R.F.; Siegbahn, A.; et al. Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: Results from the Plato study. Eur. Heart J. 2016, 37, 1325–1333. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, B.; Schutte, A.E.; Gafane-Matemane, L.F.; Kruger, R. Growth differentiating factor-15 and its association with traditional cardiovascular risk factors: The African-Predict study. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, F.E.; Bennet, A.M.; Magnusson, P.K.E.; Eriksson, U.K.; Lindmark, F.; Wu, L.; Yaghoutyfam, N.; Marquis, C.P.; Stattin, P.; Pedersen, N.L.; et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): A new marker of all-cause mortality. Aging Cell 2010, 9, 1057–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels, L.B.; Clopton, P.; Laughlin, G.A.; Maisel, A.S.; Barrett-Connor, E. Growth-differentiation factor-15 is a robust, independent predictor of 11-year mortality risk in community-dwelling older adults: The rancho bernardo study. Circulation 2011, 123, 2101–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallentin, L.; Zethelius, B.; Berglund, L.; Eggers, K.M.; Lind, L.; Lindahl, B.; Wollert, K.C.; Siegbahn, A. GDF-15 for prognostication of cardiovascular and cancer morbidity and mortality in men. PLoS ONE 2013, 8, e78797. [Google Scholar] [CrossRef] [Green Version]
- Rothenbacher, D.; Dallmeier, D.; Christow, H.; Koenig, W.; Denkinger, M.; Klenk, J. ActiFE study group Association of growth differentiation factor 15 with other key biomarkers, functional parameters and mortality in community-dwelling older adults. Age Ageing 2019, 48, 541–546. [Google Scholar] [CrossRef]
- Wallentin, L.; Lindholm, D.; Siegbahn, A.; Wernroth, L.; Becker, R.C.; Cannon, C.P.; Cornel, J.H.; Himmelmann, A.; Giannitsis, E.; Harrington, R.A.; et al. Biomarkers in relation to the effects of ticagrelor in comparison with clopidogrel in non-ST-elevation acute coronary syndrome patients managed with or without in-hospital revascularization: A substudy from the prospective randomized platelet inhibition and patient outcomes (plato) trial. Circulation 2014, 129, 293–303. [Google Scholar] [CrossRef]
- Hagström, E.; Held, C.; Stewart, R.A.H.; Aylward, P.E.; Budaj, A.; Cannon, C.P.; Koenig, W.; Krug-Gourley, S.; Mohler, E.R.; Steg, P.G.; et al. Growth differentiation factor 15 predicts all-cause morbidity and mortality in stable coronary heart disease. Clin. Chem. 2017, 63, 325–333. [Google Scholar] [CrossRef]
- Wollert, K.C.; Kempf, T.; Peter, T.; Olofsson, S.; James, S.; Johnston, N.; Lindahl, B.; Horn-Wichmann, R.; Brabant, G.; Simoons, M.L.; et al. Prognostic value of growth-differentiation factor-15 in patients with non-ST-elevation acute coronary syndrome. Circulation 2007, 115, 962–971. [Google Scholar] [CrossRef] [Green Version]
- Dallmeier, D.; Brenner, H.; Mons, U.; Rottbauer, W.; Koenig, W.; Rothenbacher, D. Growth differentiation factor 15, its 12-month relative change, and risk of cardiovascular events and total mortality in patients with stable coronary heart disease: 10-year follow-up of the karola study. Clin. Chem. 2016, 62, 982–992. [Google Scholar] [CrossRef] [Green Version]
- Schaub, N.; Reichlin, T.; Twerenbold, R.; Reiter, M.; Steuer, S.; Bassetti, S.; Stelzig, C.; Wolf, C.; Winkler, K.; Haaf, P.; et al. Growth differentiation factor-15 in the early diagnosis and risk stratification of patients with acute chest pain. Clin. Chem. 2012, 58, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.J.; Wollert, K.C.; Larson, M.G.; Coglianese, E.; McCabe, E.L.; Cheng, S.; Ho, J.E.; Fradley, M.G.; Ghorbani, A.; Xanthakis, V.; et al. Prognostic utility of novel biomarkers of cardiovascular stress: The Framingham Heart Study. Circulation 2012, 126, 1596–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büchele, G.; Günther, K.P.; Brenner, H.; Puhl, W.; Stürmer, T.; Rothenbacher, D.; Brenner, R.E. Osteoarthritis-patterns, cardio-metabolic risk factors and risk of all-cause mortality: 20 years follow-up in patients after hip or knee replacement. Sci. Rep. 2018, 8, 5253. [Google Scholar] [CrossRef] [PubMed]
- Pencina, M.J.; D’Agostino, R.B.; Steyerberg, E.W. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat. Med. 2011, 30, 11–21. [Google Scholar] [CrossRef]
- Kerr, K.F.; Wang, Z.; Janes, H.; McClelland, R.L.; Psaty, B.M.; Pepe, M.S. Net reclassification indices for evaluating risk prediction instruments: A critical review. Epidemiology 2014, 25, 114–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, A.L.; Fernandes, A.; Aguilar-Pimentel, J.A.; de Angelis, M.H.; Guedes, J.R.; Brito, M.A.; Ortolano, S.; Pani, G.; Athanasopoulou, S.; Gonos, E.S.; et al. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res. Rev. 2018, 47, 214–277. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Tanaka, T.; Biancotto, A.; Moaddel, R.; Moore, A.Z.; Gonzalez-Freire, M.; Aon, M.A.; Candia, J.; Zhang, P.; Cheung, F.; Fantoni, G.; et al. Plasma proteomic signature of age in healthy humans. Aging Cell 2018, 17, e12799. [Google Scholar] [CrossRef] [Green Version]
- Basisty, N.; Kale, A.; Jeon, O.H.; Kuehnemann, C.; Payne, T.; Rao, C.; Holtz, A.; Shah, S.; Sharma, V.; Ferrucci, L.; et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020, 18, e3000599. [Google Scholar] [CrossRef] [Green Version]
- Doerstling, S.; Hedberg, P.; Öhrvik, J.; Leppert, J.; Henriksen, E. Growth differentiation factor 15 in a community-based sample: Age-dependent reference limits and prognostic impact. Ups. J. Med. Sci. 2018, 123, 86–93. [Google Scholar] [CrossRef]
- Dallmeier, D.; Pencina, M.J.; Rajman, I.; Koenig, W.; Rothenbacher, D.; Brenner, H. Serial measurements of N-terminal pro-brain natriuretic peptide in patients with coronary heart disease. PLoS ONE 2015, 10, e0117143. [Google Scholar] [CrossRef]
Q1 <780.0 ng/L | Q2 780.0–<1006.0 ng/L | Q3 1006.0–1279.0 ng/L | Q4 >1279.0 ng/L | Total | ||
---|---|---|---|---|---|---|
n | 158 | 160 | 159 | 159 | 636 | |
Age, years | 58.0 (53.0/64.0) | 65.0 (60.0/69.0) | 67.0 (61.0/71.0) | 70.0 (65.0/72.0) | 65.0 (58.0/70.0) | |
Sex, % (n) | Male | 46.8 (74) | 32.5 (52) | 35.8 (57) | 27.7 (44) | 35.7 (227) |
Female | 53.2 (84) | 67.5 (108) | 64.2 (102) | 72.3 (115) | 64.3 (409) | |
Body Mass Index, kg/m² | 27.3 (25.0/29.8) | 27.8 (25.3/30.1) | 27.8 (24.8/30.9) | 28.7 (25.9/32.4) | 27.8 (25.5/30.9) | |
Localization of OA, % (n) | Hip | 63.9 (101) | 56.3 (90) | 51.6 (82) | 38.4 (61) | 52.5 (334) |
Knee | 36.1 (57) | 43.8 (70) | 48.4 (77) | 61.6 (98) | 47.5 (302) | |
Smoking status, % (n) | Never | 55.7 (88) | 58.8 (94) | 59.1 (94) | 59.1 (94) | 58.2 (370) |
Former | 33.5 (53) | 28.8 (46) | 27.7 (44) | 30.8 (49) | 30.2 (192) | |
Current | 10.8 (17) | 12.5 (20) | 13.2 (21) | 10.1 (16) | 11.6 (74) | |
History of diabetes mellitus, % (n) | 3.2 (5) | 6.3 (10) | 11.9 (19) | 13.8 (22) | 8.8 (56) | |
History of hypertension, % (n) | 41.1 (65) | 45.6 (73) | 51.6 (82) | 67.3 (107) | 51.4 (327) | |
History of myocardial infarction, % (n) | 3.8 (6) | 1.3 (2) | 4.4 (7) | 5.7 (9) | 3.8 (24) | |
History of heart failure, % (n) | 6.3 (10) | 16.9 (27) | 17.0 (27) | 33.3 (53) | 18.4 (117) | |
Total cholesterol, mmol/L | 5.6 (5.2/6.3) | 5.7 (5.0/6.4) | 5.8 (5.0/6.3) | 5.8 (5.1/6.4) | 5.7 (5.1/6.4) | |
Triglyceride, mmol/L | 1.4 (1.0/2.0) | 1.4 (1.0/2.1) | 1.6 (1.0/2.3) | 1.5 (1.1/2.2) | 1.5 (1.0/2.1) | |
Cystatin C, mg/L | 0.8 (0.7/0.9) | 0.8 (0.8/0.9) | 0.9 (0.8/1.0) | 1.0 (0.9/1.2) | 0.9 (0.8/1.0) | |
hs-CRP, mg/L | 2.0 (1.0/3.8) | 2.5 (1.1/4.9) | 2.5 (1.4/6.2) | 3.0 (1.8/6.3) | 2.5 (1.3/5.0) | |
hs-cTnI, ng/L | 3.1 (2.3/4.7) | 3.7 (2.7/5.3) | 3.9 (2.9/5.5) | 5.3 (3.8/7.6) | 3.9 (2.8/5.7) | |
NT-proBNP, ng/L | 67.7 (32.7/118.3) | 93.5 (49.9/167.5) | 100.1 (62.0/162.3) | 137.8 (84.6/269.1) | 99.1 (52.2/83.9) | |
sCOMP, ng/mL | 751.0 (545.3/980.8) | 783.2 (586.8/1064.8) | 826.4 (626.6/1138.6) | 831.4 (626.2/1080.6) | 797.1 (598.6/1044.5) | |
WOMAC pain score | 12.0 (9.0/14.0) | 11.5 (9.0/13.0) | 12.0 (10.0/15.0) | 13.0 (10.0/15.0) | 12.0 (10.0/14.0) | |
WOMAC function score | 39.5 (31.0/46.0) | 39.5 (32.0/46.0) | 39.0 (31.0/46.0) | 40.0 (33.0/48.0) | 39.5 (32.0/46.0) | |
Maximum walking distance | >1000 m, but limited | 31.8 * (55) | 24.9 * (43) | 21.4 * (37) | 22.0 * (38) | 27.2 (173) |
~1000 m or ~15 min | 30.9 * (29) | 19.2 * (18) | 25.5 * (24) | 24.5 * (23) | 14.8 (94) | |
500–900 m or ~8–15 min | 26.2 * (27) | 27.2 * (28) | 22.3 * (23) | 24.3 * (25) | 16.2 (103) | |
300–500 m | 18.0 * (15) | 25.3 * (21) | 26.5 * (22) | 30.1 * (25) | 13.1 (83) | |
100–300 m | 19.6 * (22) | 27.7 * (31) | 32.1 * (36) | 20.5 * (23) | 17.6 (112) | |
<100 m | 14.1 * (10) | 26.8 * (19) | 23.9 * (17) | 35.2 * (25) | 11.2 (71) |
Partial Spearman Rank Correlation Coefficients (Rho) | p-Values | |
---|---|---|
Total cholesterol | −0.026 | 0.527 |
Triglyceride | 0.093 | 0.036 |
Cystatin C | 0.371 | <0.001 |
hs-CRP | 0.173 | <0.001 |
hs-cTnI | 0.230 | <0.001 |
NT-proBNP | 0.127 | 0.001 |
sCOMP | 0.078 | 0.050 |
Events/N | Rate per 1000 p-yr | Model 1HR (95% CI) | Model 2HR (95% CI) | Model 3HR (95% CI) | ||
---|---|---|---|---|---|---|
GDF-15 | Quartile 1 (<780.0 ng/L) | 48/158 | 14.7 | 1.00 | 1.00 | 1.00 |
Quartile 2 (780.0–1006.0 ng/L) | 100/160 | 35.0 | 1.85 (1.30–2.63) | 1.64 (1.12–2.38) | 1.56 (1.07–2.28) | |
Quartile 3 (1006.0–1279.0 ng/L) | 118/159 | 43.3 | 2.06 (1.45–2.93) | 1.84 (1.27–2.66) | 1.75 (1.21–2.55) | |
Quartile 4 (>1279.0 ng/L) | 136/159 | 61.7 | 2.93 (2.05–4.18) | 2.69 (1.82–3.96) | 2.32 (1.55–3.47) | |
p for trend | <0.001 | <0.001 | <0.001 | |||
Per log unit increase | 402/636 | 2.41 (1.88–3.10) | 2.34 (1.75–3.14) | 2.12 (1.56–2.88) |
AUC (95% CI) | NRIe (95% CI) | NRIne (95% CI) | |
---|---|---|---|
Basic model a | 0.73 (0.71/0.76) | ||
Basic model + ln(hs-CRP) | 0.73 (0.71/0.76) | −0.01 (−0.06/0.03) | 0.01(−0.01/0.06) |
Basic model + ln(hs-cTnI) | 0.74 (0.72/0.77) | −0.01 (−0.08/0.06) | 0.06 (0.02/0.14) |
Basic model + ln(NT-proBNP) | 0.74 (0.72/0.77) | 0.05 (−0.05/0.09) | 0.09 (0.01/0.17) |
Basic model + ln(GDF-15) | 0.74 (0.72/0.77) | 0.02 (−0.06/0.10) | 0.06 (0.00/0.13) |
Full model b | 0.75 (0.72/0.77) | ||
Full model + ln(GDF-15) | 0.76 (0.73/0.78) | −0.01 (−0.06/0.07) | 0.04 (−0.01/0.09) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnold, N.; Rehm, M.; Büchele, G.; Peter, R.S.; Brenner, R.E.; Günther, K.-P.; Brenner, H.; Koenig, W.; Rothenbacher, D. Growth Differentiation Factor-15 as a Potent Predictor of Long-Term Mortality among Subjects with Osteoarthritis. J. Clin. Med. 2020, 9, 3107. https://doi.org/10.3390/jcm9103107
Arnold N, Rehm M, Büchele G, Peter RS, Brenner RE, Günther K-P, Brenner H, Koenig W, Rothenbacher D. Growth Differentiation Factor-15 as a Potent Predictor of Long-Term Mortality among Subjects with Osteoarthritis. Journal of Clinical Medicine. 2020; 9(10):3107. https://doi.org/10.3390/jcm9103107
Chicago/Turabian StyleArnold, Natalie, Martin Rehm, Gisela Büchele, Raphael Simon Peter, Rolf Erwin Brenner, Klaus-Peter Günther, Hermann Brenner, Wolfgang Koenig, and Dietrich Rothenbacher. 2020. "Growth Differentiation Factor-15 as a Potent Predictor of Long-Term Mortality among Subjects with Osteoarthritis" Journal of Clinical Medicine 9, no. 10: 3107. https://doi.org/10.3390/jcm9103107
APA StyleArnold, N., Rehm, M., Büchele, G., Peter, R. S., Brenner, R. E., Günther, K.-P., Brenner, H., Koenig, W., & Rothenbacher, D. (2020). Growth Differentiation Factor-15 as a Potent Predictor of Long-Term Mortality among Subjects with Osteoarthritis. Journal of Clinical Medicine, 9(10), 3107. https://doi.org/10.3390/jcm9103107