Biomarkers in Community-Acquired Pneumonia (Cardiac and Non-Cardiac)
Abstract
:1. Introduction
2. Cardiac Biomarkers
2.1. Troponins
2.2. Natriuretic Peptides
2.3. Midregional-Proadrenomedullin
2.4. Endothelin-1
2.5. Others
3. Non-Cardiac Biomarkers
3.1. Inflammatory
3.1.1. C-Reactive Protein
3.1.2. Procalcitonin
3.1.3. Interleukin-6
3.1.4. Tumour Necrosis Factor Alpha
3.2. Non-Inflammatory
3.2.1. Absolute Lymphocyte Count
3.2.2. Neutrophil Extracellular Traps
3.2.3. Others
4. Limitations and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Menéndez, R.; Torres, A.; Aspa, J.; Capelastegui, A.; Prat, C.; Rodríguez de Castro, F.; Sociedad Española de Neumología y Cirugía Torácica. Community acquired pneumonia. New guidelines of the Spanish Society of Chest Diseases and Thoracic Surgery (SEPAR). Arch. Bronconeumol. 2010, 46, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Schnoor, M.; Hedicke, J.; Dalhoff, K.; Raspe, H.; Schäfer, T. Approaches to estimate the population-based incidence of community acquired pneumonia. J. Infect. 2007, 55, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Cangemi, R.; Falcone, M.; Taliani, G.; Pieralli, F.; Vannucchi, V.; Nozzoli, C.; Venditti, M.; Chirinos, J.A.; Corrales-Medina, V.F.; et al. Cardiovascular Complications and Short-Term Mortality Risk in Community-Acquired Pneumonia. Clin. Infect. Dis. 2017, 64, 1486–1493. [Google Scholar] [CrossRef]
- Corrales-Medina, V.F.; Alvarez, K.N.; Weissfeld, L.A.; Angus, D.C.; Chirinos, J.A.; Chang, C.-C.H.; Newman, A.; Loehr, L.; Folsom, A.R.; Elkind, M.S.; et al. Association between Hospitalization for Pneumonia and Subsequent Risk of Cardiovascular Disease. JAMA 2015, 313, 264. [Google Scholar] [CrossRef]
- Reyes, L.F.; Restrepo, M.I.; Hinojosa, C.A.; Soni, N.J.; Anzueto, A.; Babu, B.L.; Gonzalez-Juarbe, N.; Rodriguez, A.H.; Jimenez, A.; Chalmers, J.D.; et al. Severe Pneumococcal Pneumonia Causes Acute Cardiac Toxicity and Subsequent Cardiac Remodeling. Am. J. Respir. Crit. Care Med. 2017, 196, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Singanayagam, A.; Singanayagam, A.; Elder, D.H.J.; Chalmers, J.D. Is community-acquired pneumonia an independent risk factor for cardiovascular disease? Eur. Respir. J. 2012, 39, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.-Y. A common immunopathogenesis mechanism for infectious diseases: The protein-homeostasis-system hypothesis. Infect. Chemother. 2015, 47, 12–26. [Google Scholar] [CrossRef]
- Aldás, I.; Menéndez, R.; Méndez, R.; España, P.P.; Almirall, J.; Boderías, L.; Rajas, O.; Zalacaín, R.; Vendrell, M.; Mir, I.; et al. Eventos cardiovasculares tempranos y tardíos en pacientes ingresados por neumonía adquirida en la comunidad. Arch. Bronconeumol. 2019. [Google Scholar] [CrossRef]
- Self, W.H.; Balk, R.A.; Grijalva, C.G.; Williams, D.J.; Zhu, Y.; Anderson, E.J.; Waterer, G.W.; Courtney, D.M.; Bramley, A.M.; Trabue, C.; et al. Procalcitonin as a Marker of Etiology in Adults Hospitalized With Community-Acquired Pneumonia. Clin. Infect. Dis. 2017, 65, 183–190. [Google Scholar] [CrossRef]
- Siljan, W.W.; Holter, J.C.; Michelsen, A.E.; Nymo, S.H.; Lauritzen, T.; Oppen, K.; Husebye, E.; Ueland, T.; Molines, T.E.; Aukrust, P.; et al. Inflammatory biomarkers are associated with aetiology and predict outcomes in community-acquired pneumonia: Results of a 5-year follow-up cohort study. ERJ Open Res. 2019, 5. [Google Scholar] [CrossRef]
- Menéndez, R.; Martínez, R.; Reyes, S.; Mensa, J.; Filella, X.; Marcos, M.A.; Martínez, A.; Esquinas, C.; Ramirez, P.; Torres, A. Biomarkers improve mortality prediction by prognostic scales in community-acquired pneumonia. Thorax 2009, 64, 587–591. [Google Scholar]
- Menéndez, R.; Méndez, R.; Aldás, I.; Reyes, S.; Gonzalez-Jimenez, P.; España, P.P.; Almirall, J.; Alonso, R.; Suescun, M.; Martinez-Dolz, L.; et al. Community-Acquired Pneumonia Patients at-risk for Early and Long-term Cardiovascular Events are Identified by Cardiac Biomarkers. Chest 2019, 156, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- Bessière, F.; Khenifer, S.; Dubourg, J.; Durieu, I.; Lega, J.-C. Prognostic value of troponins in sepsis: A meta-analysis. Intensive Care Med. 2013, 39, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Vallabhajosyula, S.; Sakhuja, A.; Geske, J.B.; Kumar, M.; Poterucha, J.T.; Kashyap, R.; Kashani, K.; Jaffe, A.S.; Jentzer, J.C. Role of Admission Troponin—T and Serial Troponin—T Testing in Predicting Outcomes in Severe Sepsis and Septic Shock. J. Am. Heart Assoc. 2017, 6, e005930. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, H.; soo Park, J.; Kim, S.J.; Cho, Y.J.; Yoon, H.I.; Lee, J.H.; Lee, C.T.; Park, J.S. Cardiac troponin I as a prognostic factor in critically ill pneumonia patients in the absence of acute coronary syndrome. J. Crit. Care 2015, 30, 390–394. [Google Scholar] [CrossRef]
- Vestjens, S.M.T.; Spoorenberg, S.M.C.; Rijkers, G.T.; Grutters, J.C.; Ten Berg, J.M.; Noordzij, P.G.; Van de Garde, E.M.W.; Bos, W.J.W.; Ovidius Study Group. High-sensitivity cardiac troponin T predicts mortality after hospitalization for community-acquired pneumonia. Respirology 2017, 22, 1000–1006. [Google Scholar] [CrossRef]
- Matsuo, A.; Nagai-Okatani, C.; Nishigori, M.; Kangawa, K.; Minamino, N. Natriuretic peptides in human heart: Novel insight into their molecular forms, functions, and diagnostic use. Peptides 2019, 111, 3–17. [Google Scholar] [CrossRef]
- Claessens, Y.-E.; Mathevon, T.; Kierzek, G.; Grabar, S.; Jegou, D.; Batard, E.; Loyer, C.; Davido, A.; Hausfater, P.; Robert, H.; et al. Accuracy of C-reactive protein, procalcitonin, and mid-regional pro-atrial natriuretic peptide to guide site of care of community-acquired pneumonia. Intensive Care Med. 2010, 36, 799–809. [Google Scholar] [CrossRef]
- Kruger, S.; Ewig, S.; Kunde, J.; Hartmann, O.; Suttorp, N.; Welte, T.; CAPNETZ Study Group. Pro-atrial natriuretic peptide and pro-vasopressin for predicting short-term and long-term survival in community-acquired pneumonia: Results from the German Competence Network CAPNETZ. Thorax 2010, 65, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Christ-Crain, M.; Breidthardt, T.; Stolz, D.; Zobrist, K.; Bingisser, R.; Miedinger, D.; Leuppi, J.; Tamm, M.; Mueller, B.; Mueller, C. Use of B-type natriuretic peptide in the risk stratification of community-acquired pneumonia. J. Intern. Med. 2008, 264, 166–176. [Google Scholar] [CrossRef]
- Lin, S.-C.; Tsai, Y.-J.; Huang, C.-T.; Kuo, Y.-W.; Ruan, S.-Y.; Chuang, Y.-C.; Yu, C.J. Prognostic value of plasma N-terminal pro B-type natriuretic peptide levels in pneumonia patients requiring intensive care unit admission. Respirology 2013, 18, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.L.; Mills, G.D.; Karalus, N.C.; Jennings, L.C.; Laing, R.; Murdoch, D.R.; Chambers, S.T.; Vettise, D.; Tuffery, C.M.; Hancox, R.J. Biomarkers of Cardiac Dysfunction and Mortality from Community-Acquired Pneumonia in Adults. PLoS ONE 2013, 8, e62612. [Google Scholar] [CrossRef] [PubMed]
- Akpınar, E.E.; Hoşgün, D.; Akpınar, S.; Ateş, C.; Baha, A.; Gülensoy, E.S.; Ogan, N. Do N-terminal pro-brain natriuretic peptide levels determine the prognosis of community acquired pneumonia? J. Bras. Pneumol. 2019, 45, e20180417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, A.; Breidthardt, T.; Christ-Crain, M.; Bingisser, R.; Meune, C.; Tanglay, Y.; Heinisch, C.; Reiter, M.; Drexler, B.; Arenja, N.; et al. Direct Comparison of Three Natriuretic Peptides for Prediction of Short- and Long-term Mortality in Patients With Community-Acquired Pneumonia. Chest 2012, 141, 974–982. [Google Scholar] [CrossRef]
- Krüger, S.; Papassotiriou, J.; Marre, R.; Richter, K.; Schumann, C.; von Baum, H.; Morgenthaler, N.G.; Suttorp, N.; Welte, T.; CAPNETZ Study Group. Pro-atrial natriuretic peptide and pro-vasopressin to predict severity and prognosis in community-acquired pneumonia. Intensive Care Med. 2007, 33, 2069–2078. [Google Scholar] [CrossRef] [PubMed]
- Viasus, D.; Del Rio-Pertuz, G.; Simonetti, A.F.; Garcia-Vidal, C.; Acosta-Reyes, J.; Garavito, A.; Carratalà, J. Biomarkers for predicting short-term mortality in community-acquired pneumonia: A systematic review and meta-analysis. J. Infect. 2016, 72, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Alan, M.; Grolimund, E.; Kutz, A.; Christ-Crain, M.; Thomann, R.; Falconnier, C.; Hoess, C.; Henzen, C.; Zimmerli, W.; Mueller, B.; et al. Clinical risk scores and blood biomarkers as predictors of long-term outcome in patients with community-acquired pneumonia: A 6-year prospective follow-up study. J. Intern Med. 2015, 278, 174–184. [Google Scholar] [CrossRef]
- Krüger, S.; Ewig, S.; Giersdorf, S.; Hartmann, O.; Suttorp, N.; Welte, T.; German Competence Network for the Study of Community Acquired Pneumonia (CAPNETZ) Study Group. Cardiovascular and Inflammatory Biomarkers to Predict Short- and Long-Term Survival in Community-acquired Pneumonia. Am. J. Respir. Crit. Care Med. 2010, 182, 1426–1434. [Google Scholar] [CrossRef]
- Morgenthaler, N.G.; Struck, J.; Alonso, C.; Bergmann, A. Measurement of Midregional Proadrenomedullin in Plasma with an Immunoluminometric Assay. Clin. Chem. 2005, 44, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Nishikimi, T.; Saito, Y.; Kitamura, K.; Ishimitsu, T.; Eto, T.; Kangawa, K.; Matsuo, H.; Omae, T.; Matsuoka, H. Increased plasma levels of adrenomedullin in patients with heart failure. J. Am. Coll. Cardiol. 1995, 26, 1424–1431. [Google Scholar] [CrossRef] [Green Version]
- Miyao, Y.; Nishikimi, T.; Goto, Y.; Miyazaki, S.; Daikoku, S.; Morii, I.; Matsumoto, T.; Takishita, S.; Miyata, A.; Matsuo, H.; et al. Increased plasma adrenomedullin levels in patients with acute myocardial infarction in proportion to the clinical severity. Heart 1998, 79, 39–44. [Google Scholar] [CrossRef]
- Suzuki, Y.; Horio, T.; Hayashi, T.; Nonogi, H.; Kitamura, K.; Eto, T.; Kangawa, K.; Kawano, Y. Plasma adrenomedullin concentration is increased in patients with peripheral arterial occlusive disease associated with vascular inflammation. Regul. Pept. 2004, 118, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Hinrichs, S.; Scherschel, K.; Krüger, S.; Neumann, J.T.; Schwarzl, M.; Yan, I.; Warnke, S.; Ojeda, F.M.; Zeller, T.; Karakas, M.; et al. Precursor proadrenomedullin influences cardiomyocyte survival and local inflammation related to myocardial infarction. Proc. Natl. Acad. Sci. USA 2018, 115, E8727–E8736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- España, P.P.; Capelastegui, A.; Mar, C.; Bilbao, A.; Quintana, J.M.; Diez, R.; Esteban, C.; Bereciartua, E.; Unanue, U.; Uranga, A. Performance of pro-adrenomedullin for identifying adverse outcomes in community-acquired pneumonia. J. Infect. 2015, 70, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Renaud, B.; Schuetz, P.; Claessens, Y.-E.; Labarère, J.; Albrich, W.; Mueller, B. Proadrenomedullin Improves Risk of Early Admission to ICU Score for Predicting Early Severe Community-Acquired Pneumonia. Chest 2012, 142, 1447–1454. [Google Scholar] [CrossRef]
- Christ-Crain, M.; Morgenthaler, N.G.; Stolz, D.; Müller, C.; Bingisser, R.; Harbarth, S.; Tamm, M.; Struck, J.; Bergmann, A.; Müller, B. Pro-adrenomedullin to predict severity and outcome in community-acquired pneumonia. Crit. Care 2006, 10, R96. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.T.; Angus, D.C.; Kellum, J.A.; Pugh, N.A.; Weissfeld, L.A.; Struck, J.; Delude, R.L.; Rosengart, M.R.; Yealy, D.M. Midregional proadrenomedullin as a prognostic tool in community-acquired pneumonia. Chest 2009, 136, 823–831. [Google Scholar] [CrossRef] [Green Version]
- Albrich, W.C.; Dusemund, F.; Rüegger, K.; Christ-Crain, M.; Zimmerli, W.; Bregenzer, T.; Irani, S.; Buergi, U.; Reutlinger, B.; Mueller, B.; et al. Enhancement of CURB65 score with proadrenomedullin (CURB65-A) for outcome prediction in lower respiratory tract infections: Derivation of a clinical algorithm. BMC Infect. Dis. 2011, 11, 112. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Xie, L.; Zhao, H.; Liu, X.; Cao, J. Prognostic value of mid-regional pro-adrenomedullin (MR-proADM) in patients with community-acquired pneumonia: A systematic review and meta-analysis. BMC Infect. Dis. 2016, 16, 232. [Google Scholar] [CrossRef] [Green Version]
- Bello, S.; Lasierra, A.B.; Mincholé, E.; Fandos, S.; Ruiz, M.A.; Vera, E.; de Pablo, F.; Ferrer, M.; Menendez, R.; Torres, A. Prognostic power of proadrenomedullin in community-acquired pneumonia is independent of aetiology. Eur. Respir. J. 2012, 39, 1144–1155. [Google Scholar] [CrossRef] [Green Version]
- Papassotiriou, J.; Morgenthaler, N.G.; Struck, J.; Alonso, C.; Bergmann, A. Immunoluminometric Assay for Measurement of the C-Terminal Endothelin-1 Precursor Fragment in Human Plasma. Clin. Chem. 2006, 52, 1144–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanecek, M.; Weitzberg, E.; Rudehill, A.; Oldner, A. The endothelin system in septic and endotoxin shock. Eur. J. Pharmacol. 2000, 407, 1–15. [Google Scholar] [CrossRef]
- Pittet, J.-F.; Morel, D.R.; Hemsen, A.; Gunning, K.; Lacroix, J.-S.; Suter, P.M.; Lundberg, J.M. Elevated Plasma Endothelin-1 Concentrations Are Associated with the Severity of Illness in Patients with Sepsis. Ann. Surg. 1991, 213, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Stolz, D.; Mueller, B.; Morgenthaler, N.G.; Struck, J.; Mueller, C.; Bingisser, R.; Tamm, M.; Christ-Crain, M. Endothelin-1 precursor peptides correlate with severity of disease and outcome in patients with community acquired pneumonia. BMC Infect. Dis. 2008, 8, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuetz, P.; Wolbers, M.; Christ-Crain, M.; Thomann, R.; Falconier, C.; Widmer, I.; Neidert, S.; Fricker, T.; Blum, C.; Schild, U.; et al. Prohormones for prediction of adverse medical outcome in community-acquired pneumonia and lower respiratory tract infections. Crit. Care 2010, 14, R106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuetz, P.; Christ-Crain, M.; Zimmerli, W.; Mueller, B. Repeated measurements of endothelin-1 precursor peptides predict the outcome in community-acquired pneumonia. Intensive Care Med. 2011, 37, 970–980. [Google Scholar] [CrossRef]
- Masia, M.; Papassotiriou, J.; Morgenthaler, N.G.; Hernandez, I.; Shum, C.; Gutierrez, F. Midregional Pro-A-Type Natriuretic Peptide and Carboxy-Terminal Provasopressin May Predict Prognosis in Community-Acquired Pneumonia. Clin. Chem. 2007, 53, 2193–2201. [Google Scholar] [CrossRef] [Green Version]
- Kolditz, M.; Halank, M.; Schulte-Hubbert, B.; Bergmann, S.; Albrecht, S.; Höffken, G. Copeptin predicts clinical deterioration and persistent instability in community-acquired pneumonia. Respir. Med. 2012, 106, 1320–1328. [Google Scholar] [CrossRef] [Green Version]
- Kruger, S.; Ewig, S.; Kunde, J.; Hanschmann, A.; Marre, R.; Suttorp, N.; Welte, T.; CAPNETZ Study Group. C-terminal provasopressin (copeptin) in patients with community-acquired pneumonia--influence of antibiotic pre-treatment: Results from the German competence network CAPNETZ. J. Antimicrob. Chemother. 2009, 64, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Almirall, J.; Bolíbar, I.; Toran, P.; Pera, G.; Boquet, X.; Balanzó, X.; Sauca, G.; Community-Acquired Pneumonia Maresme Study Group. Contribution of C-Reactive Protein to the Diagnosis and Assessment of Severity of Community-Acquired Pneumonia. Chest 2004, 125, 1335–1342. [Google Scholar] [CrossRef] [Green Version]
- Van Vugt, S.F.; Broekhuizen, B.D.L.; Lammens, C.; Zuithoff, N.P.A.; de Jong, P.A.; Coenen, S.; Ieven, M.; Butler, C.C.; Goossens, H.; Little, P.; et al. Use of serum C reactive protein and procalcitonin concentrations in addition to symptoms and signs to predict pneumonia in patients presenting to primary care with acute cough: Diagnostic study. BMJ 2013, 346, f2450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohenthal, U.; Hurme, S.; Helenius, H.; Heiro, M.; Meurman, O.; Nikoskelainen, J.; Kotilainen, P. Utility of C-reactive protein in assessing the disease severity and complications of community-acquired pneumonia. Clin. Microbiol. Infect. 2009, 15, 1026–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalmers, J.D.; Singanayagam, A.; Hill, A.T. C-Reactive Protein Is an Independent Predictor of Severity in Community-acquired Pneumonia. Am. J. Med. 2008, 121, 219–225. [Google Scholar] [CrossRef]
- Menéndez, R.; Cavalcanti, M.; Reyes, S.; Mensa, J.; Martinez, R.; Marcos, M.A.; Filella, X.; Niederman, M.; Torres, A. Markers of treatment failure in hospitalised community acquired pneumonia. Thorax 2008, 63, 447–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bel, J.; Hausfater, P.; Chenevier-Gobeaux, C.; Blanc, F.-X.; Benjoar, M.; Ficko, C.; Ray, P.; Choquet, C.; Duval, X.; Claessens, Y.E.; et al. Diagnostic accuracy of C-reactive protein and procalcitonin in suspected community-acquired pneumonia adults visiting emergency department and having a systematic thoracic CT scan. Crit. Care 2015, 19, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falk, G.; Fahey, T. C-reactive protein and community-acquired pneumonia in ambulatory care: Systematic review of diagnostic accuracy studies. Fam. Pract. 2009, 26, 10–21. [Google Scholar] [CrossRef]
- Whicher, J.; Bienvenu, J.; Monneret, G. Procalcitonin as an Acute Phase Marker. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2001, 38, 483–493. [Google Scholar] [CrossRef]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst. Rev. 2017, 10, CD007498. [Google Scholar] [CrossRef] [Green Version]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: A patient level meta-analysis. Lancet Infect. Dis. 2018, 18, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.T.; Yealy, D.M.; Filbin, M.R.; Brown, A.M.; Chang, C.-C.H.; Doi, Y.; Donnino, M.W.; Fine, J.; Fine, M.J.; Fischer, M.A.; et al. Procalcitonin-Guided Use of Antibiotics for Lower Respiratory Tract Infection. N. Engl. J. Med. 2018, 379, 236–249. [Google Scholar] [CrossRef] [Green Version]
- Montassier, E.; Javaudin, F.; Moustafa, F.; Nandjou, D.; Maignan, M.; Hardouin, J.-B.; Annoot, C.; Ogielska, M.; Orer, P.L.; Schotté, T.; et al. Guideline-Based Clinical Assessment Versus Procalcitonin-Guided Antibiotic Use in Pneumonia: A Pragmatic Randomized Trial. Ann. Emerg. Med. 2019, 74, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Self, W.H.; Grijalva, C.G.; Williams, D.J.; Woodworth, A.; Balk, R.A.; Fakhran, S.; Zhu, Y.; Courtney, D.M.; Chappell, J.; Anderson, E.J.; et al. Procalcitonin as an Early Marker of the Need for Invasive Respiratory or Vasopressor Support in Adults with Community-Acquired Pneumonia. Chest 2016, 150, 819–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhydkov, A.; Christ-Crain, M.; Thomann, R.; Hoess, C.; Henzen, C.; Werner, Z.; Mueller, B.; Schuetz, P.; ProHOSP Study Group. Utility of procalcitonin, C-reactive protein and white blood cells alone and in combination for the prediction of clinical outcomes in community-acquired pneumonia. Clin. Chem. Lab. Med. 2015, 53, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Interleukin (IL-6) Immunotherapy. Cold Spring Harb. Perspect. Biol. 2018, 10, a028456. [Google Scholar] [CrossRef] [PubMed]
- Zobel, K.; Martus, P.; Pletz, M.W.; Ewig, S.; Prediger, M.; Welte, T.; Bühling, F.; CAPNETZ study group. Interleukin 6, lipopolysaccharide-binding protein and interleukin 10 in the prediction of risk and etiologic patterns in patients with community-acquired pneumonia: Results from the German competence network CAPNETZ. BMC Pulm. Med. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Guo, J.; Wang, Y.; Xiao, Y.; Wang, L.; Hua, S. Expression Levels of Interferon Regulatory Factor 5 (IRF5) and Related Inflammatory Cytokines Associated with Severity, Prognosis, and Causative Pathogen in Patients with Community-Acquired Pneumonia. Med. Sci. Monit. 2018, 24, 3620–3630. [Google Scholar] [CrossRef]
- Yende, S.; D’Angelo, G.; Kellum, J.A.; Weissfeld, L.; Fine, J.; Welch, R.D.; Kong, L.; Carter, M.; Angus, D.C.; GenIMS Investigators. Inflammatory markers at hospital discharge predict subsequent mortality after pneumonia and sepsis. Am. J. Respir. Crit. Care Med. 2008, 177, 1242–1247. [Google Scholar] [CrossRef] [Green Version]
- Crisafulli, E.; Menéndez, R.; Huerta, A.; Martinez, R.; Montull, B.; Clini, E.; Torres, A. Systemic inflammatory pattern of patients with community-acquired pneumonia with and without COPD. Chest 2013, 143, 1009–1017. [Google Scholar] [CrossRef]
- Bermejo-Martin, J.F.; Cilloniz, C.; Mendez, R.; Almansa, R.; Gabarrus, A.; Ceccato, A.; Torres, A.; Menendez, R.; NEUMONAC group. Lymphopenic Community Acquired Pneumonia (L-CAP), an Immunological Phenotype Associated with Higher Risk of Mortality. EBioMedicine 2017, 24, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Güell, E.; Martín-Fernandez, M.; De la Torre, M.C.; Palomera, E.; Serra, M.; Martinez, R.; Solsona, M.; Miró, G.; Vallès, J.; Fernández, S.; et al. Impact of Lymphocyte and Neutrophil Counts on Mortality Risk in Severe Community-Acquired Pneumonia with or without Septic Shock. J. Clin. Med. 2019, 8, 754. [Google Scholar] [CrossRef] [Green Version]
- Ceccato, A.; Panagiotarakou, M.; Ranzani, O.T.; Martin-Fernandez, M.; Almansa-Mora, R.; Gabarrus, A.; Bueno, L.; Cilloniz, C.; Liapikou, A.; Ferrer, M.; et al. Lymphocytopenia as a Predictor of Mortality in Patients with ICU-Acquired Pneumonia. J. Clin. Med. 2019, 8, 843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méndez, R.; Menéndez, R.; Amara-Elori, I.; Feced, L.; Piró, A.; Ramírez, P.; Sempere, A.; Ortega, A.; Bermejo-Martín, J.F.; Torres, A. Lymphopenic community-acquired pneumonia is associated with a dysregulated immune response and increased severity and mortality. J. Infect. 2019, 78, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Ceccato, A.; Ferrer, M.; Gabarrus, A.; Sibila, O.; Cilloniz, C.; Mendez, R.; Menendez, R.; Bermejo-Martin, J.; Niederman, M.S. Effect of Corticosteroids on C-Reactive Protein in Patients with Severe Community-Acquired Pneumonia and High Inflammatory Response: The Effect of Lymphopenia. J. Clin. Med. 2019, 8, 1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Yipp, B.G.; Kubes, P. NETosis: How vital is it? Blood 2013, 122, 2784–2794. [Google Scholar] [CrossRef]
- Ullah, I.; Ritchie, N.D.; Evans, T.J. The interrelationship between phagocytosis, autophagy and formation of neutrophil extracellular traps following infection of human neutrophils by Streptococcus pneumoniae. Innate Immun. 2017, 23, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.R.; Ma, A.C.; Tavener, S.A.; McDonald, B.; Goodarzi, Z.; Kelly, M.M.; Patel, K.D.; Chakrabarti, S.; MvAvoy, E.; Sinclair, G.D.; et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007, 13, 463–469. [Google Scholar] [CrossRef]
- Gupta, A.K.; Joshi, M.B.; Philippova, M.; Erne, P.; Hasler, P.; Hahn, S.; Resink, T.J. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 2010, 584, 3193–3197. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Y.; Wu, J.; Liu, C.; Zhou, Y.; Mi, L.; Zhang, Y.; Wang, W. PRAK Is Required for the Formation of Neutrophil Extracellular Traps. Front. Immunol. 2019, 10, 1252. [Google Scholar] [CrossRef] [Green Version]
- Gould, T.J.; Vu, T.T.; Swystun, L.L.; Dwivedi, D.J.; Mai, S.H.C.; Weitz, J.I.; Liaw, P.C. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1977–1984. [Google Scholar] [CrossRef] [Green Version]
- Folco, E.J.; Mawson, T.L.; Vromman, A.; Bernardes-Souza, B.; Franck, G.; Persson, O.; Nakamura, M.; Newton, G.; Luscinskas, F.W.; Libby, P. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1901–1912. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Giaglis, S.; Hahn, S.; Blum, C.A.; Baumgartner, C.; Kutz, A.; van Breda, S.V.; Mueller, B.; Schuetz, P.; Christ-Crain, M.; et al. Markers of neutrophil extracellular traps predict adverse outcome in community-acquired pneumonia: Secondary analysis of a randomised controlled trial. Eur. Respir. J. 2018, 51, 1701389. [Google Scholar] [CrossRef] [PubMed]
- Sapey, E.; Patel, J.M.; Greenwood, H.; Walton, G.M.; Grudzinska, F.; Parekh, D.; Mahida, R.Y.; Dancer, R.C.A.; Lugg, S.T.; Howells, P.A.; et al. Simvastatin Improves Neutrophil Function and Clinical Outcomes in Pneumonia: A Pilot Randomised Controlled Clinical Trial. Am. J. Respir. Crit. Care Med. 2019, 200, 1282–1293. [Google Scholar] [CrossRef]
- McDonald, B.; Urrutia, R.; Yipp, B.G.; Jenne, C.N.; Kubes, P. Intravascular Neutrophil Extracellular Traps Capture Bacteria from the Bloodstream during Sepsis. Cell Host Microbe 2012, 12, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Storisteanu, D.M.L.; Pocock, J.M.; Cowburn, A.S.; Juss, J.K.; Nadesalingam, A.; Nizet, V.; Chilvers, E.R. Evasion of Neutrophil Extracellular Traps by Respiratory Pathogens. Am. J. Respir. Cell Mol. Biol. 2017, 56, 423–431. [Google Scholar] [CrossRef]
- Martinez, P.J.; Farhan, A.; Mustafa, M.; Javaid, N.; Darkoh, C.; Garrido-Sanabria, E.; Fisher-Hoch, S.P.; Briles, D.E.; Kantarci, A.; Mirza, S. PspA facilitates evasion of pneumococci from bactericidal activity of neutrophil extracellular traps (NETs). Microb. Pathog. 2019, 136, 103653. [Google Scholar] [CrossRef]
- Wildhagen, K.C.A.A.; Wiewel, M.A.; Schultz, M.J.; Horn, J.; Schrijver, R.; Reutelingsperger, C.P.M.; van der Poll, T.; Nicolaes, G.A. Extracellular histone H3 levels are inversely correlated with antithrombin levels and platelet counts and are associated with mortality in sepsis patients. Thromb. Res. 2015, 136, 542–547. [Google Scholar] [CrossRef]
- Saffarzadeh, M.; Juenemann, C.; Queisser, M.A.; Lochnit, G.; Barreto, G.; Galuska, S.P.; Lohmeyer, J.; Preissner, K.T. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS ONE 2012, 7, e32366. [Google Scholar] [CrossRef] [PubMed]
- Grailer, J.J.; Ward, P.A. Lung inflammation and damage induced by extracellular histones. Inflamm. cell Signal. 2014, 1, e131. [Google Scholar] [CrossRef]
- Semeraro, F.; Ammollo, C.T.; Morrissey, J.H.; Dale, G.L.; Friese, P.; Esmon, N.L.; Esmon, C.T. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: Involvement of platelet TLR2 and TLR4. Blood 2011, 118, 1952–1961. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D.; Wrobleski, S.K.; Wakefield, T.W.; Hartwig, J.H.; Wagner, D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [Google Scholar] [CrossRef] [Green Version]
- Abrams, S.T.; Morton, B.; Alhamdi, Y.; Alsabani, M.; Lane, S.; Welters, I.D.; Wang, G.; Toh, C.H. A Novel Assay for Neutrophil Extracellular Traps (NETs) Formation Independently Predicts Disseminated Intravascular Coagulation and Mortality in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2019, 134, 440. [Google Scholar]
- Alhamdi, Y.; Abrams, S.T.; Cheng, Z.; Jing, S.; Su, D.; Liu, Z.; Lane, S.; Welters, I.; Wang, G.; Toh, C.H. Circulating Histones Are Major Mediators of Cardiac Injury in Patients with Sepsis. Crit. Care Med. 2015, 43, 2094–2103. [Google Scholar] [CrossRef] [PubMed]
- Masuda, S.; Nakazawa, D.; Shida, H.; Miyoshi, A.; Kusunoki, Y.; Tomaru, U.; Ishizu, A. NETosis markers: Quest for specific, objective, and quantitative markers. Clin. Chim. Acta 2016, 459, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; Singanayagam, A.; Scally, C.; Hill, A.T. Admission D-dimer Can Identify Low-Risk Patients with Community-Acquired Pneumonia. Ann. Emerg. Med. 2009, 53, 633–638. [Google Scholar] [CrossRef]
- Snijders, D.; Schoorl, M.; Schoorl, M.; Bartels, P.C.; van der Werf, T.S.; Boersma, W.G. D-dimer levels in assessing severity and clinical outcome in patients with community-acquired pneumonia. A secondary analysis of a randomised clinical trial. Eur. J. Intern Med. 2012, 23, 436–441. [Google Scholar] [CrossRef]
- Querol-Ribelles, J.M.; Tenias, J.M.; Grau, E.; Querol-Borras, J.M.; Climent, J.L.; Gomez, E.; Martinez, I. Plasma d-Dimer Levels Correlate With Outcomes in Patients With Community-Acquired Pneumonia. Chest 2004, 126, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Kolditz, M.; Halank, M.; Schulte-Hubbert, B.; Höffken, G. Adrenal function is related to prognosis in moderate community-acquired pneumonia. Eur. Respir. J. 2010, 36, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Salluh, J.I.F.; Bozza, F.A.; Soares, M.; Verdeal, J.C.R.; Castro-Faria-Neto, H.C.; LapaeSilva, J.R.; Bozza, P.T. Adrenal Response in Severe Community-Acquired Pneumonia. Chest 2008, 134, 947–954. [Google Scholar] [CrossRef]
- Mueller, C.; Blum, C.A.; Trummler, M.; Stolz, D.; Bingisser, R.; Mueller, C.; Tamm, M.; Mueller, B.; Schuetz, P.; Christ-Crain, M. Association of Adrenal Function and Disease Severity in Community-Acquired Pneumonia. PLoS ONE 2014, 9, e99518. [Google Scholar] [CrossRef] [Green Version]
- Kolditz, M.; Höffken, G.; Martus, P.; Rohde, G.; Schütte, H.; Bals, R.; Suttorp, N.; Pletz, M.W.; CAPNETZ Study Group. Serum cortisol predicts death and critical disease independently of CRB-65 score in community-acquired pneumonia: A prospective observational cohort study. BMC Infect. Dis. 2012, 12, 90. [Google Scholar] [CrossRef]
- Urwyler, S.A.; Blum, C.A.; Coslovsky, M.; Mueller, B.; Schuetz, P.; Christ—Crain, M. Cytokines and Cortisol—predictors of treatment response to corticosteroids in community—acquired pneumonia? J. Intern Med. 2019, 286, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, N.; Khoso, M.H.; Shen, C.; Guo, M.; Pang, X.; Li, D.; Wang, W. FGF-21 Elevated IL-10 Production to Correct LPS-Induced Inflammation. Inflammation 2018, 41, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Gutbier, B.; Neuhauß, A.-K.; Reppe, K.; Ehrler, C.; Santel, A.; Kaufmann, J.; Scholz, M.; Weissmann, N.; Morawietz, L.; Mitchell, T.J.; et al. Prognostic and Pathogenic Role of Angiopoietin-1 and -2 in Pneumonia. Am. J. Respir. Crit. Care Med. 2018, 198, 220–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D. Third Universal Definition of Myocardial Infarction. Circulation 2012, 126, 2020–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vita, J.A.; Treasure, C.B.; Yeung, A.C.; Vekshtein, V.I.; Fantasia, G.M.; Fish, R.D.; Ganz, P.; Selwyn, A.P. Patients with evidence of coronary endothelial dysfunction as assessed by acetylcholine infusion demonstrate marked increase in sensitivity to constrictor effects of catecholamines. Circulation 1992, 85, 1390–1397. [Google Scholar] [CrossRef] [Green Version]
- Moammar, M.Q.; Ali, M.I.; Mahmood, N.A.; DeBari, V.A.; Khan, M.A. Cardiac troponin I levels and alveolar-arterial oxygen gradient in patients with community-acquired pneumonia. Heart Lung Circ. 2010, 19, 90–92. [Google Scholar] [CrossRef]
- Frencken, J.F.; van Baal, L.; Kappen, T.H.; Donker, D.W.; Horn, J.; van der Poll, T.; van Klei, W.A.; Bonten, M.J.M.; Cremer, O.L.; Members of the MARS Consortium. Myocardial Injury in Critically Ill Patients with Community-acquired Pneumonia. A Cohort Study. Ann. Am. Thorac. Soc. 2019, 16, 606–612. [Google Scholar] [CrossRef]
- Ramirez, J.; Aliberti, S.; Mirsaeidi, M.; Peyrani, P.; Filardo, G.; Amir, A.; Moffet, B.; Gordon, J.; Blasi, F.; Bordon, J. Acute Myocardial Infarction in Hospitalized Patients with Community—Acquired Pneumonia. Clin. Infect. Dis. 2008, 47, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Krüger, S.; Ewig, S.; Papassotiriou, J.; Kunde, J.; Marre, R.; von Baum, H.; Suttor, N.; Welte, T.; CAPNETZ Study Group. Inflammatory parameters predict etiologic patterns but do not allow for individual prediction of etiology in patients with CAP: Results from the German competence network CAPNETZ. Respir. Res. 2009, 10, 65. [Google Scholar] [CrossRef]
- Menéndez, R.; Sahuquillo-arce, J.M.; Reyes, S.; Martínez, R.; Polverino, E.; Cillóniz, C.; Córdoba, J.G.; Montull, B.; Torres, A. Cytokine activation patterns and biomarkers are influenced by microorganisms in community-acquired pneumonia. Chest 2012, 141, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Ten Oever, J.; Tromp, M.; Bleeker-Rovers, C.P.; Joosten, L.A.B.; Netea, M.G.; Pickkers, P.; van de Veerdonk, F.L. Combination of biomarkers for the discrimination between bacterial and viral lower respiratory tract infections. J. Infect. 2012, 65, 490–495. [Google Scholar] [CrossRef]
- Woodhead, M.; Blasi, F.; Ewig, S.; Huchon, G.; Ieven, M.; Leven, M.; Ortqvist, A.; Schaberg, T.; Torres, A.; van der Heijden, G.; et al. Guidelines for the management of adult lower respiratory tract infections. Eur. Respir. J. 2005, 26, 1138–1180. [Google Scholar] [CrossRef] [PubMed]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef] [PubMed]
- Severiche-Bueno, D.; Parra-Tanoux, D.; Reyes, L.F.; Waterer, G.W. Hot topics and current controversies in community-acquired pneumonia. Breathe 2019, 15, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Méndez, R.; Menéndez, R.; Cillóniz, C.; Amara-Elori, I.; Amaro, R.; González, P.; Posadas, T.; Gimeno, A.; España, P.P.; Almirall, J.; et al. Initial Inflammatory Profile in Community-Acquired Pneumonia Depends on Time since Onset of Symptoms. Am. J. Respir. Crit. Care Med. 2018, 198, 370–378. [Google Scholar]
- Ridker, P.M.; Hennekens, C.H.; Buring, J.E.; Rifai, N. C-Reactive Protein and Other Markers of Inflammation in the Prediction of Cardiovascular Disease in Women. N. Engl. J. Med. 2000, 342, 836–843. [Google Scholar] [CrossRef]
- Drewry, A.M.; Samra, N.; Skrupky, L.P.; Fuller, B.M.; Compton, S.M.; Hotchkiss, R.S. Persistent Lymphopenia After Diagnosis of Sepsis Predicts Mortality. Shock 2014, 42, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.; Sibila, O.; Ferrer, M.; Polverino, E.; Menendez, R.; Mensa, J.; Gabarrús, A.; Sellarés, J.; Restrepo, M.; Anzueto, A.; et al. Effect of corticosteroids on treatment failure among hospitalized patients with severe community-acquired pneumonia and high inflammatory response: A randomized clinical trial. JAMA 2015, 313, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guan, L.; Yu, J.; Zhao, Z.; Mao, L.; Li, S.; Zhao, J. Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome. Respir. Res. 2016, 17, 155. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, F.; Wolffenbuttel, C.; Blum, C.A.; Baumgartner, C.; Mueller, B.; Schuetz, P.; Meier, C.; Kraenzlin, M.; Christ-Crain, M.; Betz, M.J. Fibroblast growth factor 21 predicts outcome in community-acquired pneumonia: Secondary analysis of two randomised controlled trials. Eur. Respir. J. 2019, 53, 1800973. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yin, Q.; Chen, Y.-X.; Zhao, Y.-Z.; Li, C.-S. Role of Presepsin (sCD14-ST) and the CURB65 scoring system in predicting severity and outcome of community-acquired pneumonia in an emergency department. Respir. Med. 2014, 108, 1204–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterer, G.; Chalmers, J. The Elusive Hunt for a Reliable Biomarker in Community-acquired Pneumonia. Are We Searching for Something That Can’t Exist? Am. J. Respir. Crit. Care Med. 2018, 198, 300–302. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Main Pathophysiological Mechanisms Involved | Main Potential Clinical Uses in CAP | Usefulness for Cardiovascular Risk Assessment in CAP | Main References |
---|---|---|---|---|
Cardiac Biomarkers | ||||
Troponins | Myocardial injury | Short-term survival Long-term survival | Yes | [12,13,14,15,16] |
Natriuretic peptides | Body fluid volume Cardiac overload/stress | Short-term survival Long-term survival | Yes | [12,17,18,19,20,21,22,23,24,25,26,27,28] |
MR-proADM | Vasodilatation Inflammation | ICU admission Short-term survival Long-term survival | Yes | [12,28,29,30,31,32,33,34,35,36,37,38,39,40] |
Endothelin-1 | Vasoconstriction | Short-term survival Long-term survival | Yes | [12,17,41,42,43,44,45,46] |
Copeptin | Body fluid volume Vasoconstriction | ICU admission Short-term survival Long-term survival | NA | [19,25,47,48,49] |
Non-Cardiac Biomarkers | ||||
CRP | Inflammation | Short-term survival | No | [11,12,50,51,52,53,54,55,56] |
PCT | Infection | Etiological diagnosis ICU admission Short-term survival | No | [9,10,12,57,58,59,60,61,62,63] |
IL-6 | Inflammation | Short-term survival Long-term survival | No | [12,64,65,66,67] |
TNF-α | Inflammation | No | NA | [11,68] |
ALC | Adaptive immune response | Short-term survival Treatment response to corticosteroids | NA | [69,70,71,72,73] |
NETs | Infection Inflammation Platelet activation Endothelial injury | Short-term survival | NA | [74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94] |
D-dimer | Thrombus degradation | Short-term survival | NA | [95,96,97] |
Cortisol | Adrenal function | Short-term survival Treatment response to corticosteroids | NA | [98,99,100,101,102] |
FGF21 | Metabolism regulation Inflammation Immune regulation | Short-term survival | NA | [103] |
Calprotectin | Neutrophil inflammation | Bacterial aetiology discrimination Long-term survival | NA | [10] |
Presepsin | Bacterial recognition | Short-term survival | NA | [10] |
PTX3 | Innate immune response | Short-term survival | NA | [10] |
Angiopoietins | Endothelial barrier function | Short-term survival | NA | [104] |
Biomarker | Studies | Design | Number of Participants | Outcomes |
---|---|---|---|---|
Cardiac Biomarkers | ||||
Troponins | Menéndez R et al. [12] | Prospective, observational and multicentre in CAP | 730 | Short-term cardiovascular events |
Bessière F et al. [13] | Meta-analysis in sepsis | 1227 | Short-term mortality | |
Vallabhajosyula S et al. [14] | Retrospective in severe sepsis and septic shock | 944 | Short and long-term mortality | |
Lee YJ et al. [15] | Retrospective in severe pneumonia | 152 | ICU mortality | |
Vestjens SMT et al. [16] | Post hoc analysis of a clinical trial on adjunctive dexamethasone treatment in CAP | 295 | Short and long-term mortality | |
Natriuretic peptides | Menéndez R et al. [12] | Prospective, observational and multicentre in CAP | 730 | Short and long-term cardiovascular events |
Claessens Y-E et al. [18] | Prospective, observational and multicentre in mild CAP | 549 | Guide site of care | |
Kruger S et al. [19] | Prospective, observational and multicentre in CAP | 1740 | Short and long-term mortality | |
Christ-Crain M et al. [20] | Prospective, observational and single-centre in CAP | 302 | Treatment failure and short-term mortality | |
Lin S-C et al. [21] | Prospective, observational and single-centre in severe CAP | 216 | Short-term mortality | |
Chang CL et al. [22] | Prospective, observational and bicentric in severe CAP | 474 | Short-term mortality | |
Akpinar EE et al. [23] | Prospective, observational and single-centre in CAP | 179 | ICU admission and short-term mortality | |
Nowak A et al. [24] | Prospective, observational and single-centre in CAP | 341 | Short and long-term mortality | |
Kruger S et al. [25] | Prospective, observational and multicentre in CAP | 589 | Short-term mortality | |
Viasus D et al. [26] | Systematic review and meta-analysis | 10319 | Short-term mortality | |
Alan M et al. [27] | Prospective, observational and multicentre in CAP | 925 | Long-term mortality | |
Kruger S et al. [28] | Prospective, observational and multicentre in CAP | 728 | Short and long-term mortality | |
MR-proADM | Menéndez R et al. [12] | Prospective, observational and multicentre in CAP | 730 | Short and long-term cardiovascular events |
Kruger S et al. [28] | Prospective, observational and multicentre in CAP | 728 | Short and long-term mortality | |
España PP et al. [34] | Prospective, observational and single-centre in CAP | 491 | Guide site of care | |
Renaud B et al. [35] | Prospective, observational and multicentre in CAP | 877 | ICU admission | |
Christ-Crain M et al. [36] | Prospective, observational and single-centre in CAP | 302 | Short-term mortality | |
Huang DT et al. [37] | Prospective, observational and multicentre in CAP | 1653 | Short-term mortality | |
Albrich WC et al. [38] | Prospective, observational and multicentre in LRTI | 1359 | Composite outcome: ICU admission, short-term mortality, and complications | |
Liu D et al. [39] | Systematic review and meta-analysis | 4119 | Short-term mortality | |
Bello S et al. [40] | Prospective, observational and multicentre in CAP | 228 | Short-term mortality | |
Endothelin-1 | Menéndez R et al. [12] | Prospective, observational and multicentre in CAP | 730 | Short and long-term cardiovascular events |
Schuetz P et al. [44] | Prospective, observational and single-centre in CAP | 281 | ICU admission and short-term mortality | |
Schuetz P et al. [45] | Prospective, observational and multicentre in CAP and LRTI | 925 | Composite outcome: ICU admission, short-term mortality, and complications | |
Copeptin | Kruger S et al. [19] | Prospective, observational and multicentre in CAP | 1740 | Short and long-term mortality |
Kruger S et al. [25] | Prospective, observational and multicentre in CAP | 589 | Short-term mortality | |
Masia M et al. [47] | Prospective, observational and single-centre in CAP | 173 | Short-term mortality | |
Kolditz M et al. [48] | Prospective, observational and single-centre in CAP | 51 | Composite outcome: ICU admission, short-term mortality, and clinical instability |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez, R.; Aldás, I.; Menéndez, R. Biomarkers in Community-Acquired Pneumonia (Cardiac and Non-Cardiac). J. Clin. Med. 2020, 9, 549. https://doi.org/10.3390/jcm9020549
Méndez R, Aldás I, Menéndez R. Biomarkers in Community-Acquired Pneumonia (Cardiac and Non-Cardiac). Journal of Clinical Medicine. 2020; 9(2):549. https://doi.org/10.3390/jcm9020549
Chicago/Turabian StyleMéndez, Raúl, Irene Aldás, and Rosario Menéndez. 2020. "Biomarkers in Community-Acquired Pneumonia (Cardiac and Non-Cardiac)" Journal of Clinical Medicine 9, no. 2: 549. https://doi.org/10.3390/jcm9020549
APA StyleMéndez, R., Aldás, I., & Menéndez, R. (2020). Biomarkers in Community-Acquired Pneumonia (Cardiac and Non-Cardiac). Journal of Clinical Medicine, 9(2), 549. https://doi.org/10.3390/jcm9020549