Changes of Body Weight and Body Composition in Obese Patients with Prader–Willi Syndrome at 3 and 6 Years of Follow-Up: A Retrospective Cohort Study
Abstract
:1. Background
2. Patients and Methods
2.1. Patients
2.2. Anthropometry
2.3. Laboratory and Clinical Measurements
2.4. Indirect Calorimetry
2.5. Dual-Energy X-ray Absorptiometry
2.6. Multidisciplinary Metabolic Rehabilitation Program
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Butler, M.G.; Hartin, S.N.; Hossain, W.A.; Manzardo, A.M.; Kimonis, V.; Dykens, E.; Gold, J.A.; Kim, S.J.; Weisensel, N.; Tamura, R.; et al. Molecular genetic classification in Prader-Willi syndrome: A multisite cohort study. J. Med. Genet. 2019, 56, 149–153. [Google Scholar] [CrossRef]
- Cassidy, S.B.; Schwartz, S.; Miller, J.L.; Driscoll, D.J. Prader-Willi syndrome. Genet. Med. 2012, 14, 10–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grugni, G.; Crino, A.; Bosio, L.; Corrias, A.; Cuttini, M.; De Toni, T.; Di Battista, E.; Franzese, A.; Gargantini, L.; Greggio, N.; et al. The Italian National Survey for Prader-Willi syndrome: An epidemiologic study. Am. J. Med. Genet. A 2008, 146, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Whittington, J.E.; Holland, A.J.; Webb, T.; Butler, J.; Clarke, D.; Boer, H. Population prevalence and estimated birth incidence and mortality rate for people with Prader-Willi syndrome in one UK Health Region. J. Med. Genet. 2001, 38, 792–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.L.; Lynn, C.H.; Driscoll, D.C.; Goldstone, A.P.; Gold, J.A.; Kimonis, V.; Dykens, E.; Butler, M.G.; Shuster, J.J.; Driscoll, D.J. Nutritional phases in Prader-Willi syndrome. Am. J. Med. Genet. A 2011, 155, 1040–1049. [Google Scholar] [CrossRef] [Green Version]
- Proffitt, J.; Osann, K.; McManus, B.; Kimonis, V.E.; Heinemann, J.; Butler, M.G.; Stevenson, D.A.; Gold, J.A. Contributing factors of mortality in Prader-Willi syndrome. Am. J. Med. Genet. A 2019, 179, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Angulo, M.A.; Butler, M.G.; Cataletto, M.E. Prader-Willi syndrome: A review of clinical, genetic, and endocrine findings. J. Endocrinol. Invest. 2015, 38, 1249–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, G.B. A distinctive obesity: Body composition provides the clue. Am. J. Clin. Nutr. 1997, 65, 1540–1541. [Google Scholar] [CrossRef] [Green Version]
- Brambilla, P.; Bosio, L.; Manzoni, P.; Pietrobelli, A.; Beccaria, L.; Chiumello, G. Peculiar body composition in patients with Prader-Labhart-Willi syndrome. Am. J. Clin. Nutr. 1997, 65, 1369–1374. [Google Scholar] [CrossRef] [Green Version]
- Bedogni, G.; Grugni, G.; Tringali, G.; Marazzi, N.; Sartorio, A. Does segmental body composition differ in women with Prader-Willi syndrome compared to women with essential obesity. J. Endocrinol. Invest. 2015, 38, 957–961. [Google Scholar] [CrossRef]
- Bedogni, G.; Grugni, G.; Tringali, G.; Agosti, F.; Sartorio, A. Assessment of fat-free mass from bioelectrical impedance analysis in obese women with Prader-Willi syndrome. Ann. Hum. Biol. 2015, 42, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Marzullo, P.; Mele, C.; Minocci, A.; Mai, S.; Scacchi, M.; Sartorio, A.; Aimaretti, G.; Grugni, G. Fat-Free Mass Is Better Related to Serum Uric Acid Than Metabolic Homeostasis in Prader-Willi Syndrome. Nutrients 2020, 12, 2583. [Google Scholar] [CrossRef]
- van Mil, E.A.; Westerterp, K.R.; Gerver, W.J.; Curfs, L.M.; Schrander-Stumpel, C.T.; Kester, A.D.; Saris, W.H. Energy expenditure at rest and during sleep in children with Prader-Willi syndrome is explained by body composition. Am. J. Clin. Nutr. 2000, 71, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Crinò, A.; Fintini, D.; Bocchini, S.; Grugni, G. Obesity management in Prader-Willi syndrome: Current perspectives. Diabetes Metab. Syndr. Obes. 2018, 11, 579–593. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.L.; Lynn, C.H.; Shuster, J.; Driscoll, D.J. A reduced-energy intake, well-balanced diet improves weight control in children with Prader-Willi syndrome. J. Hum. Nutr. Diet. 2013, 26, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Raynor, H.A.; Champagne, C.M. Position of the Academy of Nutrition and Dietetics: Interventions for the Treatment of Overweight and Obesity in Adults. J. Acad. Nutr. Diet. 2016, 116, 129–147. [Google Scholar] [CrossRef]
- Grolla, E.; Andrighetto, G.; Parmigiani, P.; Hladnik, U.; Ferrari, G.; Bernardelle, R.; Lago, M.D.; Albarello, A.; Baschirotto, G.; Filippi, G.; et al. Specific treatment of Prader-Willi syndrome through cyclical rehabilitation programmes. Disabil. Rehabil. 2011, 33, 1837–1847. [Google Scholar] [CrossRef]
- Hauber, M.; Stratmann, B.; Hoedebeck-Stuntebeck, N.; Tschoepe, D. Medical management for adults with Prader-Willi syndrome. Metab. Syndr. Relat. Disord. 2013, 11, 392–396. [Google Scholar] [CrossRef]
- Scheimann, A.O.; Miller, J.; Glaze, D.G. Laparoscopic sleeve gastrectomy in children and adolescents with Prader-Willi syndrome: A matched control study. Surg. Obes. Relat. Dis. 2017, 13, 366. [Google Scholar] [CrossRef]
- Salehi, P.; Hsu, I.; Azen, C.G.; Mittelman, S.D.; Geffner, M.E.; Jeandron, D. Effects of exenatide on weight and appetite in overweight adolescents and young adults with Prader-Willi syndrome. Pediatr. Obes. 2017, 12, 221–228. [Google Scholar] [CrossRef]
- McCandless, S.E.; Yanovski, J.A.; Miller, J.; Fu, C.; Bird, L.M.; Salehi, P.; Chan, C.L.; Stafford, D.; Abuzzahab, M.J.; Viskochil, D.; et al. Effects of MetAP2 inhibition on hyperphagia and body weight in Prader-Willi syndrome: A randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 2017, 19, 1751–1761. [Google Scholar] [CrossRef] [Green Version]
- Lima, V.P.; Emerich, D.R.; Mesquita, M.L.; Paternez, A.C.; Carreiro, L.R.; Pina Neto, J.M.; Teixeira, M.C. Nutritional intervention with hypocaloric diet for weight control in children and adolescents with Prader-Willi Syndrome. Eat Behav. 2016, 21, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1991. [Google Scholar]
- National Institutes of Health. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. The Evidence Report. National Institutes of Health. Obes. Res. 1998, 6 (Suppl. 2), 51S–209S. [Google Scholar]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the Metabolic Syndrome A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention National Heart, Lung, and Blood Institute American. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Bedogni, G.; Bertoli, S.; Leone, A.; De Amicis, R.; Lucchetti, E.; Agosti, F.; Marazzi, N.; Battezzati, A.; Sartorio, A. External validation of equations to estimate resting energy expenditure in 14952 adults with overweight and obesity and 1948 adults with normal weight from Italy. Clin. Nutr. 2019, 38, 457–464. [Google Scholar] [CrossRef]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Bedogni, G.; Grugni, G.; Tringali, G.; Tamini, S.; Marzullo, P.; Sartorio, A. Assessment of fat-free mass from bioelectrical impedance analysis in men and women with Prader-Willi syndrome: Cross-sectional study. Int. J. Food Sci. Nutr. 2019, 70, 645–649. [Google Scholar] [CrossRef]
- Rigamonti, A.E.; Cicolini, S.; Caroli, D.; De Col, A.; Scacchi, M.; Cella, S.G.; Sartorio, A. Effects of a 3-Week In-Hospital Body Weight Reduction Program on Cardiovascular Risk Factors, Muscle Performance, and Fatigue: A Retrospective Study in a Population of Obese Adults with or without Metabolic Syndrome. Nutrients 2020, 12, 1495. [Google Scholar] [CrossRef]
- Madden, A.M.; Mulrooney, H.M.; Shah, S. Estimation of energy expenditure using prediction equations in overweight and obese adults: A systematic review. J. Hum. Nutr. Diet. 2016, 29, 458–476. [Google Scholar] [CrossRef] [Green Version]
- Vismara, L.; Cimolin, V.; Grugni, G.; Galli, M.; Parisio, C.; Sibilia, O.; Capodaglio, P. Effectiveness of a 6-month home-based training program in Prader-Willi patients. Res. Dev. Disabil. 2010, 31, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Rabe-Hesketh, S. Multilevel and Longitudinal Modeling Using Stata. Volume I: Continuous Responses; Stata Press: College Station, TX, USA, 2012. [Google Scholar]
- Williams, R. Using the Margins Command to Estimate and Interpret Adjusted Predictions and Marginal Effects. Stata J. 2012, 12, 308–331. [Google Scholar] [CrossRef] [Green Version]
- Magkos, F.; Fraterrigo, G.; Yoshino, J.; Luecking, C.; Kirbach, K.; Kelly, S.C.; de Las Fuentes, L.; He, S.; Okunade, A.L.; Patterson, B.W.; et al. Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab. 2016, 23, 591–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, D.H.; Yockey, S.R. Weight Loss and Improvement in Comorbidity: Differences at 5%, 10%, 15%, and Over. Curr. Obes. Rep. 2017, 6, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Mancini, J.G.; Filion, K.B.; Atallah, R.; Eisenberg, M.J. Systematic Review of the Mediterranean Diet for Long-Term Weight Loss. Am. J. Med. 2016, 129, 407–415.e4. [Google Scholar] [CrossRef] [Green Version]
- LeBlanc, E.S.; Patnode, C.D.; Webber, E.M.; Redmond, N.; Rushkin, M.; O’Connor, E.A. Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2018, 320, 1172–1191. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.J.; Bosy-Westphal, A. Effect of Over- and Underfeeding on Body Composition and Related Metabolic Functions in Humans. Curr. Diab. Rep. 2019, 19, 108. [Google Scholar] [CrossRef]
- Grugni, G.; Crinò, A.; Bedogni, G.; Cappa, M.; Sartorio, A.; Corrias, A.; Di Candia, S.; Gargantini, L.; Iughetti, L.; Pagano, C.; et al. Metabolic syndrome in adult patients with Prader-Willi syndrome. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1134–1140. [Google Scholar] [CrossRef]
- Foschi, F.G.; Bedogni, G.; Domenicali, M.; Giacomoni, P.; Dall’Aglio, A.C.; Dazzani, F.; Lanzi, A.; Conti, F.; Savini, S.; Saini, G.; et al. Prevalence of and risk factors for fatty liver in the general population of Northern Italy: The Bagnacavallo Study. BMC Gastroenterol. 2018, 18, 177. [Google Scholar] [CrossRef] [Green Version]
- Rabe-Hesketh, S. Multilevel and Longitudinal Modeling Using Stata. Volume II: Categorical Responses, Counts, and Survival; Stata Press: College Station, TX, USA, 2012. [Google Scholar]
- Kimonis, V.; Surampalli, A.; Wencel, M.; Gold, J.A.; Cowen, N.M. A randomized pilot efficacy and safety trial of diazoxide choline controlled-release in patients with Prader-Willi syndrome. PLoS ONE 2019, 14, e0221615. [Google Scholar] [CrossRef]
- Manzardo, A.M.; Loker, J.; Heinemann, J.; Loker, C.; Butler, M.G. Survival trends from the Prader-Willi Syndrome Association (USA) 40-year mortality survey. Genet. Med. 2018, 20, 24–30. [Google Scholar] [CrossRef] [Green Version]
DXA Available | DXA Not Available | All | |
---|---|---|---|
N | 36 (80%) | 9 (20%) | 45 (100%) |
Karyotype | |||
DEL15 | 26 (72%) | 7 (78%) | 33 (73%) |
UPD | 10 (28%) | 2 (22%) | 12 (27%) |
Sex | |||
Female | 23 (64%) | 5 (56%) | 28 (62%) |
Male | 13 (36%) | 4 (44%) | 17 (38%) |
Age (years) | 25 (22; 30) | 29 (25; 31) | 26 (22; 30) |
Weight (kg) | 98.8 (83.8; 112.8) | 132.5 (121.3; 144.3) | 102.8 (85.0; 119.4) |
Height (m) | 1.51 (1.45; 1.57) | 1.54 (1.52; 1.57) | 1.52 (1.47; 1.57) |
BMI (kg/m2) | 43.6 (35.1; 47.6) | 55.6 (49.5; 62.6) | 44.6 (37.5; 52.0) |
BMI class (NIH) | |||
Obesity class 1 | 9 (25%) | 0 (0%) | 9 (20%) |
Obesity class 2 | 4 (11%) | 1 (11%) | 5 (11%) |
Obesity class 3 | 23 (64%) | 8 (89%) | 31 (69%) |
Waist circumference (cm) | 119.5 (107.5; 125.5) | 136.0 (113.0; 144.0) | 121.0 (111.0; 131.0) |
High waist circumference (IDF) | |||
No | 1 (3%) | 0 (0%) | 1 (2%) |
Yes | 35 (97%) | 9 (100%) | 44 (98%) |
Glucose (mg/dL) | 84 (76; 96) | 80 (79; 92) | 83 (79; 96) |
High glucose (IDF) | |||
No | 30 (83%) | 8 (89%) | 38 (84%) |
Yes | 6 (17%) | 1 (11%) | 7 (16%) |
Type 2 diabetes mellitus (IDF) | |||
No | 29 (81%) | 7 (78%) | 36 (80%) |
Yes | 7 (19%) | 2 (22%) | 9 (20%) |
Cholesterol (mg/dL) | 195 (169; 210) | 169 (141; 203) | 194 (159; 207) |
Treatment with cholesterol-lowering drugs (IDF) | |||
No | 35 (97%) | 9 (100%) | 44 (98%) |
Yes | 1 (3%) | 0 (0%) | 1 (2%) |
HDL cholesterol (mg/dL) | 53 (40; 64) | 40 (36; 44) | 47 (38; 61) |
Low HDL cholesterol (IDF) | |||
No | 22 (61%) | 1 (11%) | 23 (51%) |
Yes | 14 (39%) | 8 (89%) | 22 (49%) |
LDL cholesterol (mg/dL) | 129 (106; 141) | 111 (90; 126) | 126 (105; 137) |
Triglycerides (mg/dL) | 90 (76; 110) | 98 (58; 117) | 91 (76; 111) |
High triglycerides (IDF) | |||
No | 32 (89%) | 7 (78%) | 39 (87%) |
Yes | 4 (11%) | 2 (22%) | 6 (13%) |
Systolic blood pressure (mm Hg) | 130 (120; 130) | 120 (120; 130) | 130 (120; 130) |
Diastolic blood pressure (mm Hg) | 80 (80; 80) | 80 (80; 80) | 80 (80; 80) |
High blood pressure (IDF) | |||
No | 16 (44%) | 4 (44%) | 20 (44%) |
Yes | 20 (56%) | 5 (56%) | 25 (56%) |
Treatment with antihypertensive drugs (IDF) | |||
No | 33 (92%) | 3 (33%) | 36 (80%) |
Yes | 3 (8%) | 6 (67%) | 9 (20%) |
Metabolic syndrome score (IDF) | |||
0 | 1 (3%) | 0 (0%) | 1 (2%) |
1 | 8 (22%) | 0 (0%) | 8 (18%) |
2 | 9 (25%) | 2 (22%) | 11 (24%) |
3 | 13 (36%) | 4 (44%) | 17 (38%) |
4 | 5 (14%) | 3 (33%) | 8 (18%) |
Metabolic syndrome (IDF) | |||
No | 18 (50%) | 2 (22%) | 20 (44%) |
Yes | 18 (50%) | 7 (78%) | 25 (56%) |
Cigarette smoking | |||
No | 35 (97%) | 8 (89%) | 43 (96%) |
Yes | 1 (3%) | 1 (11%) | 2 (4%) |
Treatment with growth hormone | |||
No | 7 (78%) | 26 (72%) | 33 (73%) |
Yes | 2 (22%) | 10 (28%) | 12 (27%) |
REE (kcal/day) | 1624 (1409; 1893) | 1856 (1792; 2000) | 1754 (1435; 1907) |
REE (kcal/day/kg body weight) | 17 (16; 18) | 15 (14; 17) | 16 (15; 18) |
FFM (kg) | 53.2 (44.6; 62.4) | NA | NA |
FFM (kg/kg BM, %) | 50.4 (47.8; 56.1) | NA | NA |
FM (kg) | 49.8 (43.7; 59.1) | NA | NA |
FM (kg/kg BM, %) | 49.6 (43.9; 52.2) | NA | NA |
FM arms (kg) | 6.5 (4.6; 10.3) | NA | NA |
FM arms (kg/kg FM, %) | 13.5 (11.2; 18.6) | NA | NA |
FM legs (kg) | 18.3 (15.3; 21.3) | NA | NA |
FM legs (kg/kg FM, %) | 37.4 (33.6; 40.0) | NA | NA |
FM trunk (kg) | 24.5 (20.8; 27.2) | NA | NA |
FM trunk (kg/kg FM, %) | 47.0 (44.1; 52.6) | NA | NA |
3rd Year vs. Baseline | 6th Year vs. Baseline | Intercept † | |
---|---|---|---|
Weight (kg) | −3.6 (−7.6 to 0.4) | −4.6 * (−8.5 to −0.8) | 104.4 *** (98.0 to 110.9) |
BMI (kg/m2) | −1.7 (−3.4 to 0.1) | −2.1 * (−3.8 to −0.4) | 45.4 *** (42.7 to 48.0) |
Waist circumference (cm) | −2.4 (−6.9 to 2.1) | 0.6 (−3.7 to 4.9) | 121.6 *** (116.8 to 126.5) |
Glucose (mg/dL) | 3.5 (−3.8 to 10.7) | 4.5 (−3.6 to 12.6) | 90.7 *** (84.1 to 97.3) |
Cholesterol (mg/dL) | −3.9 (−13.1 to 5.4) | −11.7 * (−20.6 to −2.7) | 189.2 *** (179.0 to 199.4) |
HDL cholesterol (mg/dL) | 1.8 (−1.1 to 4.8) | 1.3 (−1.6 to 4.3) | 50.1 *** (46.1 to 54.1) |
LDL cholesterol (mg/dL) | −2.8 (−10.6 to 5.1) | −8.1 * (−16.1 to −0.1) | 123.9 *** (115.2 to 132.6) |
Triglycerides (mg/dL) | −0.6 (−13.2 to 12.0) | 3.9 (−8.3 to 16.1) | 100.4 *** (87.8 to 113.0) |
Systolic BP (mm Hg) | −3.0 (−7.7 to 1.7) | −1.2 (−5.7 to 3.4) | 127.0 *** (123.6 to 130.4) |
Diastolic BP (mm Hg) | −0.6 (−3.6 to 2.5) | −1.0 (−4.0 to 1.9) | 80.4 *** (78.3 to 82.6) |
REE (kcal/day) | −67.7 (−146.5 to 11.0) | −105.3 ** (−181.4 to −29.3) | 1698.0 *** (1604.5 to 1791.5) |
REE (kcal/kg weight/day) | −0.1 (−0.9 to 0.7) | −0.4 (−1.2 to 0.4) | 16.6 *** (15.8 to 17.3) |
FFM (kg) †† | 1.1 (−0.7 to 3.0) | 1.5 (−0.3 to 3.4) | 54.2 (51.0 to 57.4) |
FFM (kg/kg BM, %) †† | 2.3 *** (1.0 to 3.5) | 1.8 ** (0.5 to 3.0) | 51.6 (50.2 to 53.0) |
FM (kg) †† | −3.5 ** (−5.9 to −1.1) | −2.3 (−4.7 to 0.2) | 51.1 *** (47.9 to 54.4) |
FM (kg/kg BM, %) †† | −2.3 *** (−3.5 to −1.0) | −1.8 ** (−3.0 to −0.5) | 48.4 *** (47.0 to 49.8) |
FM arms (kg) †† | −1.0 (−2.4 to 0.4) | −1.5 * (−2.8 to −0.1) | 7.9 *** (6.8 to 9.1) |
FM arms (kg/kg FM, %) †† | −0.7 (−3.5 to 2.1) | −2.1 (−4.8 to 0.7) | 15.2 *** (13.2 to 17.1) |
FM legs (kg) †† | −1.5 * (−2.9 to −0.1) | 0.0 (−1.4 to 1.4) | 18.9 *** (17.4 to 20.5) |
FM legs (kg/kg FM, %) †† | −0.4 (−2.4 to 1.5) | 1.9 (−0.2 to 4.0) | 37.0 *** (35.5 to 38.5) |
FM trunk (kg) †† | −1.0 (−3.2 to 1.1) | −1.0 (−3.2 to 1.1) | 24.1 *** (22.3 to 25.9) |
FM trunk (kg/kg FM, %) †† | 1.1 (−2.0 to 4.2) | 0.3 (−2.9 to 3.5) | 47.8 *** (45.7 to 50.0] |
Baseline | 3rd Year | 6th Year | |
---|---|---|---|
Weight (kg) | 104.4 (98.0 to 110.9) | 100.9 (94.2 to 107.5) | 99.8 (93.3 to 106.3) |
BMI (kg/m2) | 45.4 (42.7 to 48.0) | 43.7 (41.0 to 46.4) | 43.3 (40.6 to 46.0) |
Waist circumference (cm) | 121.6 (116.8 to 126.5) | 119.3 (114.2 to 124.3) | 122.3 (117.4 to 127.1) |
Glucose (mg/dL) | 90.7 (84.1 to 97.3) | 94.1 (86.1 to 102.2) | 95.2 (85.8 to 104.7) |
Cholesterol (mg/dL) | 189.2 (179.0 to 199.4) | 185.3 (174.7 to 195.9) | 177.5 (167.2 to 187.8) |
HDL cholesterol (mg/dL) | 50.1 (46.1 to 54.1) | 51.9 (47.8 to 56.1) | 51.4 (47.2 to 55.6) |
LDL cholesterol (mg/dL) | 123.9 (115.2 to 132.6) | 121.1 (111.8 to 130.4) | 115.8 (106.2 to 125.4) |
Triglycerides (mg/dL) | 100.4 (87.8 to 113.0) | 99.8 (86.6 to 113.0) | 104.3 (91.5 to 117.0) |
Systolic BP (mm Hg) | 127.0 (123.6 to 130.4) | 124.0 (120.3 to 127.7) | 125.8 (122.3 to 129.4) |
Diastolic BP (mm Hg) | 80.4 (78.3 to 82.6) | 79.9 (77.6 to 82.1) | 79.4 (77.3 to 81.6) |
REE (kcal/day) | 1698.0 (1604.5 to 1791.5) | 1630.3 (1533.6 to 1726.9) | 1592.7 (1498.2 to 1687.1) |
REE (kcal/kg weight/day) | 16.6 (15.8 to 17.3) | 16.5 (15.7 to 17.3) | 16.2 (15.4 to 16.9) |
FFM (kg) † | 54.2 (51.0 to 57.4) | 55.3 (52.1 to 58.6) | 55.8 (52.5 to 59.0) |
FFM (kg/kg BM, %) † | 51.6 (50.2 to 53.0) | 53.9 (52.4 to 55.4) | 53.4 (52.0 to 54.9) |
FM (kg) † | 51.1 (47.9 to 54.4) | 47.6 (44.2 to 51.0) | 48.9 (45.5 to 52.2) |
FM (kg/kg BM, %) † | 48.4 (47.0 to 49.8) | 46.1 (44.6 to 47.6) | 46.6 (45.1 to 48.0) |
FM arms (kg) † | 7.9 (6.8 to 9.1) | 6.9 (5.7 to 8.1) | 6.5 (5.3 to 7.7) |
FM arms (kg/kg FM, %) † | 15.2 (13.2 to 17.1) | 14.5 (12.4 to 16.6) | 13.1 (11.1 to 15.1) |
FM legs (kg) † | 18.9 (17.4 to 20.5) | 17.5 (15.9 to 19.0) | 19.0 (17.4 to 20.6) |
FM legs (kg/kg FM, %) † | 37.0 (35.5 to 38.5) | 36.6 (34.8 to 38.3) | 38.9 (36.9 to 40.9) |
FM trunk (kg) † | 24.1 (22.3 to 25.9) | 23.1 (21.1 to 25.0) | 23.1 (21.1 to 25.0) |
FM trunk (kg/kg FM, %) † | 47.8 (45.7 to 50.0) | 48.9 (46.5 to 51.4) | 48.2 (45.6 to 50.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedogni, G.; Grugni, G.; Cicolini, S.; Caroli, D.; Tamini, S.; Sartorio, A. Changes of Body Weight and Body Composition in Obese Patients with Prader–Willi Syndrome at 3 and 6 Years of Follow-Up: A Retrospective Cohort Study. J. Clin. Med. 2020, 9, 3596. https://doi.org/10.3390/jcm9113596
Bedogni G, Grugni G, Cicolini S, Caroli D, Tamini S, Sartorio A. Changes of Body Weight and Body Composition in Obese Patients with Prader–Willi Syndrome at 3 and 6 Years of Follow-Up: A Retrospective Cohort Study. Journal of Clinical Medicine. 2020; 9(11):3596. https://doi.org/10.3390/jcm9113596
Chicago/Turabian StyleBedogni, Giorgio, Graziano Grugni, Sabrina Cicolini, Diana Caroli, Sofia Tamini, and Alessandro Sartorio. 2020. "Changes of Body Weight and Body Composition in Obese Patients with Prader–Willi Syndrome at 3 and 6 Years of Follow-Up: A Retrospective Cohort Study" Journal of Clinical Medicine 9, no. 11: 3596. https://doi.org/10.3390/jcm9113596
APA StyleBedogni, G., Grugni, G., Cicolini, S., Caroli, D., Tamini, S., & Sartorio, A. (2020). Changes of Body Weight and Body Composition in Obese Patients with Prader–Willi Syndrome at 3 and 6 Years of Follow-Up: A Retrospective Cohort Study. Journal of Clinical Medicine, 9(11), 3596. https://doi.org/10.3390/jcm9113596