Magnetic-Activated Cell Sorting (MACS): A Useful Sperm-Selection Technique in Cases of High Levels of Sperm DNA Fragmentation
Abstract
:1. Introduction
2. Experiment Section
2.1. Study Population and Design
2.2. Sperm DNA Fragmentation (SDF) Assessment
2.3. Male Evaluation and Conventional Sperm Selection
2.4. MACS Sperm-Selection Technique
2.5. Cycle Procedure and Outcome
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Der Steeg, J.; Steures, P.; Eijkemans, M.J.C.; Habbema, J.D.F.; Hompes, P.G.A.; Kremer, J.A.M.; Van Der Leeuw-Harmsen, L.; Bossuyt, P.M.M.; Repping, S.; Silber, S.J.; et al. Role of semen analysis in subfertile couples. Fertil. Steril. 2011, 95, 1013–1019. [Google Scholar] [CrossRef]
- Santi, D.; Spaggiari, G.; Simoni, M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management—Meta-analyses. Reprod. Biomed. Online 2018, 37, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Borini, A.; Tarozzi, N.; Bizzaro, D.; Bonu, M.; Fava, L.; Flamigni, C.; Coticchio, G. Sperm DNA fragmentation: Paternal effect on early post-implantation embryo development in ART. Hum. Reprod. 2006, 21, 2876–2881. [Google Scholar] [CrossRef]
- Tesarik, J.; Greco, E.; Mendoza, C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum. Reprod. 2004, 19, 611–615. [Google Scholar] [CrossRef] [Green Version]
- Simon, L.; Murphy, K.; Shamsi, M.; Liu, L.; Emery, B.; Aston, K.; Hotaling, J.; Carrell, D.T. Paternal influence of sperm DNA integrity on early embryonic development. Hum. Reprod. 2014, 29, 2402–2412. [Google Scholar] [CrossRef]
- Barroso, G.; Valdespin, C.; Vega, E.; Kershenovich, R.; Avila, R.; Avendaño, C.; Oehninger, S. Developmental sperm contributions: Fertilization and beyond. Fertil. Steril. 2009, 92, 835–848. [Google Scholar] [CrossRef]
- Cissen, M.; Van Wely, M.; Scholten, I.; Mansell, S.; De Bruin, J.P.; Mol, B.W.; Braat, D.; Repping, S.; Hamer, G. Measuring Sperm DNA Fragmentation and Clinical Outcomes of Medically Assisted Reproduction: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0165125. [Google Scholar] [CrossRef] [Green Version]
- Aitken, R.J.; Bronson, R.; Smith, T.B.; De Iuliis, G.N. The source and significance of DNA damage in human spermatozoa; a commentary on diagnostic strategies and straw man fallacies. Mol. Hum. Reprod. 2013, 19, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Ribas-Maynou, J.; Gawecka, J.; Benet, J.; Ward, W.S. Double-stranded DNA breaks hidden in the neutral Comet assay suggest a role of the sperm nuclear matrix in DNA integrity maintenance. Mol. Hum. Reprod. 2013, 20, 330–340. [Google Scholar] [CrossRef]
- Shukla, K.K.; Mahdi, A.A.; Rajender, S. Apoptosis, spermatogenesis and male infertility. Front. Biosci. 2012, 4, 746. [Google Scholar] [CrossRef]
- Agarwal, A.; Barbarosie, C.; Ambar, R.; Finelli, R. The Impact of Single and Double-Strand DNA Breaks in Human Spermatozoa on Assisted Reproduction. Int. J. Mol. Sci. 2020, 21, 3882. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, D.; Seli, E.; Bizzaro, D.; Tarozzi, N.; Manicardi, G.-C. Abnormal spermatozoa in the ejaculate: Abortive apoptosis and faulty nuclear remodelling during spermatogenesis. Reprod. Biomed. Online 2003, 7, 428–432. [Google Scholar] [CrossRef]
- Smith, T.B.; Cortez-Retamozo, V.; Grigoryeva, L.S.; Hill, E.; Pittet, M.J.; Da Silva, N. Mononuclear phagocytes rapidlyclear apoptotic epithelial cells in the proximal epididymis. Andrology 2014, 2, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, D.; Ramalingam, M.; Garrido, N.; Barratt, C.L. Sperm selection in natural conception: What can we learn from Mother Nature to improve assisted reproduction outcomes? Hum. Reprod. 2015, 21, 711–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.-H.; Liu, C.-H.; Shih, Y.-T.; Tsao, H.-M.; Huang, C.-C.; Chen, H.-H.; Lee, M.-S. Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum. Reprod. 2010, 25, 839–846. [Google Scholar] [CrossRef]
- Cakar, Z.; Cetinkaya, B.; Aras, D.; Koca, B.; Ozkavukcu, S.; Kaplanoglu, I.; Cinar, O. Does combining mag-netic-activated cell sorting with density gradient or swim-up improve sperm selection? J. Assist. Reprod. Genet. 2016, 33, 1059–1065. [Google Scholar] [CrossRef] [Green Version]
- Grunewald, S.; Paasch, U. Sperm selection for ICSIusing annexin V. Methods Mol. Biol. 2013, 927, 257–262. [Google Scholar]
- Nasr-Esfahani, M.H.; Deemeh, M.R.; Tavalaee, M. New era in sperm selection for ICSI. Int. J. Androl. 2012, 35, 475–484. [Google Scholar] [CrossRef]
- Chi, H.-J.; Kwak, S.-J.; Kim, S.-G.; Kim, Y.-Y.; Park, J.-Y.; Yoo, C.-S.; Park, I.-H.; Sun, H.-G.; Kim, J.-W.; Lee, K.-H. Efficient isolation of sperm with high DNA integrity and stable chromatin packaging by a combination of density-gradient centrifugation and magnetic-activated cell sorting. Clin. Exp. Reprod. Med. 2016, 43, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Romany, L.; Garrido, N.; Cobo, A.; Aparicio-Ruiz, B.; Serra, V.; Meseguer, M. Obstetric and perinatal outcome of babies born from sperm selected by MACS from a randomized controlled trial. J. Assist. Reprod. Genet. 2016, 34, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Sedó, C.A.; Uriondo, H.; Lavolpe, M.; Noblia, F.; Papier, S.; Nodar, F. Clinical outcome using non-apoptotic sperm selection for ICSI procedures: Report of 1 year experience. Fertil. Steril. 2010, 94, S232. [Google Scholar] [CrossRef]
- Ziarati, N.; Tavalaee, M.; Bahadorani, M.; Nasr-Esfahani, M.H. Clinical outcomes of magnetic activated sperm sorting in infertile men candidate for ICSI. Hum. Fertil. 2018, 22, 118–125. [Google Scholar] [CrossRef]
- Romany, L.; Garrido, N.; Motato, Y.; Aparicio, B.; Remohí, J.; Meseguer, M. Removal of annexin V–positive sperm cells for intracytoplasmic sperm injection in ovum donation cycles does not improve reproductive outcome: A controlled and randomized trial in unselected males. Fertil. Steril. 2014, 102, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Horta, F.; Crosby, M.; Mackenna, A.; Huidobro, C. Male factor infertility outcomes using magnetic activated cell sorting in ntra cytoplasmic sperm injection cycles. Andrology 2016, 5, 155–159. [Google Scholar]
- Sergerie, M.; Laforest, G.; Bujan, L.; Bissonnette, F.; Bleau, G. Sperm DNA fragmentation: Threshold value in male fertility. Hum. Reprod. 2005, 20, 3446–3451. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization, Department of Reproductive Health and Research. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; WHO Press: Geneva, Switzerland, 2010. [Google Scholar]
- Alecsandru, D.; Pacheco, A.; Guerrero-Mayo, A.; Fabris, A.; Aparicio, P.; Barrio, A.; Pellicer, A.; Garcia-Velasco, J.A. Ovarian stimulation does not influence the uterine immune environment in healthy infertile women. Reprod. Biomed. Online 2020, 40, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Carrell, D.T.; Wilcox, A.L.; Lowy, L.; Peterson, C.M.; Jones, K.P.; Erickson, L.; Hatasaka, H.H. Elevated sperm chromosome aneuploidy and apoptosis in patients with unexplained recurrent pregnancy loss. Obstet. Gynecol. 2003, 101, 1229–1235. [Google Scholar]
- Benchaib, M.; Braun, V.; Lornage, J.; Hadj, S.; Salle, B.; Lejeune, H.; Guérin, J.F. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum. Reprod. 2003, 18, 1023–1028. [Google Scholar] [CrossRef]
- Robinson, L.; Gallos, I.D.; Conner, S.J.; Rajkhowa, M.; Miller, D.; Lewis, S.; Kirkman-Brown, J.; Coomarasamy, A. The effect of sperm DNA fragmentation on miscarriage rates: A systematic review and meta-analysis. Hum. Reprod. 2012, 27, 2908–2917. [Google Scholar] [CrossRef] [Green Version]
- Wdowiak, A.; Bakalczuk, S.; Bakalczuk, G. The effect of sperm DNA fragmentation on the dynamics of the embryonic development in intracytoplasmatic sperm injection. Reprod. Biol. 2015, 15, 94–100. [Google Scholar] [CrossRef]
- Zini, A.; Boman, J.M.; Belzile, E.; Ciampi, A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: Systematic review and meta-analysis. Hum. Reprod. 2008, 23, 2663–2668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Zhang, Q.; Wang, Y.; Li, Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: A systematic review and meta-analysis. Fertil. Steril. 2014, 102, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, L.; Jiang, H.; Chen, H.; Chen, Y.; Dai, Y.-T. Sperm DNA fragmentation index and pregnancy outcome after IVF or ICSI: A meta-analysis. J. Assist. Reprod. Genet. 2014, 32, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Ribas-Maynou, J.; García-Peiró, A.; Encinas, A.F.; Amengual, M.J.; Prada, E.; Cortés, P.; Navarro, J.; Benet, J. Double Stranded Sperm DNA Breaks, Measured by Comet Assay, Are Associated with Unexplained Recurrent Miscarriage in Couples without a Female Factor. PLoS ONE 2012, 7, e44679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreyra, J.G.; García-Ferreyra, L.V.J. High Pregnancy and Implantation Rates Can Be Obtained Using Magnetic-Activated Cell Sorting (MACS) to Selection Spermatozoa in Patients with High Levels of Spermatic DNA Fragmentation. JFIV Reprod. Med. Genet. 2014, 3, 133. [Google Scholar] [CrossRef] [Green Version]
- Buzzi, J.; Valcarcel, A.; Lombardi, E.; Oses, R.; Rawe, V.; Young, E. Magnetic activated cell sorting (MACS) improves oocyte donation results associated to severe male factor infertility. Hum. Reprod. 2010, 25 (Suppl. 1), i118–i152. [Google Scholar]
- Esbert, M.; Pacheco, A.; Soares, S.R.; Amorós, D.; Florensa, M.; Ballesteros, A.; Meseguer, M. High sperm DNA fragmentation delays human embryo kinetics when oocytes from young and healthy donors are microinjected. Andrology 2018, 6, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Jerre, E.; Bungum, M.; Evenson, D.; Giwercman, A. Sperm chromatin structure assay high DNA stainability sperm as a marker of early miscarriage after intracytoplasmic sperm injection. Fertil. Steril. 2019, 112, 46–53. [Google Scholar] [CrossRef]
- Sánchez-Martín, P.; Dorado-Silva, M.; Sánchez-Martín, F.; Martínez, M.; Johnston, S.D.; Gosálvez, J. Magnetic cell sorting of semen containing spermatozoa with high DNA fragmentation in ICSI cycles decreases miscarriage rate. Reprod. Biomed. Online 2017, 34, 506–512. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Majzoub, A.; Agarwal, A. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab. J. Urol. 2019, 17, 87–97. [Google Scholar] [CrossRef] [Green Version]
Study Group MACS (n = 366) | Control Group w/o MACS (n = 358) | p | |
---|---|---|---|
Female age (year) a | 372 ± 3.6 | 36.7 ± 3.5 | 0.3 |
Male age (year) a | 40.0 ± 15.7 | 38.7 ± 15.4 | 0.28 |
SDF (%) a | 28.9 ± 8.2 | 29.6 ± 9.1 | 0.30 |
Total sperm count (mil) a | 89.1 ± 79.4 | 95.1 ± 87.2 | 0.15 |
Progressive motility (%) a | 35.2 ± 18.1 | 33.3 ± 16.7 | 0.12 |
Number of collected oocytes | 11.3 ± 7.2 | 11.9 ± 6.8 | 0.36 |
Number of Metaphase II oocytes | 9.7 ± 5.0 | 9.5 ± 5.1 | 0.31 |
Study Group MACS (n = 366) | Control Group w/o MACS (n = 358) | p | |
---|---|---|---|
Fertilization rate (%) | 75.1 | 73.3 | 0.133 |
Pregnancy rate (%) | 60.7 | 51.5 | 0.014 |
Miscarriage rate (%) | 14.7 | 20.6 | 0.034 |
Livebirth rate (%) | 47.4 | 31.2 | 0.001 |
Preimplantation Genetic Testing for Aneuploidy (PGT-A) Cycles | |||
Study Group MACS (n = 126) | Control Group w/o MACS (n = 116) | p | |
SDF (%) | 28.8 | 30.1 | 0.168 |
Fertilization rate (%) | 76 | 76.8 | 0.201 |
Pregnancy rate (%) | 60.4 | 50.6 | 0.121 |
Miscarriage rate (%) | 15.1 | 11.4 | 0.307 |
Live-birth rate (%) | 43.4 | 31.6 | 0.127 |
Autologous Oocyte ICSI Cycles | |||
Study Group MACS (n = 121) | Control Group w/o MACS (n = 120) | p | |
SDF (%) | 30.7 ± 10.2 | 30.8 ± 10.8 | 0.958 |
Fertilization rate (%) | 76.8 | 75.1 | 0.586 |
Pregnancy rate (%) | 52.2 | 50.0 | 0.424 |
Miscarriage rate (%) | 11.3 | 25.5 | 0.005 |
Live-birth rate (%) | 40.9 | 24.6 | 0.03 |
Oocyte-Donation Cycles | |||
Study Group MACS (n = 121) | Control Group w/o MACS (n = 120) | p | |
SDF (%) | 27.7 ± 6.8 | 28.0 ± 7.2 | 0.959 |
Fertilization rate (%) | 76.85 | 76.9 | 0.750 |
Pregnancy rate (%) | 69.6 | 53.9 | 0.013 |
Miscarriage rate (%) | 17.9 | 22.5 | 0.247 |
Live-birth rate (%) | 51.8 | 29.4 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco, A.; Blanco, A.; Bronet, F.; Cruz, M.; García-Fernández, J.; García-Velasco, J.A. Magnetic-Activated Cell Sorting (MACS): A Useful Sperm-Selection Technique in Cases of High Levels of Sperm DNA Fragmentation. J. Clin. Med. 2020, 9, 3976. https://doi.org/10.3390/jcm9123976
Pacheco A, Blanco A, Bronet F, Cruz M, García-Fernández J, García-Velasco JA. Magnetic-Activated Cell Sorting (MACS): A Useful Sperm-Selection Technique in Cases of High Levels of Sperm DNA Fragmentation. Journal of Clinical Medicine. 2020; 9(12):3976. https://doi.org/10.3390/jcm9123976
Chicago/Turabian StylePacheco, Alberto, Arancha Blanco, Fernando Bronet, María Cruz, Jaime García-Fernández, and Juan Antonio García-Velasco. 2020. "Magnetic-Activated Cell Sorting (MACS): A Useful Sperm-Selection Technique in Cases of High Levels of Sperm DNA Fragmentation" Journal of Clinical Medicine 9, no. 12: 3976. https://doi.org/10.3390/jcm9123976
APA StylePacheco, A., Blanco, A., Bronet, F., Cruz, M., García-Fernández, J., & García-Velasco, J. A. (2020). Magnetic-Activated Cell Sorting (MACS): A Useful Sperm-Selection Technique in Cases of High Levels of Sperm DNA Fragmentation. Journal of Clinical Medicine, 9(12), 3976. https://doi.org/10.3390/jcm9123976