Research Insights on Neural Effects of Auditory Deprivation and Restoration in Unilateral Hearing Loss: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Sample
2.2. Neural Analyses Methods
3. Results
3.1. Functional and Structural Brain Plasticity in UHL
3.1.1. Functional Plasticity
3.1.2. Structural Plasticity
3.2. Auditory Restoration by Cochlear Implantation
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- van Wieringen, A.; Boudewyns, A.; Sangen, A.; Wouters, J.; Desloovere, C. Unilateral congenital hearing loss in children: Challenges and potentials. Hear. Res. 2019, 372, 29–41. [Google Scholar] [CrossRef]
- Alexander, T.; Harris, J. Incidence of sudden sensorineural hearing loss. Otol. Neurotol. 2013, 34, 1586–1589. [Google Scholar] [CrossRef]
- Liu, J.F.; Dai, J.S.; Wang, N.Y. Effect of cochlear implantation on sound localization for patients with unilateral sensorineural hearing loss. Chin. J. Otorhinolaryngol. Head Neck Surg. 2016, 51, 623–630. [Google Scholar]
- Stropahl, M.; Chen, L.C.; Debener, S. Cortical reorganization in postlingually deaf cochlear implant users: Intra-modal and cross-modal considerations. Hear. Res. 2017, 343, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Verger, A.; Roman, S.; Chaudat, R.M.; Felician, O.; Ceccaldi, M.; Didic, M.; Guedj, E. Changes of metabolism and functional connectivity in late-onset deafness: Evidence from cerebral 18F-FDG-PET. Hear. Res. 2017, 353, 8–16. [Google Scholar] [CrossRef]
- Verhaert, N.; Desloovere, C.; Wouters, J. Acoustic Hearing Implants for Mixed Hearing Loss: A Systematic Review. Otol. Neurotol. 2013, 34, 1201–1209. [Google Scholar] [CrossRef]
- Van de Heyning, P.; Távora-Vieira, D.; Mertens, G.; Van Rompaey, V.; Rajan, G.P.; Müller, J.; Hempel, J.M.; Leander, D.; Polterauer, D.; Marx, M.; et al. Towards a Unified Testing Framework for Single-Sided Deafness Studies: A Consensus Paper. Audiol. Neurootol. 2016, 21, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Kral, A.; Sharma, A. Developmental neuroplasticity after cochlear implantation. Trends Neurosci. 2012, 35, 111–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Heyning, P.; Vermeire, K.; Diebl, M.; Nopp, P.; Anderson, I.; de Ridder, D. Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation. Ann. Otol. Rhinol. Laryngol. 2008, 117, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Blasco, M.A.; Redleaf, M.I. Cochlear implantation in unilateral sudden deafness improves tinnitus and speech comprehension: Meta-analysis and systematic review. Otol. Neurotol. 2014, 35, 1426–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Zon, A.; Peters, J.P.; Stegeman, I.; Smit, A.L.; Grolman, W. Cochlear implantation for patients with single-sided deafness or asymmetrical hearing loss: A systematic review of the evidence. Otol. Neurotol. 2015, 36, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heggdal, P.O.L.; Brännström, J.; Aarstad, H.J.; Vassbotn, F.S.; Specht, K. Functional-structural reorganisation of the neuronal network for auditory perception in subjects with unilateral hearing loss: Review of neuroimaging studies. Hear. Res. 2016, 332, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.K.; Leemans, A. Diffusion Tensor Imaging. Methods Mol. Biol. 2011, 711, 127–144. [Google Scholar]
- le Bihan, D.; van Zijl, P. From the diffusion coefficient to the diffusion tensor. NMR Biomed. 2002, 15, 431–434. [Google Scholar] [CrossRef]
- Basser, P.J. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995, 8, 333–344. [Google Scholar] [CrossRef]
- Louis, E.K.S.; Frey, L.C. Electroencephalography—An introductory text and atlas of Normal and Abnormal Findings in Adults, Children, and Infants; American Epilepsy Society: Chicago, IL, USA, 2016; ISBN 13-978-0-9979756-0-4. [Google Scholar]
- Zatorre, R.; Binder, J. Functional and structural imaging of the human auditory system. In Brain Mapping: The Systems; Toga, A.W., Mazziotta, J.C., Eds.; Academic Press: Cambridge, MA, USA, 2000; pp. 365–402. [Google Scholar]
- Burton, H.; Firszt, J.B.; Holden, T. Hearing thresholds and fMRI of auditory cortex following eighth cra nial nerve surgery. Otolaryngol. Head Neck Surg. 2013, 149, 492–499. [Google Scholar] [CrossRef] [Green Version]
- Bilecen, D.; Seifritz, E.; Radü, E.W.; Schmid, N.; Wetzel, S.; Probst, R.; Scheffler, K. Cortical reorganization after acute unilateral hearing loss traced by fMRI. Neurology 2000, 54, 765–767. [Google Scholar] [CrossRef]
- Van der Haegen, L.; Acke, F.; Vingerhoets, G.; Dhooge, I.; De Leenheer, E.; Cai, Q.; Brysbaert, M. Laterality and unilateral deafness: Patients with congenital right ear deafness do not develop atypical language dominance. Neuropsychologia 2016, 93, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Schmithorst, V.J.; Plante, E.; Holland, S. Unilateral deafness in children affects development of multi-modal modulation and default mode networks. Front. Hum. Neurosci. 2014, 8, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Fan, Y.; Zhao, F.; Wang, Z.; Ge, J.; Zhang, K.; Gao, Z.; Gao, J.H.; Yang, Y.; Fan, J.; et al. Altered Regional and Circuit Resting-State Activity Associated with Unilateral Hearing Loss. PLoS ONE 2014, 9, e96126. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Mao, Z.; Feng, S.; Liu, X.; Lan, L.; Zhang, J.; Yu, X. Altered functional networks in long-term unilateral hearing loss: A connectome analysis. Brain Behav. 2018, 8, e00912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Mao, Z.; Feng, S.; Liu, X.; Zhang, J.; Yu, X. Monaural-driven Functional Changes within and beyond the Auditory Cortical Network: Evidence from Long-term Unilateral Hearing Impairment. Neuroscience 2018, 371, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, K.; Ead, B.; Umansky, A.; Coalson, R.; Schlaggar, B.L.; Firszt, J.B.; Lieu, J.E. Interregional brain interactions in children with unilateral hearing loss. Otolaryngol. Head. Neck Surg. 2011, 144, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.E.; Colletta, M.; Coalson, R.; Schlaggar, B.L.; Lieu, J.E.C. Differences in interregional brain connectivity in children with unilateral hearing loss. Laryngoscope 2017, 127, 2636–2645. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Feng, Y.; Yang, M.; Chen, J.Y.; Li, J.; Huang, Z.C.; Zhang, L.L. Functional Connectivity in Patients with Sensorineural Hearing Loss Using Resting-State MRI. Am. J. Audiol. 2015, 24, 145–152. [Google Scholar] [CrossRef]
- Schmithorst, V.J.; Holland, S.K.; Ret, J.; Duggins, A.; Arjmand, E.; Greinwald, J. Cortical reorganization in children with unilateral sensorineural hearing loss. Neuroreport 2005, 16, 463–467. [Google Scholar] [CrossRef] [Green Version]
- Burton, H.; Firszt, J.B.; Holden, T.; Agato, A.; Uchanski, R.M. Activation lateralization in human core, belt, and parabelt auditory fields with unilateral deafness compared to normal hearing. Brain Res. 2012, 1454, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Hanss, J.; Veuillet, E.; Adjout, K.; Besle, J.; Collet, L.; Thai-Van, H. The effect of long-term unilateral deafness on the activation pattern in the auditory cortices of French-native speakers: Influence of deafness side. BMC Neurosci. 2009, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Tabei, K.; Katsuyama, N.; Taira, M.; Kitamura, K. Brain activity in patients with unilateral sensorineural hearing loss during auditory perception in noisy environments. J. Med Dent. Sci. 2017, 64, 19–26. [Google Scholar] [PubMed]
- Zhang, G.Y.; Yang, M.; Liu, B.; Huang, Z.C.; Li, J.; Chen, J.Y.; Chen, H.; Zhang, P.-P.; Liu, L.-J.; Wang, J.; et al. Changes of the directional brain networks related with brain plasticity in patients with long-term unilateral sensorineural hearing loss. Neuroscience 2016, 313, 149–161. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Yang, M.; Liu, B.; Huang, Z.C.; Chen, H.; Zhang, P.P.; Li, J.; Chen, J.-Y.; Liu, L.-J.; Wang, J.; et al. Changes in the default mode networks of individuals with long-term unilateral sensorineural hearing loss. Neuroscience 2015, 285, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mao, Z.; Feng, S.; Wang, W.; Zhang, J.; Yu, X. Convergent and divergent functional connectivity patterns in patients with long-term left-sided and right-sided deafness. Neurosci. Lett. 2018, 665, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Propst, E.J.; Greinwald, J.H.; Schmithorst, V. Neuroanatomic differences in children with unilateral sensorineural hearing loss detected using functional magnetic resonance imaging. Arch. Otolaryngol. Head Neck Surg. 2010, 136, 22–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslin, M.R.D.; Munro, K.J.; El-Deredy, W. Evidence for multiple mechanisms of cortical plasticity: A study of humans with late-onset profound unilateral deafness. Clin. Neurophysiol. 2013, 124, 1414–1421. [Google Scholar] [CrossRef]
- Maslin, M.R.D.; Munro, K.J.; El-Deredy, W. Source analysis reveals plasticity in the auditory cortex: Evidence for reduced hemispheric asymmetries following unilateral deafness. Clin. Neurophysiol. 2013, 124, 391–399. [Google Scholar] [CrossRef]
- Pross, S.E.; Chang, J.L.; Mizuiri, D.; Findlay, A.M.; Nagarajan, S.S.; Cheung, S.W. Temporal cortical plasticity in single-sided deafness: A functional imaging study. Otol. Neurotol. 2015, 36, 1443–1449. [Google Scholar] [CrossRef]
- Khosla, D.; Ponton, C.W.; Eggermont, J.J.; Kwong, B.; Don, M.; Vasama, J.P. Differential ear effects of profound unilateral deafness on the adult human central auditory system. JARO J. Assoc. Res. Otolaryngol. 2003, 4, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Lipschitz, N.; Kohlberg, G.D.; Scott, M.; Greinwald, J.H. Imaging findings in pediatric single-sided deafness and asymmetric hearing loss. Laryngoscope 2019. [Google Scholar] [CrossRef]
- Clemmens, C.S.; Guidi, J.; Caroff, A.; Cohn, S.J.; Brant, J.A.; Laury, A.M.; Bilaniuk, L.T.; Germiller, J.A. Unilateral cochlear nerve deficiency in children. Otolaryngol. Head. Neck Surg. 2013, 149, 318–325. [Google Scholar] [CrossRef]
- Yang, M.; Chen, H.J.; Liu, B.; Huang, Z.C.; Feng, Y.; Li, J.; Chen, J.-Y.; Zhang, L.L.; Ji, H.; Feng, X.; et al. Brain structural and functional alterations in patients with unilateral hearing loss. Hear. Res. 2014, 316, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Wang, J.J.; Wu, C.M.; Wai, Y.Y.; Yu, J.F.; Ng, S.H. Diffusion tensor imaging of the auditory pathway in sensorineural hearing loss: Changes in radial diffusivity and diffusion anisotropy. J. Magn. Reson. Imaging 2008, 28, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.M.; Ng, S.H.; Liu, T.C. Diffusion tensor imaging of the subcortical auditory tract in subjects with long-term unilateral sensorineural hearing loss. Audiol. Neurotol. 2009, 14, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Rachakonda, T.; Shimony, J.S.; Coalson, R.S.; Lieu, J.E.C. Diffusion tensor imaging in children with unilateral hearing loss: A pilot study. Front. Syst. Neurosci. 2014, 8, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, S.B.; Haakma, W.; Versnel, H.; Froeling, M.; Speleman, L.; Dik, P.; Viergever, M.A.; Leemans, A.; Grolman, W. Diffusion tensor imaging of the auditory nerve in patients with long-term single-sided deafness. Hear. Res. 2015, 323, 1–8. [Google Scholar] [CrossRef]
- Fallon, J.B.; Irvine, D.R.F.; Shepherd, R.K. Cochlear implants and brain plasticity. Hear. Res. 2008, 238, 110–117. [Google Scholar] [CrossRef]
- Kral, A.; Heid, S.; Hubka, P.; Tillein, J. Unilateral hearing during development: Hemispheric specificity in plastic reorganizations. Front. Syst. Neurosci. 2013, 7, 93. [Google Scholar] [CrossRef] [Green Version]
- Jakob, T.F.; Illing, R.B.; Rosskothen-Kuhl, N. Monaural neonatal deafness induces inhibition among bilateral auditory networks under binaural activation. Neuroscience 2019, 400, 1–16. [Google Scholar] [CrossRef]
- Kral, A.; Hubka, P.; Heid, S.; Tillein, J. Single-sided deafness leads to unilateral aural preference within an early sensitive period. Brain 2013, 136, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Basta, D.; Götze, R.; Gröschel, M.; Jansen, S.; Janke, O.; Tzschentke, B.; Boyle, P.; Ernst, A. Bilateral Changes of Spontaneous Activity within the Central Auditory Pathway upon Chronic Unilateral Intracochlear Electrical Stimulation. Otol. Neurotol. 2015, 36, 1759–1765. [Google Scholar] [CrossRef] [PubMed]
- Firszt, J.B.; Reeder, R.M.; Holden, T.A.; Burton, H.; Chole, R.A. Changes in auditory perceptions and cortex resulting from hearing recovery after extended congenital unilateral hearing loss. Front. Syst. Neurosci. 2013, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Cañete, O.M.; Purdy, S.C.; Neeff, M.; Brown, C.R.S.; Thorne, P.R. Cortical auditory evoked potential (CAEP) and behavioural measures of auditory function in a child with a single-sided deafness. Cochlear Implants Int. 2017, 18, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Glick, H.; Campbell, J.; Torres, J.; Dorman, M.; Zeitler, D.M. Cortical Plasticity and Re-organization in Pediatric Single-Sided Deafness Pre-and Post-Cochlear Implantation: A Case Study. Otol. Neurotol. 2016, 37, e26. [Google Scholar] [CrossRef] [PubMed]
- Polonenko, M.J.; Gordon, K.A.; Cushing, S.L.; Papsin, B.C. Cortical organization restored by cochlear implantation in young children with single sided deafness. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.; Sandmann, P.; Bönitz, H.; Kral, A.; Büchner, A. Consequences of Stimulus Type on Higher-Order Processing in Single-Sided Deaf Cochlear Implant Users. Audiol. Neurotol. 2016, 21, 305–315. [Google Scholar] [CrossRef]
- Arts, R.; George, E.; Stokroos, R.; Vermeire, K. Review: Cochlear implants as a treatment of tinnitus in single-sided deafness. Curr. Opin. Otolaryngol. Head Neck Surg. 2012, 20, 398–403. [Google Scholar] [CrossRef]
- Mertens, G.; de Bodt, M.; van de Heyning, P. Evaluation of Long-Term Cochlear Implant Use in Subjects with Acquired Unilateral Profound Hearing Loss: Focus on Binaural Auditory Outcomes. Ear Hear. 2017, 38, 117–125. [Google Scholar] [CrossRef]
- Kral, A.; O’Donoghue, G.M. Profound deafness in childhood. N. Engl. J. Med. 2010, 363, 1438–1450. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yang, M.; Du, S.; Yang, J.; Liu, B.; Gorriz, J.M.; Ramírez, J.; Yuan, T.-F.; Zhang, Y. Wavelet Entropy and Directed Acyclic Graph Support Vector Machine for Detection of Patients with Unilateral Hearing Loss in MRI Scanning. Front. Comput. Neurosci. 2016, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Dorman, M.F.; Kral, A. The inXuence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear. Res. 2005, 203, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Kral, A. Auditory critical periods: A review from system’s perspective. Neuroscience 2013, 247, 117–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangen, A.; Dierckx, A.; Boudewyns, A.; Dhooge, I.; Offeciers, E.; Wouters, J.; Desloovere, C.; van Wieringen, A. Longitudinal linguistic outcomes of toddlers with congenital single-sided deafness—Six with and twelve without cochlear implant and nineteen normal hearing peers. Clin. Otolaryngol. 2019, 44, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Majdani, E.; Majdani, O.; Steffens, M.; Warnecke, A.; Lesinski-Schiedat, A.; Lenarz, T.; Götz, F. Dimensions of artefacts caused by cochlear and auditory brainstem implants in magnetic resonance imaging. Cochlear Implants Int. 2020, 21, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Majdani, O.; Rau, T.S.; Götz, F.; Zimmerling, M.; Lenarz, M.; Lenarz, T.; Labadie, R.; Leinung, M. Artifacts caused by cochlear implants with non-removable magnets in 3T MRI: Phantom and cadaveric studies. Eur. Arch. Otorhinolaryngol. 2009, 266, 1885–1890. [Google Scholar] [CrossRef] [PubMed]
- Abrams, H.L. Cochlear implants are a contraindication to MRI. JAMA 1989, 261, 46. [Google Scholar] [CrossRef]
- Tysome, J.R.; Tam, Y.C.; Patterson, I.; Graves, M.J.; Gazibegovic, D. Assessment of a Novel 3T MRI Compatible Cochlear Implant Magnet: Torque, Forces, Demagnetization, and Imaging. Otol. Neurotol. 2019, 40, e966–e974. [Google Scholar] [CrossRef]
- Todt, I.; Guerkov, R.; Gehl, H.B.; Sudhoff, H. Comparison of Cochlear Implant Magnets and Their MRI Artifact Size. Biomed Res. Int. 2020, 2020, 5086291. [Google Scholar] [CrossRef]
Year | Authors | Patients | Controls | Mean Age (Range) | Neural Method | Study Design | Duration of UHL |
---|---|---|---|---|---|---|---|
2000 | Bilecen et al. | 1 UHL | / | UHL: M = 53 y | fMRI | Case study | Pre- and post-UHL onset measures |
2003 | Khosla et al. | 19 UHL | 8 NH | UHL: M = 47 y (16–68 y) NH: M = 32 y (25–38 y) | EEG | Group | (1–4 y) |
2005 | Schmithorst et al. | 4 R UHL, 4 L UHL | / | UHL: M = 9 ± 1.8 y | fMRI | Cohort | |
2008 | Lin et al. | 12 UHL | 10 NH | UHL: M = 30.8 ± 10.1 y NH: M = 31.1 ± 11.6 y | DW-MRI | Group | M = 15.4 y (1–48 y) |
2009 | Hanss et al. | 18 UHL | 16 NH | All: (27–59 y) | EEG | Group | L UHL: M = 6.6 ± 3.7 y R UHL: M = 5.5 ± 3.3 y |
2009 | Wu et al. | 19 UHL | 10 NH | UHL: M = 24.1 y (8–60 y) NH: M = 31 y (18–58 y) | DW-MRI | Group | (5– >20 y) |
2010 | Propst et al. | 12 UHL | 23 NH | UHL: M = 9.0 y (7.2–11.8 y) NH: M = 9.8 y (7.3–11.6 y) | fMRI | Group | |
2011 | Tibbetts et al. | 16 UHL | 10 NH | All: (7–17 y) | RS-fcMRI | Group | |
2012 | Burton, Firszt, et al. | 26 UHL | 24 NH | UHL: M = 47 y (25–72 y) NH: M = 47 y (25–71 y) | fMRI | Group | (0.2–72 y) |
2013 | Burton et al. | 9 UHL | / | UHL: (28–53 y) | fMRI | Cohort | |
2013 | Clemmens et al. | 128 UHL | / | UHL: M = 5.6 y (3 w–16 y) | T2 MRI | Cohort | |
2013 | Maslin, Munro, et al. | 18 UHL | 18 NH | UHL: M = 60 y (43–75 y) NH: M = 58 y (42–74 y) | EEG | Group | (6 m –7 y) |
2013 | Maslin, Munro, et al. | 6 UHL | 6 NH | UHL: M = 52 y (40–69 y) NH: M = 60 y (+/− 42–79 y) | EEG | Group | Measures 1-6 m post UHL |
2014 | Rachakonda et.al | 179 HL | 54 NH | All: (13–18 y) | DW-MRI | Group | Congenital and acquired |
2014 | Schmithorst et al. | 21 UHL | 23 NH | All: (7–12 y) | fMRI | Group | >2 years or unknown |
2014 | Wang et al. | 17 L UHL, 17 R UHL | 22 NH | L UHL: M = 45.7 ± 6.5 y R UHL: M = 43.0 ± 5.4 y NH: M = 46.0 ± 4.8 y | RS-fcMRI | Group | L UHL: M = 26.1 ± 10.9 m R UHL: M = 22.6 ± 11.7 m |
2014 | Yang, Chen, et al. | 14 R UHL | 19 NH | All: (41–60 y) | fMRI | Group | R UHL: M = 14.2 ± 14.9 y |
2015 | Liu et al. | 19 UHL | 35 NH | UHL: M = 48.6 ± 14.3 y NH: M = 53.2 ± 7.5 y | RS-fcMRI | Group | >1 y |
2015 | Pross et al. | 8 L UHL, 4 R UHL | 12 NH | UHL: M = 49 y (22–77 y) NH: M = 46 y (24–61 y) | MEG, MRI | Group | M = 10.4 y (2–25 y) |
2015 | Vos et al. | 5 UHL | 5 NH | UHL: M = 50.6 y (34–64 y) NH: M = 40.6 y (29–57 y) | DW-MRI | Group | (15–54 y) |
2015 | Zhang et al. | 11 L UHL, 10 R UHL | 11 NH | L UHL: M = 47.2 ± 10.8 y R UHL: M =55.2 ± 6.8 y NH: M = 51.7 ± 12.4 y | RS-fcMRI | Group | L UHL: M = 14.9 y (2–50 y) R UHL: M = 13.3 y (2–50 y) |
2016 | Van der Haegen | 7 R UHL | 7 NH | UHL: M = 45.0 y (29–70 y) NH: M = 45.3 y (31–70 y) | fMRI | Group | Congenital |
2016 | Zhang et al. | 34 UHL | 17 NH | UHL: M = 46.9 ± 14.6 y NH: M = 50.6 ± 13.5 y | RS-fcMRI | Group | L UHL: M = 13.8 ± 14.9 y R UHL: M = 17.3 ± 15.9 y |
2017 | Jung et al. | 20 UHL | 13 NH | All: (7–17 y) | RS-fcMRI | Group | |
2017 | Yamamoto et al. | 5 L UHL, 7 R UHL | 8 NH | UHL: M = 45.4 y (26–72 y) NH: M = 41.8 y (30–60 y) | fMRI | Group | M = 3.7 y (1–15 y) |
2018a | Zhang et al. | 17 L UHL, 21 R UHL | 21 NH | L UHL: M = 46.6 ± 11.9 y R UHL: M = 50.1 ± 9.5 y NH: M = 43.8 ± 7.0 y | RS-fcMRI | Group | L UHL: M = 37.9 ± 14.1 m R UHL: M = 44.0 ± 13.6 m |
2018b | Zhang et al. | 17 L UHL, 21 R UHL | 21 NH | L UHL: M = 46.6 ± 11.9 y R UHL: M = 50.1 ± 9.5 y NH: M = 43.8 ± 7.0 y | RS-fcMRI | Group | L UHL: M = 37.9 ± 14.1 m R UHL: M = 44.0 ± 13.6 m |
2018c | Zhang et al. | 21 UHL | 21 NH | UHL: M = 44.2 ± 3.5 y NH: M = 42.8 ± 7.9 y | RS-fcMRI | Group | M = 34.0 ± 31.1 m |
2019 | Lipschitz et al. | 189 UHL | / | UHL: (0–18 y) | MRI, CT | Cohort | Congenital and acquired |
Year | Authors | Patients | Controls | Mean Age (Range) | Neural Method | Study Design | Duration of UHL |
---|---|---|---|---|---|---|---|
2013 | Kral, Heid et al. | 10 UHL cats | / | / | ABR | Animal study | Congenital |
2013 | Kral, Hubka et al. | 7 UHL cats | 7 NH cats | / | ABR | Animal study | Congenital |
2013 | Firszt et al. | 1 UHL | / | UHL: 41 y | Case study | Probably congential | |
2015 | Basta et al. | 24 UHL guinea pigs | / | / | ABR | Animal study | Induced in adulthood |
2016 | Finke et al. | 10 UHL | / | UHL: M = 53.2 y (26– 68 y) | ERP | Cohort study | M = 9.5 y (1-23 y) |
2016 | Sharma et al. | 1 UHL | / | UHL: 9 years at CI implantation | CAEP | Case study | Progressive HL started at 5 y |
2017 | Canete et al. | 1 UHL | / | UHL: 8 years at CI implantation | CAEP | Case study | Congenital |
2017 | Polonenko et al. | 5 UHL | / | UHL: ≤ 3.6 y | EEG | Case study | Congenital |
2019 | Jakob et al. | 22 UHL rats | 19 NH rats | / | ABR | Animal study | Congenital |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanderauwera, J.; Hellemans, E.; Verhaert, N. Research Insights on Neural Effects of Auditory Deprivation and Restoration in Unilateral Hearing Loss: A Systematic Review. J. Clin. Med. 2020, 9, 812. https://doi.org/10.3390/jcm9030812
Vanderauwera J, Hellemans E, Verhaert N. Research Insights on Neural Effects of Auditory Deprivation and Restoration in Unilateral Hearing Loss: A Systematic Review. Journal of Clinical Medicine. 2020; 9(3):812. https://doi.org/10.3390/jcm9030812
Chicago/Turabian StyleVanderauwera, Jolijn, Elisabeth Hellemans, and Nicolas Verhaert. 2020. "Research Insights on Neural Effects of Auditory Deprivation and Restoration in Unilateral Hearing Loss: A Systematic Review" Journal of Clinical Medicine 9, no. 3: 812. https://doi.org/10.3390/jcm9030812
APA StyleVanderauwera, J., Hellemans, E., & Verhaert, N. (2020). Research Insights on Neural Effects of Auditory Deprivation and Restoration in Unilateral Hearing Loss: A Systematic Review. Journal of Clinical Medicine, 9(3), 812. https://doi.org/10.3390/jcm9030812