Advances in the Management of Medullary Thyroid Carcinoma: Focus on Peptide Receptor Radionuclide Therapy
Abstract
:1. Introduction
2. Aim of the Study
3. Materials and Methods
3.1. Published Studies
3.2. RCTs
4. Results
4.1. Published Studies
4.2. RCTs
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ceolin, L.; Duval, M.; Benini, A.F.; Ferreira, C.V.; Maia, A.L. Medullary thyroid carcinoma beyond surgery: Advances, challenges, and perspectives. Endocr. Relat. Cancer 2019, 26, R499–R518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viola, D.; Elisei, R. Management of Medullary Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 2019, 48, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A., Jr.; Robinson, B.G.; Gagel, R.F.; Dralle, H.; Fagin, J.A.; Santoro, M.; Baudin, E.; Elisei, R.; Jarzab, B.; Vasselli, J.R.; et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial. J. Clin. Oncol. 2012, 30, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elisei, R.; Schlumberger, M.J.; Muller, S.P.; Schoffski, P.; Brose, M.S.; Shah, M.H.; Licitra, L.; Jarzab, B.; Medvedev, V.; Kreissl, M.C.; et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 2013, 31, 3639–3646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, S.E.; Lazarus, C.R.; Edwards, S.; Murby, B.; Clarke, D.G.; Roden, T.M.; Fogelman, I.; Maisey, M.N. Scintigraphy and treatment of medullary carcinoma of the thyroid with iodine-131 metaiodobenzylguanidine. J. Nucl. Med. 1987, 28, 1820–1825. [Google Scholar]
- Voute, P.A.; Hoefnagel, C.A.; de Kraker, J.; Evans, A.E.; Hayes, A.; Green, A. Radionuclide therapy of neural crest tumors. Med. Pediatr. Oncol. 1987, 15, 192–195. [Google Scholar] [CrossRef]
- Baulieu, J.L.; Guilloteau, D.; Delisle, M.J.; Perdrisot, R.; Gardet, P.; Delepine, N.; Baulieu, F.; Dupont, J.L.; Talbot, J.N.; Coutris, G.; et al. Radioiodinated meta-iodobenzylguanidine uptake in medullary thyroid cancer. A French cooperative study. Cancer 1987, 60, 2189–2194. [Google Scholar] [CrossRef]
- Rufini, V.; Calcagni, M.L.; Baum, R.P. Imaging of neuroendocrine tumors. Semin. Nucl. Med. 2006, 36, 228–247. [Google Scholar] [CrossRef]
- Castellani, M.R.; Seregni, E.; Maccauro, M.; Chiesa, C.; Aliberti, G.; Orunesu, E.; Bombardieri, E. MIBG for diagnosis and therapy of medullary thyroid carcinoma: Is there still a role? Q. J. Nucl. Med. Mol. Imaging 2008, 52, 430–440. [Google Scholar]
- Mato, E.; Matias-Guiu, X.; Chico, A.; Webb, S.M.; Cabezas, R.; Berna, L.; De Leiva, A. Somatostatin and somatostatin receptor subtype gene expression in medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 1998, 83, 2417–2420. [Google Scholar] [CrossRef]
- Hofland, L.J.; Lamberts, S.W. Somatostatin receptors and disease: Role of receptor subtypes. Baillieres Clin. Endocrinol. Metab. 1996, 10, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Faggiano, A.; Grimaldi, F.; Pezzullo, L.; Chiofalo, M.G.; Caraco, C.; Mozzillo, N.; Angeletti, G.; Santeusanio, F.; Lombardi, G.; Colao, A.; et al. Secretive and proliferative tumor profile helps to select the best imaging technique to identify postoperative persistent or relapsing medullary thyroid cancer. Endocr. Relat. Cancer 2009, 16, 225–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, S.; Fonti, R.; Camera, L.; Salvatore, B.; Faggiano, A.; Ciarmiello, A.; Segreto, S.; Colao, A.; Salvatore, M.; Del Vecchio, S. Multimodal imaging with (18)F-FDG-PET/CT and (111)In-Octreotide SPECT in patients with metastatic medullary thyroid carcinoma. Ann. Nucl. Med. 2016, 30, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Baudin, E.; Schlumberger, M.; Lumbroso, J.; Travagli, J.P.; Caillou, B.; Parmentier, C. Octreotide scintigraphy in patients with differentiated thyroid carcinoma: Contribution for patients with negative radioiodine scan. J. Clin. Endocrinol. Metab. 1996, 81, 2541–2544. [Google Scholar] [CrossRef] [Green Version]
- Kaltsas, G.; Korbonits, M.; Heintz, E.; Mukherjee, J.J.; Jenkins, P.J.; Chew, S.L.; Reznek, R.; Monson, J.P.; Besser, G.M.; Foley, R.; et al. Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J. Clin. Endocrinol. Metab. 2001, 86, 895–902. [Google Scholar] [CrossRef]
- Dorr, U.; Wurstlin, S.; Frank-Raue, K.; Raue, F.; Hehrmann, R.; Iser, G.; Scholz, M.; Guhl, L.; Buhr, H.J.; Bihl, H. Somatostatin receptor scintigraphy and magnetic resonance imaging in recurrent medullary thyroid carcinoma: A comparative study. Horm. Metab. Res. Suppl. 1993, 27, 48–55. [Google Scholar]
- Behr, T.M.; Behe, M.P. Cholecystokinin-B/Gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin. Nucl. Med. 2002, 32, 97–109. [Google Scholar] [CrossRef]
- Roosenburg, S.; Laverman, P.; van Delft, F.L.; Boerman, O.C. Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors. Amino Acids 2011, 41, 1049–1058. [Google Scholar] [CrossRef] [Green Version]
- Maina, T.; Konijnenberg, M.W.; KolencPeitl, P.; Garnuszek, P.; Nock, B.A.; Kaloudi, A.; Kroselj, M.; Zaletel, K.; Maecke, H.; Mansi, R.; et al. Preclinical pharmacokinetics, biodistribution, radiation dosimetry and toxicity studies required for regulatory approval of a phase I clinical trial with (111)In-CP04 in medullary thyroid carcinoma patients. Eur. J. Pharm. Sci. 2016, 91, 236–242. [Google Scholar] [CrossRef]
- Rottenburger, C.; Nicolas, G.P.; McDougall, L.; Kaul, F.; Cachovan, M.; Vija, A.H.; Schibli, R.; Geistlich, S.; Schumann, A.; Rau, T.; et al. Cholecystokinin 2 Receptor Agonist (177)Lu-PP-F11N for Radionuclide Therapy of Medullary Thyroid Carcinoma: Results of the Lumed Phase 0a Study. J. Nucl. Med. 2020, 61, 520–526. [Google Scholar] [CrossRef]
- Otte, A.; Herrmann, R.; Heppeler, A.; Behe, M.; Jermann, E.; Powell, P.; Maecke, H.R.; Muller, J. Yttrium-90 DOTATOC: First clinical results. Eur. J. Nucl. Med. 1999, 26, 1439–1447. [Google Scholar] [CrossRef]
- Waldherr, C.; Pless, M.; Maecke, H.R.; Haldemann, A.; Mueller-Brand, J. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: A clinical phase II study. Ann. Oncol. 2001, 12, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Paganelli, G.; Zoboli, S.; Cremonesi, M.; Bodei, L.; Ferrari, M.; Grana, C.; Bartolomei, M.; Orsi, F.; De Cicco, C.; Macke, H.R.; et al. Receptor-mediated radiotherapy with 90Y-DOTA-D-Phe1-Tyr3-octreotide. Eur. J. Nucl. Med. 2001, 28, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Bodei, L.; Cremonesi, M.; Zoboli, S.; Grana, C.; Bartolomei, M.; Rocca, P.; Caracciolo, M.; Macke, H.R.; Chinol, M.; Paganelli, G. Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: A phase I study. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 207–216. [Google Scholar] [CrossRef]
- Bodei, L.; Handkiewicz-Junak, D.; Grana, C.; Mazzetta, C.; Rocca, P.; Bartolomei, M.; Lopera Sierra, M.; Cremonesi, M.; Chinol, M.; Macke, H.R.; et al. Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother. Radiopharm. 2004, 19, 65–71. [Google Scholar] [CrossRef]
- Gao, Z.; Biersack, H.J.; Ezziddin, S.; Logvinski, T.; An, R. The role of combined imaging in metastatic medullary thyroid carcinoma: 111In-DTPA-octreotide and 131I/123I-MIBG as predictors for radionuclide therapy. J. Cancer Res. Clin. Oncol. 2004, 130, 649–656. [Google Scholar] [CrossRef]
- Iten, F.; Muller, B.; Schindler, C.; Rochlitz, C.; Oertli, D.; Macke, H.R.; Muller-Brand, J.; Walter, M.A. Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: A phase II clinical trial. Clin. Cancer Res. 2007, 13, 6696–6702. [Google Scholar] [CrossRef] [Green Version]
- Budiawan, H.; Salavati, A.; Kulkarni, H.R.; Baum, R.P. Peptide receptor radionuclide therapy of treatment-refractory metastatic thyroid cancer using (90)Yttrium and (177)Lutetium labeled somatostatin analogs: Toxicity, response and survival analysis. Am. J. Nucl. Med. Mol. Imaging 2013, 4, 39–52. [Google Scholar] [PubMed]
- Vaisman, F.; Rosado de Castro, P.H.; Lopes, F.P.; Kendler, D.B.; Pessoa, C.H.; Bulzico, D.A.; de Carvalho Leal, D.; Vilhena, B.; Vaisman, M.; Carneiro, M.; et al. Is there a role for peptide receptor radionuclide therapy in medullary thyroid cancer? Clin. Nucl. Med. 2015, 40, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Lapa, C.; Werner, R.A.; Schmid, J.S.; Papp, L.; Zsoter, N.; Biko, J.; Reiners, C.; Herrmann, K.; Buck, A.K.; Bundschuh, R.A. Prognostic value of positron emission tomography-assessed tumor heterogeneity in patients with thyroid cancer undergoing treatment with radiopeptide therapy. Nucl. Med. Biol. 2015, 42, 349–354. [Google Scholar] [CrossRef]
- Salavati, A.; Puranik, A.; Kulkarni, H.R.; Budiawan, H.; Baum, R.P. Peptide Receptor Radionuclide Therapy (PRRT) of Medullary and Nonmedullary Thyroid Cancer Using Radiolabeled Somatostatin Analogues. Semin. Nucl. Med. 2016, 46, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Beukhof, C.M.; Brabander, T.; van Nederveen, F.H.; van Velthuysen, M.F.; de Rijke, Y.B.; Hofland, L.J.; Franssen, G.J.H.; Froberg, L.A.C.; Kam, B.L.R.; Visser, W.E.; et al. Peptide receptor radionuclide therapy in patients with medullary thyroid carcinoma: Predictors and pitfalls. BMC Cancer 2019, 19, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parghane, R.V.; Naik, C.; Talole, S.; Desmukh, A.; Chaukar, D.; Banerjee, S.; Basu, S. Clinical utility of (177) Lu-DOTATATE PRRT in somatostatin receptor-positive metastatic medullary carcinoma of thyroid patients with assessment of efficacy, survival analysis, prognostic variables, and toxicity. Head Neck 2020, 42, 401–416. [Google Scholar] [CrossRef]
- Satapathy, S.; Mittal, B.R.; Sood, A.; Verma, R.; Panda, N. Efficacy and safety of concomitant 177Lu-DOTATATE and low-dose capecitabine in advanced medullary thyroid carcinoma: A single-centre experience. Nucl. Med. Commun. 2020, 41, 629–635. [Google Scholar] [CrossRef]
- Caplin, M.E.; Mielcarek, W.; Buscombe, J.R.; Jones, A.L.; Croasdale, P.L.; Cooper, M.S.; Burroughs, A.K.; Hilson, A.W. Toxicity of high-activity 111In-Octreotide therapy in patients with disseminated neuroendocrine tumours. Nucl. Med. Commun. 2000, 21, 97–102. [Google Scholar] [CrossRef]
- Valkema, R.; De Jong, M.; Bakker, W.H.; Breeman, W.A.; Kooij, P.P.; Lugtenburg, P.J.; De Jong, F.H.; Christiansen, A.; Kam, B.L.; De Herder, W.W.; et al. Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: The Rotterdam experience. Semin. Nucl. Med. 2002, 32, 110–122. [Google Scholar] [CrossRef]
- Buscombe, J.R.; Caplin, M.E.; Hilson, A.J. Long-term efficacy of high-activity 111in-pentetreotide therapy in patients with disseminated neuroendocrine tumors. J. Nucl. Med. 2003, 44, 1–6. [Google Scholar]
- Pasieka, J.L.; McEwan, A.J.; Rorstad, O. The palliative role of 131I-MIBG and 111In-octreotide therapy in patients with metastatic progressive neuroendocrine neoplasms. Surgery 2004, 136, 1218–1226. [Google Scholar] [CrossRef]
- Roman, S.; Lin, R.; Sosa, J.A. Prognosis of medullary thyroid carcinoma: Demographic, clinical, and pathologic predictors of survival in 1252 cases. Cancer 2006, 107, 2134–2142. [Google Scholar] [CrossRef] [PubMed]
- Parghane, R.V.; Ostwal, V.; Ramaswamy, A.; Bhandare, M.; Chaudhari, V.; Talole, S.; Shrikhande, S.V.; Basu, S. Long-term outcome of “Sandwich” chemo-PRRT: A novel treatment strategy for metastatic neuroendocrine tumors with both FDG- and SSTR-avid aggressive disease. Eur. J. Nucl. Med. Mol. Imaging 2020. [Google Scholar] [CrossRef]
- Claringbold, P.G.; Brayshaw, P.A.; Price, R.A.; Turner, J.H. Phase II study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 302–311. [Google Scholar] [CrossRef]
- Ballal, S.; Yadav, M.P.; Damle, N.A.; Sahoo, R.K.; Bal, C. Concomitant 177Lu-DOTATATE and Capecitabine Therapy in Patients With Advanced Neuroendocrine Tumors: A Long-term-Outcome, Toxicity, Survival, and Quality-of-Life Study. Clin. Nucl. Med. 2017, 42, e457–e466. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.P.; Ballal, S.; Bal, C. Concomitant (177)Lu-DOTATATE and capecitabine therapy in malignant paragangliomas. EJNMMI Res. 2019, 9, 13. [Google Scholar] [CrossRef]
- Engelbach, M.; Gorges, R.; Forst, T.; Pfutzner, A.; Dawood, R.; Heerdt, S.; Kunt, T.; Bockisch, A.; Beyer, J. Improved diagnostic methods in the follow-up of medullary thyroid carcinoma by highly specific calcitonin measurements. J. Clin. Endocrinol. Metab. 2000, 85, 1890–1894. [Google Scholar] [CrossRef] [PubMed]
- Gronlund, B.; Hogdall, C.; Hilden, J.; Engelholm, S.A.; Hogdall, E.V.; Hansen, H.H. Should CA-125 response criteria be preferred to response evaluation criteria in solid tumors (RECIST) for prognostication during second-line chemotherapy of ovarian carcinoma? J. Clin. Oncol. 2004, 22, 4051–4058. [Google Scholar] [CrossRef] [PubMed]
- Barbet, J.; Campion, L.; Kraeber-Bodere, F.; Chatal, J.F.; Group, G.T.E.S. Prognostic impact of serum calcitonin and carcinoembryonic antigen doubling-times in patients with medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 2005, 90, 6077–6084. [Google Scholar] [CrossRef] [Green Version]
- Bodei, L.; Mueller-Brand, J.; Baum, R.P.; Pavel, M.E.; Horsch, D.; O’Dorisio, M.S.; O’Dorisio, T.M.; Howe, J.R.; Cremonesi, M.; Kwekkeboom, D.J.; et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 800–816. [Google Scholar] [CrossRef]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A.; ESMO Guidelines Committee. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef] [Green Version]
- Wells, S.A., Jr.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef]
- Erba, P.A.; Maecke, H.; Mikolajczak, R.; Decristoforo, C.; Zaletel, K.; Maina-Nock, T.; Peitl, P.K.; Garnuszek, P.; Froberg, A.; Goebel, G.; et al. A novel CCK2/gastrin receptor-localizing radiolabeled peptide probe for personalized diagnosis and therapy of patients with progressive or metastatic medullary thyroid carcinoma: A multicenter phase I GRAN-T-MTC study. Pol. Arch. Intern Med. 2018, 128, 791–795. [Google Scholar] [CrossRef]
- Kaloudi, A.; Nock, B.A.; Krenning, E.P.; Maina, T.; De Jong, M. Radiolabeled gastrin/CCK analogs in tumor diagnosis: Towards higher stability and improved tumor targeting. Q. J. Nucl. Med. Mol. Imaging 2015, 59, 287–302. [Google Scholar] [PubMed]
- Sauter, A.W.; Mansi, R.; Hassiepen, U.; Muller, L.; Panigada, T.; Wiehr, S.; Wild, A.M.; Geistlich, S.; Behe, M.; Rottenburger, C.; et al. Targeting of the Cholecystokinin-2 Receptor with the Minigastrin Analog (177)Lu-DOTA-PP-F11N: Does the Use of Protease Inhibitors Further Improve In Vivo Distribution? J. Nucl. Med. 2019, 60, 393–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
References | Demographics | Disease Data | Treatment Schedule and Follow-Up | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors | Year | Type of Study | Subjects n | Age-Years Mean (Median) (Range) | F/M n | Mutation Status n | Disease Status at Baseline | Subjects with Metastases % | Radioisotope | Dose/Cycle GBq | Cycles n | Cumulative Dose-GBq Mean (Median) (Range) | Follow-Up Months Mean (Median) (Range) | |
Otte et al. [21] | 1999 | NS | 2 | 64.5 (64.5) (62–67) | 2/0 | NS | NS | 2 (100%) | 90Y | 1.6–2.9 | 4 | 9.4 (9.4) (9.2–9.6) | 2 (2) (2–2) | |
Waldherr et al. [22] | 2001 | NS | 12 | 55.8 (60.0) (24–72) | 5/7 | 1 MEN2 11 NS | Progressive | NS | 90Y | NS | 1–4 | 8.1 (9.1) (1.7–14.0) | NS | |
Paganelli et al. [23] | 2001 | NS | 3 | 51.0 (55.0) (34–64) | 2/1 | NS | NS | 2 (67%) | 90Y | 1.8 | 3 | 5.5 (5.5) (5.5–5.5) | 11 (12) (10–12) | |
Bodei et al. [24] | 2003 | NS | 8 | 45.4 (46.5) (31–67) | 1/7 | NS | Progressive in 3/8 patients | 8 (100%) | 90Y | 2.9–4.8 | 2 | 7.9 (8.5) (5.9–9.6) | 19 (21) (4–26) | |
Bodei et al. [25] | 2004 | Retrospective | 21 | 51.4 (53.0) (31–78) | 8/13 | NS | Progressive | 21 (100%) | 90Y | 2.2–5.1 (max) | 2–8 | 10.7 (10.4) (7.6–19.2) | (3–40) | |
Gao et al. [26] | 2004 | NS | 1 | 57.0 | 0/1 | NS | Progressive | 1 (100%) | 90Y | 3.3 | 4 | 13.2 | NS | |
Iten et al. [27] | 2007 | Prospective | 31 | (56.7) (24–77) | 10/21 | 2 MEN2 (1 additional MEN1), 28 NS | Progressive | 31 (100%) | 90Y | 3.7 (GBq/m2) | 1–5 | (12.6) (1.7–29.6) | (12) (1–107) | |
Budiawan et al. [28] | 2013 | NS | 8 | 59.1 (61.0) (40–76) | 4/4 | NS | Progressive | 8 (100%) | 90Y and/or 177Lu | NS | 1–3 | NS | NS | |
Vaisman et al. [29] | 2015 | Prospective | 7 | NS | NS | NS | Progressive | NS | 177Lu | 7.4 | 4 | 29.6 (29.6) (29.6–29.6) | (8–12) | |
Lapa et al. [30] | 2015 | Retrospective | 4 | 49.0 (44.0) (33–75) | 2/2 | 2 MEN2 2NS | NS | 4 (100%) | 177Lu | NS | 2–5 | 31.4 (31.4) (23.7–39.0) 2 patients NS | NS | |
Salavati et al. [31] | 2016 | NS | 28 | 47.9 (26–72) | 14/14 | NS | NS | 28 (100%) | 90Y and/or 177Lu | NS | ≤ 5 | NS | NS | |
Beukhof et al. [32] | 2019 | Retrospective | 10 | (63.0) (19–75) | 6/4 | 6 sporadic 4 NS | Progressive in 8/10 patients | 10 (100%) | 177Lu | NS | 4 (mean) | (27.8–29.6) | NS | |
Parghane et al. [33] | 2020 | Retrospective | 43 | (48.0) (25–80) | 8/35 | NS | Progressive | 43 (100%) | 177Lu | 5.5 (mean) | 1–6 | 18.5 (5.55–33.3) | (20) (8–78) | |
Satapathy et al. [34] | 2020 | Retrospective | 8 | 46.0 (47.5) (22–70) | 5/3 | 8 sporadic | Progressive or advanced or inoperable | 8 (100%) | 177Lu * | 6.0–7.4 | 1–4 | 19.1 (20.9) (6.4–27.8) | 40 (34) (14–69) 1 patient NS | |
- | 1999–2020 | - | 186 | - | 67/112 | - | Progressive or Advanced or Inoperable 142/149 (95.3%) | 166/167 (99.4%) | - | - | - | - | - | |
References | Radiographic Response | Biochemical Response | Treatment Outcome | Treatment Toxicity | ||||||||||
Authors, Year | Subjects Suitable for Evaluative n | Response Criteria | PD n (%) | SD n (%) | PR n (%) | CR n (%) | Subjects Suitable for Evaluative n | Response Criteria (Calcitonin, CT) | Response | PFS Months | OS Months | Discontinuation n (%) | Grade III/IV Nephrotoxicity n (%) | Grade III/IV Haemotoxicity n (%) |
Otte et al., 1999 [21] | 2 | NS | 0 (0%) | 2 (100%) | 0 (0%) | 0 (0%) | 0 | - | - | NS | NS | 0 (0%) | 0 (0%) | 0 (0%) |
Waldherr et al., 2001 [22] | 12 | WHO | 7 (58%) | 5 (42%) | 0 (0%) | 0 (0%) | 0 | - | - | NS (TTP: mean 8, median 10, range 3–14) | NS | 0 (0%) | 0 (0%) | NS |
Paganelli et al., 2001 [23] | 3 | WHO | 0 (0%) | 3 (100%) | 0 (0%) | 0 (0%) | 0 | - | - | NS | NS | 0 (0%) | 0 (0%) | NS |
Bodei et al., 2003 [24] | 7 | WHO | 2 (29%) | 3 (43%) | 1 (14%) | 1 (14%) | 0 | - | - | NS | NS | 0 (0%) | 0 (0%) | 7 (88%) |
Bodei et al., 2004 [25] | 21 | SWOG | 7 (33%) | 12 (57%) | 0 (0%) | 2 (10%) | 21 | PD (increase ≥ 25% in basal value) SD (none of the others) PR (decrease ≥ 50% in basal value) CR (<15 pg/mL) | 12 (57%) 3 (14%) 5 (24%) 1 (5%) | NS | NS | 0 (0%) | NS | 1 (5%) |
Gao et al., 2004 [26] | 1 | WHO | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 1 | Pre-therapy and Post-therapy values | 10,461 pg/mL; 3414 pg/mL | NS (TTP: 6) | NS | 0 (0%) | 0 (0%) | 0 (0%) |
Iten et al., 2007 [27] | 0 | - | - | - | - | - | 31 | Post-PRRT Prolongation of CT Doubling Time (≥100%) | Response = 18/31 (58%) | NS | 16 (median) 1-107 (range) | 2 (6%): kidney toxicity | 1 (3%) | 1 (3%) |
Budiawan et al., 2013 [28] | 0 | - | - | - | - | - | 0 | - | - | NS | NS | 0 (0%) | 0 (0%) | 0 (0%) |
Vaisman et al., 2015 [29] | 7 | RECIST 1.1 | 1 (14%) | 3 (43%) | 3 (43%) | 0 (0%) | 0 | - | - | NS | NS | 0 (0%) | 0 (0%) | 0 (0%) |
Lapa et al., 2015 [30] | 4 | RECIST 1.1 “in most cases” | 4 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 | - | - | NS | NS | NS | NS | NS |
Salavati et al., 2016 [31] | 0 | - | - | - | - | - | 0 | - | - | NS | 24 in PD (median) 36 in SD (median) 72 in PR (median) | NS | NS | NS |
Beukhof et al., 2019 [32] | 10 | RECIST 1.1 | 6 (60%) | 4 (40%) | 0 (0%) | 0 (0%) | 0 | - | - | 8 (median) 4–144 (range) | 14 (median) 5–144 (range) | 0 (0%) | 0 (0%) | 0 (0%) |
Parghane et al., 2020 [33] | 43 | RECIST 1.1 | 16 (37%) | 25 (58%) | 2 (5%) | 0 (0%) | 43 | PD (increase ≥ 30% in basal value) SD (none of the others) PR (decrease ≥ 50% in basal value) CR (<15 pg/mL) | 21 (49%) 4 (9%) 13 (30%) 5 (12%) | 24 (median) | 26 (median) | 0 (0%) | 0 (0%) | 0 (0%) |
Satapathy et al., 2020 [34] | 7 | RECIST 1.1 | 1 (14%) | 6 (86%) | 0 (0%) | 0 (0%) | 5 | Increase ≥ 25% in basal value None of the others Decrease ≥ 50% in basal value CT < 15 pg/mL | 2 (40%) 2 (40%) (20%) 0 (0%) | NS | NS | 0 (0%) | 0 (0%) | 0 (0%) |
- | 117 | - | 44 (37.6%) | 64 (54.7%) | 6 (5.1%) | 3 (2.6%) | 101 | - | - | - | - | 2/154 (1.3%) | 1/133 (0.8%) | 9/139 (6.5%) |
References | Demographics | Disease Data | Treatment Schedule and Follow-Up | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors | Year | Type of Study | Subjects n | Age-Years Mean (Median) (Range) | F/M n | Mutation Status n | Disease Status at Baseline | Subjects with Metastases % | Radioisotope | Dose/Cycle GBq | Cycles n | Cumulative Dose-GBq Mean (Median) (Range) | Follow-Up Months Mean (Median) (Range) | |
Caplin et al. [35] | 2000 | Prospective | 1 | 46.0 | 1/0 | NS | Inoperable | 1 (100%) | 111In | 2.8 (mean) | 4 | 11.4 | NS | |
Valkema et al. [36] | 2002 | Prospective | 6 | 55.0 (57.5) (28–77) | NS | NS | Progressive | 6 (100%) | 111In | NS | NS | 42.5 (28.7) (5.8–87.3) | 9.5 (5.6) (1–27) | |
Buscombe et al. [37] | 2003 | Retrospective | 2 | 52.0 (52.0) (46–58) | 1/1 | NS | Progressive | 2 (100%) | 111In | NS | 3–4 | 10.9 (10.9) (10.5–11.4) | 18 (18) (18–18) | |
Pasieka et al. [38] | 2004 | NS | 1 | 46.0 | 0/1 | NS | Progressive | 1 (100%) | 111In | 5.9 (mean) | 2 | 11.8 | 9 | |
- | 2000–2004 | - | 10 | - | 2/2 | - | Progressive or advanced or inoperable 10/10 (100.0%) | 10/10 (100.0%) | - | - | - | - | - | |
References | Radiographic Response | Biochemical Response | Treatment Outcome | Treatment Toxicity | ||||||||||
Authors, Year | Subjects Suitable for Evaluation n | Response Criteria | PD n (%) | SD n (%) | PR n (%) | CR n (%) | Subjects Suitable for Evaluation n | Response Criteria (Calcitonin, CT) | Response | PFS Months | OS Months | Discontinuation n (%) | Grade III/IV Nephrotoxicity n (%) | Grade III/IV Haemotoxicity n (%) |
Caplin et al., 2000 [35] | 0 | - | - | - | - | - | 1 | Normalisation | 1 (100%) | NS | NS | 0 (0%) | 0 (0%) | 0 (0%) |
Valkema et al., 2002 [36] | 5 | SWOG | 3 (60%) | 2 (40%) | 0 (0%) | 0 (0%) | 5 | Markers (NS criteria) PD SD | 2 (40%) 3 (60%) | NS | NS | NS | 0 (0%) | NS |
Buscombe et al., 2003 [37] | 2 | RECIST | 0 (0%) | 0 (0%) | 0 (0%) | 2 (100%) | 0 | - | - | NS | NS | 0 (0%) | 0 (0%) | 0 (0%) |
Pasieka et al., 2004 [38] | 1 | “WHO modified” ** | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 | PD (increase ≥ 25% in basal value) NO RESPONSE (none of the others) PR (decrease ≥ 50% in basal value) CR (normalisation) | 1 (100%) 0 (0%) 0 (0%) 0 (0%) | NS | NS | 0 (0%) | 0 (0%) | 0 (0%) |
- | 8 | - | 4 (50.0%) | 2 (25.0%) | 0 (0%) | 2 (25.0%) | 7 | - | - | - | - | 0/4 (0.0%) | 0/10 (0.0%) | 0/4 (0.0%) |
References | Demographics | Disease Data | Treatment Schedule and Follow-Up | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors | Year | Type of Study | Subjects n | Age-Years Mean (Median) (Range) | F/M n | Mutation Status n | Disease Status at Baseline | Subjects with Metastases % | Radioisotope | Dose/Cycle mCi/m2 | Cycles n | Cumulative Dose-GBq Mean (Median) (Range) | Follow-Up Months Mean (Median) (Range) | |||
Behr and Behe [17] | 2002 | NS | 8 | NS | NS | NS | Progressive and advanced | 8 (100%) | 90Y | 30–50 | ≤ 4 | NS | NS | |||
References | Radiographic Response | Biochemical Response | Treatment Outcome | Treatment Toxicity | ||||||||||||
Authors, Year | Subjects Suitable for Evaluation n | Response Criteria | PD n (%) | SD n (%) | PR n (%) | CR n (%) | Subjects Suitable for Evaluation n | Response Criteria (Calcitonin, CT) | Response | PFS Months | OS Months | Discontinuation n (%) | Grade III/IV Nephrotoxicity n (%) | Grade III/IV Haemotoxicity n (%) | ||
Behr and Behe, 2002 [17] | NS | NS | - | - | - | - | 0 | - | - | NS | NS | 0 (0%) | 0 (0%) | 3 (38%) |
ClinicalTrials.gov Identifier | Radiopharmaceutical under Study | Trial Name | Study Phase | Medical Condition under Investigation | Assigned Intervention | Primary Outcome | Estimated Enrolment, n | Estimated Study Completion Date | Trial Status |
---|---|---|---|---|---|---|---|---|---|
NCT00002947 | 111In-DTPA-D-Phe-Octreotide | A Phase I Study of (111In-DTPA-D-Phe)-Octreotide in Patients with Refractory Malignancies Expressing Somatostatin Receptors | Phase 1 | Refractory Malignancies Expressing Somatostatin Receptors * | 4 cycled of 111In-DTPA-D-Phe-Octreotide | Determine the MTD, toxic effects, and the preliminary antitumor activity of indium in 111 pentetreotide. | 35 | NA | Terminated (reason: NS) |
NCT03647657 | 177Lu-PP-F11N | 177Lu-PP-F11N in Combination With Sacubitril for Receptor Targeted Therapy and Imaging of Metastatic Thyroid Cancer (Lumed Phase 0/B) | Early Phase 1 | Medullary Thyroid Cancer | Intravenous application of 2 × 1 GBq 177Lu-PP-F11N with and without co-medication with Sacubitril | Tumour radiation doses [time frame: measurement up to 72 h after each injection of 177Lu-PP-F11N]; evaluation of the radiation doses in tumour tissue from MTC after injection of 177Lu-PP-F11N alone and in combination with Sacubitril | 8 | October 2021 | Recruiting |
NCT02088645 | 177Lu-PP-F11N | 177Lu-PP-F11N for Receptor Targeted Therapy and Imaging (Theranostics) of Metastatic Medullary Thyroid Cancer—a Pilot and a Phase I Study | Phase 1 ** | Medullary Thyroid Cancer | Phase 1: intravenous application of 3 x max. 15 GBq 177Lu-PP-F11N. All patients with or without Physiogel, depending on the results of the phase 0 study ** | Phase 1: MTD (time frame: up to 9 months) ** | Phase 1: 12–18 ** | March 2022 | Recruiting |
NCT04106843 | 177-Lu-DOTA-Tyr3-Octreotate | A Phase II Study to Evaluate the Effects of 177Lu-DOTATATE in Patients with Unresectable and Progressive Rare Metastatic Endocrine Carcinomas: Medullary Thyroid Cancer, Parathyroid Carcinoma, Pituitary Carcinoma, and Malignant Pheochromocytoma/Paraganglioma | Phase 2 | Medullary Thyroid Cancer, Parathyroid Carcinoma, Pituitary Carcinoma, and Malignant Pheochromocytoma/Paraganglioma | 177Lu-DOTATATE intravenously (IV) over 30 min every 8–16 weeks. Treatment continues for up to 52 weeks in the absence of disease progression or unacceptable toxicity | Radiographic Response (time frame: up to 52 weeks) | 50 | January 2022 | Not yet recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grossrubatscher, E.; Fanciulli, G.; Pes, L.; Sesti, F.; Dolci, C.; de Cicco, F.; Colao, A.; Faggiano, A.; NIKE Group. Advances in the Management of Medullary Thyroid Carcinoma: Focus on Peptide Receptor Radionuclide Therapy. J. Clin. Med. 2020, 9, 3507. https://doi.org/10.3390/jcm9113507
Grossrubatscher E, Fanciulli G, Pes L, Sesti F, Dolci C, de Cicco F, Colao A, Faggiano A, NIKE Group. Advances in the Management of Medullary Thyroid Carcinoma: Focus on Peptide Receptor Radionuclide Therapy. Journal of Clinical Medicine. 2020; 9(11):3507. https://doi.org/10.3390/jcm9113507
Chicago/Turabian StyleGrossrubatscher, Erika, Giuseppe Fanciulli, Luca Pes, Franz Sesti, Carlotta Dolci, Federica de Cicco, Annamaria Colao, Antongiulio Faggiano, and NIKE Group. 2020. "Advances in the Management of Medullary Thyroid Carcinoma: Focus on Peptide Receptor Radionuclide Therapy" Journal of Clinical Medicine 9, no. 11: 3507. https://doi.org/10.3390/jcm9113507
APA StyleGrossrubatscher, E., Fanciulli, G., Pes, L., Sesti, F., Dolci, C., de Cicco, F., Colao, A., Faggiano, A., & NIKE Group. (2020). Advances in the Management of Medullary Thyroid Carcinoma: Focus on Peptide Receptor Radionuclide Therapy. Journal of Clinical Medicine, 9(11), 3507. https://doi.org/10.3390/jcm9113507