Effect of rhTSH on Lipids
Abstract
:1. Introduction
2. Experimental Section
2.1. Material and Methods
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Delitala, A.P.; Manzocco, M.; Sinibaldi, F.G.; Fanciulli, G. Thyroid function in elderly people: The role of subclinical thyroid disorders in cognitive function and mood alterations. Int. J. Clin. Pract. 2018, 72, e13254. [Google Scholar] [CrossRef]
- Biondi, B.; Cappola, A.R.; Cooper, D.S. Subclinical Hypothyroidism: A Review. JAMA 2019, 322, 153–160. [Google Scholar] [CrossRef]
- Biondi, B.; Cooper, D.S. Subclinical Hyperthyroidism. N. Engl. J. Med. 2018, 379, 1485–1486. [Google Scholar] [PubMed]
- Delitala, A.P.; Pilia, M.G.; Ferreli, L.; Loi, F.; Curreli, N.; Balaci, L.; Schlessinger, D.; Cucca, F. Prevalence of unknown thyroid disorders in a Sardinian cohort. Eur. J. Endocrinol. 2014, 171, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, E.; Rago, T.; Latrofa, F.; Provenzale, M.A.; Piaggi, P.; Delitala, A.; Scutari, M.; Basolo, F.; Di Coscio, G.; Grasso, L.; et al. Hashimoto’s thyroiditis is associated with papillary thyroid carcinoma: Role of TSH and of treatment with L-thyroxine. Endocr. Relat. Cancer 2011, 18, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Delitala, A.P.; Scuteri, A.; Maioli, M.; Mangatia, P.; Vilardi, L.; Erre, G.L. Subclinical hypothyroidism and cardiovascular risk factors. Minerva Med. 2019, 110, 530–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delitala, A.P. Subclinical Hyperthyroidism and the Cardiovascular Disease. Horm. Metab. Res. 2017, 49, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Delitala, A.P.; Orru, M.; Filigheddu, F.; Pilia, M.G.; Delitala, G.; Ganau, A.; Saba, P.S.; Decandia, F.; Scuteri, A.; Marongiu, M.; et al. Serum free thyroxine levels are positively associated with arterial stiffness in the SardiNIA study. Clin. Endocrinol. 2015, 82, 592–597. [Google Scholar] [CrossRef]
- Chang, Y.C.; Hua, S.C.; Chang, C.H.; Kao, W.Y.; Lee, H.L.; Chuang, L.M.; Huang, Y.T.; Lai, M.S. High TSH Level within Normal Range Is Associated with Obesity, Dyslipidemia, Hypertension, Inflammation, Hypercoagulability, and the Metabolic Syndrome: A Novel Cardiometabolic Marker. J. Clin. Med. 2019, 8, 817. [Google Scholar] [CrossRef] [Green Version]
- Canaris, G.J.; Manowitz, N.R.; Mayor, G.; Ridgway, E.C. The Colorado thyroid disease prevalence study. Arch. Intern. Med. 2000, 160, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Ito, M.; Takamatsu, J.; Sasaki, I.; Hiraiwa, T.; Fukao, A.; Murakami, Y.; Isotani, H.; Miyauchi, A.; Kuma, K.; Hanafusa, T. Disturbed metabolism of remnant lipoproteins in patients with subclinical hypothyroidism. Am. J. Med. 2004, 117, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Delitala, A.P.; Fanciulli, G.; Pes, G.M.; Maioli, M.; Delitala, G. Thyroid Hormones, Metabolic Syndrome and Its Components. Endocr. Metab. Immune Disord. Drug Targets 2017, 17, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ha, J.; Jo, K.; Lim, D.J.; Lee, J.M.; Chang, S.A.; Kang, M.I.; Kim, M.H. High Normal Range of Free Thyroxine is Associated with Decreased Triglycerides and with Increased High-Density Lipoprotein Cholesterol Based on Population Representative Data. J. Clin. Med. 2019, 8, 758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikhail, G.S.; Alshammari, S.M.; Alenezi, M.Y.; Mansour, M.; Khalil, N.A. Increased atherogenic low-density lipoprotein cholesterol in untreated subclinical hypothyroidism. Endocr. Pract. 2008, 14, 570–575. [Google Scholar] [CrossRef]
- Ito, M.; Arishima, T.; Kudo, T.; Nishihara, E.; Ohye, H.; Kubota, S.; Fukata, S.; Amino, N.; Kuma, K.; Sasaki, I.; et al. Effect of levo-thyroxine replacement on non-high-density lipoprotein cholesterol in hypothyroid patients. J. Clin. Endocrinol. Metab. 2007, 92, 608–611. [Google Scholar] [CrossRef] [Green Version]
- Petrosyan, L. Relationship between high normal TSH levels and metabolic syndrome components in type 2 diabetic subjects with euthyroidism. J. Clin. Transl. Endocrinol. 2015, 2, 110–113. [Google Scholar]
- Gong, Y.; Ma, Y.; Ye, Z.; Fu, Z.; Yang, P.; Gao, B.; Guo, W.; Hu, D.; Ye, J.; Ma, S.; et al. Thyroid stimulating hormone exhibits the impact on LDLR/LDL-c via up-regulating hepatic PCSK9 expression. Metabolism 2017, 76, 32–41. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, H.; Han, S.; Jung, H.; Shin, D.Y.; Nam, K.H.; Chung, W.Y.; Lee, E.J. Association between Thyroid-Stimulating Hormone Level after Total Thyroidectomy and Hypercholesterolemia in Female Patients with Differentiated Thyroid Cancer: A Retrospective Study. J. Clin. Med. 2019, 8, 1106. [Google Scholar] [CrossRef] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Basoli, V.; Santaniello, S.; Cruciani, S.; Ginesu, G.C.; Cossu, M.L.; Delitala, A.P.; Serra, P.A.; Ventura, C.; Maioli, M. Melatonin and Vitamin D Interfere with the Adipogenic Fate of Adipose-Derived Stem Cells. Int. J. Mol. Sci. 2017, 18, 981. [Google Scholar] [CrossRef] [Green Version]
- Santaniello, S.; Cruciani, S.; Basoli, V.; Balzano, F.; Bellu, E.; Garroni, G.; Ginesu, G.C.; Cossu, M.L.; Facchin, F.; Delitala, A.P.; et al. Melatonin and Vitamin D Orchestrate Adipose Derived Stem Cell Fate by Modulating Epigenetic Regulatory Genes. Int. J. Med. Sci. 2018, 15, 1631–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, R.A.; Singh, B.K.; Yen, P.M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 2018, 14, 259–269. [Google Scholar] [CrossRef]
- Delitala, A.P.; Fanciulli, G.; Maioli, M.; Delitala, G. Subclinical hypothyroidism, lipid metabolism and cardiovascular disease. Eur. J. Intern. Med. 2017, 38, 17–24. [Google Scholar] [CrossRef]
- Delitala, A.P.; Delitala, G.; Sioni, P.; Fanciulli, G. Thyroid hormone analogs for the treatment of dyslipidemia: Past, present, and future. Curr. Med. Res. Opin. 2017, 33, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xu, C.; Shao, S.; Liu, J.; Xing, W.; Xu, J.; Qin, C.; Li, C.; Hu, B.; Yi, S.; et al. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4alpha/CYP7A1 axis. J. Hepatol. 2015, 62, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Beukhof, C.M.; Massolt, E.T.; Visser, T.J.; Korevaar, T.I.M.; Medici, M.; de Herder, W.W.; Roeters van Lennep, J.E.; Mulder, M.T.; de Rijke, Y.B.; Reiners, C.; et al. Effects of Thyrotropin on Peripheral Thyroid Hormone Metabolism and Serum Lipids. Thyroid 2018, 28, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Delitala, A.P.; Steri, M.; Pilia, M.G.; Dei, M.; Lai, S.; Delitala, G.; Schlessinger, D.; Cucca, F. Menopause modulates the association between thyrotropin levels and lipid parameters: The SardiNIA study. Maturitas 2016, 92, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Scuteri, A.; Morrell, C.H.; Orru, M.; AlGhatrif, M.; Saba, P.S.; Terracciano, A.; Ferreli, L.A.; Loi, F.; Marongiu, M.; Pilia, M.G.; et al. Gender specific profiles of white coat and masked hypertension impacts on arterial structure and function in the SardiNIA study. Int. J. Cardiol. 2016, 217, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Meisinger, C.; Ittermann, T.; Tiller, D.; Agger, C.; Nauck, M.; Schipf, S.; Wallaschofski, H.; Jorgensen, T.; Linneberg, A.; Thiery, J.; et al. Sex-specific associations between thyrotropin and serum lipid profiles. Thyroid 2014, 24, 424–432. [Google Scholar] [CrossRef]
- Delitala, A.P.; Scuteri, A.; Fiorillo, E.; Lakatta, E.G.; Schlessinger, D.; Cucca, F. Role of Adipokines in the Association between Thyroid Hormone and Components of the Metabolic Syndrome. J. Clin. Med. 2019, 8, 764. [Google Scholar] [CrossRef] [Green Version]
- Delitala, A.P.; Steri, M.; Fiorillo, E.; Marongiu, M.; Lakatta, E.G.; Schlessinger, D.; Cucca, F. Adipocytokine correlations with thyroid function and autoimmunity in euthyroid sardinians. Cytokine 2018, 111, 189–193. [Google Scholar] [CrossRef]
- Cecoli, F.; Andraghetti, G.; Ghiara, C.; Briatore, L.; Cavallero, D.; Mussap, M.; Minuto, F.; Giusti, M. Absence of thyrotropin-induced increase in leptin levels in patients with history of differentiated thyroid carcinoma undergoing recombinant human thyrotropin testing. J. Endocrinol. Investig. 2008, 31, 888–892. [Google Scholar] [CrossRef] [PubMed]
- Langer, T.; Strober, W.; Levy, R.I. The metabolism of low density lipoprotein in familial type II hyperlipoproteinemia. J. Clin. Investig. 1972, 51, 1528–1536. [Google Scholar] [CrossRef] [PubMed]
- Ghosh Laskar, M.; Eriksson, M.; Rudling, M.; Angelin, B. Treatment with the natural FXR agonist chenodeoxycholic acid reduces clearance of plasma LDL whilst decreasing circulating PCSK9, lipoprotein(a) and apolipoprotein C-III. J. Intern. Med. 2017, 281, 575–585. [Google Scholar] [CrossRef] [PubMed]
Variable | Before rhTSH | After rhTSH | p Value |
---|---|---|---|
TSH (mUI/L) | 0.43 ± 0.23 | 12.34 ± 4.53 | <0.001 |
FT4 (ng/dL) | 1.10 ± 0.21 | 1.10 ± 0.212 | ns |
Total cholesterol (mg/dL) | 192 ± 33 | 207 ± 26 | 0.036 |
LDLc (mg/dL) | 116 ± 27 | 126 ± 22 | 0.066 |
HDLc (mg/dL) | 62 ± 15 | 63 ± 15 | ns |
Triglycerides (mg/dL) | 72 ± 23 | 85 ± 23 | 0.016 |
Non-HDLc (mg/dL) | 130 ± 30 | 143 ± 25 | 0.037 |
Variable | Pre-rhTSH | Post-rhTSH | ||
---|---|---|---|---|
Age ≤ 39.4 | Age > 39.4 | Age ≤ 39.4 | Age > 39.4 | |
Total cholesterol (mg/dL) | 173 | 210 * | 191 | 219 # |
LDLc (mg/dL) | 100 | 131 * | 114 | 135 # |
HDL (mg/dL) | 59 | 64 | 61 | 67 |
Triglycerides (mg/dL) | 69 | 73 | 83 | 86 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delitala, A.P.; Scuteri, A.; Maioli, M.; Casu, G.; Merella, P.; Fanciulli, G. Effect of rhTSH on Lipids. J. Clin. Med. 2020, 9, 515. https://doi.org/10.3390/jcm9020515
Delitala AP, Scuteri A, Maioli M, Casu G, Merella P, Fanciulli G. Effect of rhTSH on Lipids. Journal of Clinical Medicine. 2020; 9(2):515. https://doi.org/10.3390/jcm9020515
Chicago/Turabian StyleDelitala, Alessandro P., Angelo Scuteri, Margherita Maioli, Gavino Casu, Pierluigi Merella, and Giuseppe Fanciulli. 2020. "Effect of rhTSH on Lipids" Journal of Clinical Medicine 9, no. 2: 515. https://doi.org/10.3390/jcm9020515
APA StyleDelitala, A. P., Scuteri, A., Maioli, M., Casu, G., Merella, P., & Fanciulli, G. (2020). Effect of rhTSH on Lipids. Journal of Clinical Medicine, 9(2), 515. https://doi.org/10.3390/jcm9020515