Peripheral Blood Lymphocyte Phenotype Differentiates Secondary Antibody Deficiency in Rheumatic Disease from Primary Antibody Deficiency
Abstract
:1. Introduction
2. Experimental Section
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jolles, S.; Chapel, H.; Litzman, J. When to initiate immunoglobulin replacement therapy (IGRT) in antibody deficiency: A practical approach. Clin. Exp. Immunol. 2017, 188, 333–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.Y.; Carbone, J.; Jolles, S. The Expanding Field of Secondary Antibody Deficiency: Causes, Diagnosis, and Management. Front. Immunol. 2019, 10, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, M.G.; Kindle, G.; Gathmann, B.; Quinti, I.; Buckland, M.; van Montfrans, J.; Scheible, R.; Rusch, S.; Gasteiger, L.M.; Grimbacher, B.; et al. The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the Clinical Diagnosis of Inborn Errors of Immunity. J. Allergy Clin. Immunol. Pract. 2019, 7, 1763–1770. [Google Scholar] [CrossRef]
- Ameratunga, R.; Woon, S.T. Perspective: Evolving Concepts in the Diagnosis and Understanding of Common Variable Immunodeficiency Disorders (CVID). Clin. Rev. Allergy Immunol. 2019. [Google Scholar] [CrossRef] [PubMed]
- El-Helou, S.M.; Biegner, A.K.; Bode, S.; Ehl, S.R.; Heeg, M.; Maccari, M.E.; Ritterbusch, H.; Speckmann, C.; Rusch, S.; Scheible, R.; et al. The German National Registry of Primary Immunodeficiencies (2012-2017). Front. Immunol. 2019, 10, 1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapel, H.; Lucas, M.; Lee, M.; Bjorkander, J.; Webster, D.; Grimbacher, B.; Fieschi, C.; Thon, V.; Abedi, M.R.; Hammarstrom, L. Common variable immunodeficiency disorders: Division into distinct clinical phenotypes. Blood 2008, 112, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Castro, M.; Mellor-Pita, S.; Citores, M.J.; Muñoz, P.; Tutor-Ureta, P.; Silva, L.; Vargas, J.A.; Yebra-Bango, M.; Andreu, J.L. Common variable immunodeficiency in systemic lupus erythematosus. Semin. Arthritis Rheum. 2007, 36, 238–245. [Google Scholar] [CrossRef]
- Blazina, Š.; Markelj, G.; Jeverica, A.K.; Toplak, N.; Bratanič, N.; Jazbec, J.; Kopač, P.; Debeljak, M.; Ihan, A.; Avčin, T. Autoimmune and Inflammatory Manifestations in 247 Patients with Primary Immunodeficiency-a Report from the Slovenian National Registry. J. Clin. Immunol. 2016, 36, 764–773. [Google Scholar] [CrossRef]
- Gutierrez, M.J.; Sullivan, K.E.; Fuleihan, R.; USIDNET Consortium; Clifton O Bingham 3rd. Phenotypic characterization of patients with rheumatologic manifestations of common variable immunodeficiency. Semin. Arthritis Rheum. 2018, 48, 318–326. [Google Scholar] [CrossRef]
- Hanitsch, L.G.; Wittke, K.; Stittrich, A.B.; Volk, H.D.; Scheibenbogen, C. Interstitial Lung Disease Frequently Precedes CVID Diagnosis. J. Clin. Immunol. 2019, 39, 849–851. [Google Scholar] [CrossRef]
- Sogkas, G.; Fedchenko, M.; Dhingra, A.; Jablonka, A.; Schmidt, R.E.; Atschekzei, F. Primary immunodeficiency disorder caused by phosphoinositide 3-kinase δ deficiency. J. Allergy Clin. Immunol. 2018, 142, 1650–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröder, C.; Sogkas, G.; Fliegauf, M.; Dörk, T.; Liu, D.; Hanitsch, L.G.; Steiner, S.; Scheibenbogen, C.; Jacobs, R.; Grimbacher, B.; et al. Late-Onset Antibody Deficiency Due to Monoallelic Alterations in NFKB1. Front. Immunol. 2019, 10, 2618. [Google Scholar] [CrossRef] [PubMed]
- Schwab, C.; Gabrysch, A.; Olbrich, P.; Patiño, V.; Warnatz, K.; Wolff, D.; Hoshino, A.; Kobayashi, M.; Imai, K.; Takagi, M.; et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J. Allergy Clin. Immunol. 2018, 142, 1932–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fliegauf, M.; Bryant, V.L.; Frede, N.; Slade, C.; Woon, S.T.; Lehnert, K.; Winzer, S.; Bulashevska, A.; Scerri, T.; Leung, E.; et al. Haploinsufficiency of the NF-κB1 Subunit p50 in Common Variable Immunodeficiency. Am. J. Hum. Genet. 2015, 97, 389–403. [Google Scholar] [CrossRef] [Green Version]
- Lawless, D.; Geier, C.B.; Farmer, J.R.; Lango Allen, H.; Thwaites, D.; Atschekzei, F.; Brown, M.; Buchbinder, D.; Burns, S.O.; Butte, M.J.; et al. Prevalence and clinical challenges among adults with primary immunodeficiency and recombination-activating gene deficiency. J. Allergy Clin. Immunol. 2018, 141, 2303–2306. [Google Scholar] [CrossRef] [Green Version]
- Fabre, A.; Marchal, S.; Barlogis, V.; Mari, B.; Barbry, P.; Rohrlich, P.S.; Forbes, L.R.; Vogel, T.P.; Giovannini-Chami, L. Clinical Aspects of STAT3 Gain-of-Function Germline Mutations: A Systematic Review. J. Allergy Clin. Immunol. Pract. 2019, 7, 1958–1969. [Google Scholar] [CrossRef]
- Bateman, E.A.; Ayers, L.; Sadler, R.; Lucas, M.; Roberts, C.; Woods, A.; Packwood, K.; Burden, J.; Harrison, D.; Kaenzig, N.; et al. T cell phenotypes in patients with common variable immunodeficiency disorders: Associations with clinical phenotypes in comparison with other groups with recurrent infections. Clin. Exp. Immunol. 2012, 170, 202–211. [Google Scholar] [CrossRef]
- Romero, P.; Zippelius, A.; Kurth, I.; Pittet, M.J.; Touvrey, C.; Iancu, E.M.; Corthesy, P.; Devevre, E.; Speiser, D.E.; Rufer, N. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J. Immunol. 2007, 178, 4112–4119. [Google Scholar] [CrossRef] [Green Version]
- Junge, S.; Kloeckener-Gruissem, B.; Zufferey, R.; Keisker, A.; Salgo, B.; Fauchere, J.C.; Scherer, F.; Shalaby, T.; Grotzer, M.; Siler, U.; et al. Correlation between recent thymic emigrants and CD31+ (PECAM-1) CD4+ T cells in normal individuals during aging and in lymphopenic children. Eur. J. Immunol. 2007, 37, 3270–3280. [Google Scholar] [CrossRef]
- Fazilleau, N.; Mark, L.; McHeyzer-Williams, L.J.; McHeyzer-Williams, M.G. Follicular helper T cells: Lineage and location. Immunity 2009, 30, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Martin, V.G.; Wu, Y.B.; Townsend, C.L.; Lu, G.H.; O’Hare, J.S.; Mozeika, A.; Coolen, A.C.; Kipling, D.; Fraternali, F.; Dunn-Walters, D.K. Transitional B Cells in Early Human B Cell Development—Time to Revisit the Paradigm? Front. Immunol. 2016, 7, 546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.C.; Kipling, D.; Dunn-Walters, D.K. The relationship between CD27 negative and positive B cell populations in human peripheral blood. Front. Immunol. 2011, 2, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakhmanov, M.; Keller, B.; Gutenberger, S.; Foerster, C.; Hoenig, M.; Driessen, G.; van der Burg, M.; van Dongen, J.J.; Wiech, E.; Visentini, M.; et al. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells. Proc. Natl. Acad. Sci. USA 2009, 106, 13451–13456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warnatz, K.; Wehr, C.; Dräger, R.; Schmidt, S.; Eibel, H.; Schlesier, M.; Peter, H.H. Expansion of CD19(hi)CD21(lo/neg) B cells in common variable immunodeficiency (CVID) patients with autoimmune cytopenia. Immunobiology 2002, 206, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Wehr, C.; Kivioja, T.; Schmitt, C.; Ferry, B.; Witte, T.; Eren, E.; Vlkova, M.; Hernandez, M.; Detkova, D.; Bos, P.R.; et al. The EUROclass trial: Defining subgroups in common variable immunodeficiency. Blood 2008, 111, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Wirsum, C.; Glaser, C.; Gutenberger, S.; Keller, B.; Unger, S.; Voll, R.E.; Vach, W.; Ness, T.; Warnatz, K. Secondary Antibody Deficiency in Glucocorticoid Therapy Clearly Differs from Primary Antibody Deficiency. J. Clin. Immunol. 2016, 36, 406–412. [Google Scholar] [CrossRef]
- Warnatz, K.; Denz, A.; Dräger, R.; Braun, M.; Groth, C.; Wolff-Vorbeck, G.; Eibel, H.; Schlesier, M.; Peter, H.H. Severe deficiency of switched memory B cells (CD27(+)IgM(-)IgD(-)) in subgroups of patients with common variable immunodeficiency: A new approach to classify a heterogeneous disease. Blood 2002, 99, 1544–1551. [Google Scholar] [CrossRef] [Green Version]
- Vlková, M.; Fronková, E.; Kanderová, V.; Janda, A.; Ruzicková, S.; Litzman, J.; Sedivá, A.; Kalina, T. Characterization of lymphocyte subsets in patients with common variable immunodeficiency reveals subsets of naive human B cells marked by CD24 expression. J. Immunol. 2010, 185, 6431–6438. [Google Scholar] [CrossRef]
- Coraglia, A.; Galassi, N.; Fernández Romero, D.S.; Juri, M.C.; Felippo, M.; Malbrán, A.; de Bracco, M.M. Common Variable Immunodeficiency and Circulating TFH. J. Immunol. Res. 2016, 2016, 4951587. [Google Scholar] [CrossRef] [Green Version]
- Compagno, N.; Malipiero, G.; Cinetto, F.; Agostini, C. Immunoglobulin replacement therapy in secondary hypogammaglobulinemia. Front. Immunol. 2014, 5, 626. [Google Scholar] [CrossRef] [Green Version]
- Tselios, K.; Gladman, D.D.; Touma, Z.; Su, J.; Anderson, N.; Urowitz, M.B. Clinical Remission and Low Disease Activity Outcomes Over 10 Years in Systemic Lupus Erythematosus. Arthritis Care Res. 2019, 71, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, C.; Evans, V.; Hasthorpe, H.; Mukhtyar, C. Revising DAS28 scores for remission in rheumatoid arthritis. Clin. Rheumatol. 2014, 33, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Sogkas, G.; Adriawan, I.R.; Ringshausen, F.C.; Baumann, U.; Schröder, C.; Klemann, C.; von Hardenberg, S.; Schmidt, G.; Bernd, A.; Jablonka, A.; et al. A novel NFKBIA variant substituting serine 36 of IκBα causes immunodeficiency with warts, bronchiectasis and juvenile rheumatoid arthritis in the absence of ectodermal dysplasia. Clin. Immunol. 2020, 210, 108269. [Google Scholar] [CrossRef] [PubMed]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Sepriano, A.; Kerschbaumer, A.; Smolen, J.S.; van der Heijde, D.; Dougados, M.; van Vollenhoven, R.; McInnes, I.B.; Bijlsma, J.W.; Burmester, G.R.; de Wit, M.; et al. Safety of synthetic and biological DMARDs: A systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2020. [Google Scholar] [CrossRef] [Green Version]
- Grøn, K.L.; Glintborg, B.; Nørgaard, M.; Mehnert, F.; Østergaard, M.; Dreyer, L.; Krogh, N.S.; Hetland, M.L. Overall infection risk in rheumatoid arthritis during treatment with abatacept, rituximab and tocilizumab; an observational cohort study. Rheumatology 2019. [Google Scholar] [CrossRef]
- Cobo-Ibáñez, T.; Descalzo, M.Á.; Loza-Santamaría, E.; Carmona, L.; Muñoz-Fernández, S. Serious infections in patients with rheumatoid arthritis and other immune-mediated connective tissue diseases exposed to anti-TNF or rituximab: Data from the Spanish registry BIOBADASER 2.0. Rheumatol. Int. 2014, 34, 953–961. [Google Scholar] [CrossRef]
- Ameratunga, R.; Ahn, Y.; Steele, R.; Woon, S.T. The Natural History of Untreated Primary Hypogammaglobulinemia in Adults: Implications for the Diagnosis and Treatment of Common Variable Immunodeficiency Disorders (CVID). Front. Immunol. 2019, 10, 1541. [Google Scholar] [CrossRef] [Green Version]
- Turpin, D.; Furudoi, A.; Parrens, M.; Blanco, P.; Viallard, J.F.; Duluc, D. Increase of follicular helper T cells skewed toward a Th1 profile in CVID patients with non-infectious clinical complications. Clin. Immunol. 2018, 197, 130–138. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kubo, S.; Miyagawa, I.; Iwata, S.; Nakayamada, S. Lymphocyte phenotype and its application to precision medicine in systemic autoimmune diseases. Semin. Arthritis Rheum. 2019, 48, 1146–1150. [Google Scholar] [CrossRef]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Lill-Elghanian, D.; Schwartz, K.; King, L.; Fraker, P. Glucocorticoid-induced apoptosis in early B cells from human bone marrow. Exp. Biol. Med. 2002, 227, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Glaesener, S.; Quách, T.D.; Onken, N.; Weller-Heinemann, F.; Dressler, F.; Huppertz, H.I.; Thon, A.; Meyer-Bahlburg, A. Distinct effects of methotrexate and etanercept on the B cell compartment in patients with juvenile idiopathic arthritis. Arthritis Rheumatol. 2014, 66, 2590–2600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Anolik, J.H. B-cell biology and related therapies in systemic lupus erythematosus. Rheum. Dis. Clin. N. Am. 2010, 36, 109–130. [Google Scholar] [CrossRef] [PubMed]
- Mélet, J.; Mulleman, D.; Goupille, P.; Ribourtout, B.; Watier, H.; Thibault, G. Rituximab-induced T cell depletion in patients with rheumatoid arthritis: Association with clinical response. Arthritis Rheum. 2013, 65, 2783–2790. [Google Scholar] [CrossRef] [PubMed]
- Brokstad, K.A.; Fredriksen, M.; Zhou, F.; Bergum, B.; Brun, J.G.; Cox, R.J.; Skarstein, K. T follicular-like helper cells in the peripheral blood of patients with primary Sjögren’s syndrome. Scand. J. Immunol. 2018, e12679. [Google Scholar] [CrossRef] [Green Version]
- Long, S.; Ma, L.; Wang, D.; Shang, X. High frequency of circulating follicular helper T cells is correlated with B cell subtypes in patients with ankylosing spondylitis. Exp. Ther. Med. 2018, 15, 4578–4586. [Google Scholar] [CrossRef] [Green Version]
- Ishioka-Takei, E.; Yoshimoto, K.; Suzuki, K.; Nishikawa, A.; Yasuoka, H.; Yamaoka, K.; Takeuchi, T. Increased proportion of a CD38highIgD+ B cell subset in peripheral blood is associated with clinical and immunological features in patients with primary Sjögren’s syndrome. Clin. Immunol. 2018, 187, 85–91. [Google Scholar] [CrossRef]
- Szabó, K.; Papp, G.; Szántó, A.; Tarr, T.; Zeher, M. A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjögren’s syndrome and systemic lupus erythematosus. Clin. Exp. Immunol. 2016, 183, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Thorarinsdottir, K.; Camponeschi, A.; Jonsson, C.; Granhagen Önnheim, K.; Nilsson, J.; Forslind, K.; Visentini, M.; Jacobsson, L.; Mårtensson, I.L.; Gjertsson, I. CD21-/low B cells associate with joint damage in rheumatoid arthritis patients. Scand. J. Immunol. 2019, 90, e12792. [Google Scholar] [CrossRef]
- Shimizu, T.; Nagafuchi, Y.; Harada, H.; Tsuchida, Y.; Tsuchiya, H.; Hanata, N.; Tateishi, S.; Kanda, H.; Sumitomo, S.; Shoda, H.; et al. Decreased peripheral blood memory B cells are associated with the presence of interstitial lung disease in rheumatoid arthritis: A case-control study. Mod. Rheumatol. 2020, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
Primary Hypogammaglobulinemia (1) | Secondary Hypogammaglobulinemia (2) | p - Value | |
---|---|---|---|
Number (n) | 38 | 38 | |
Male Gender (n (%)) | 13 (34.21) | 10 (26.32) | ns |
Current Age (Mean (IQR)) | 51.82 y (37.5–60) | 57.66 y (52–66.25) | ns |
Age at Diagnosis of Hypogammaglobulinemia (Mean (IQR)) | 38.5 y (24.75–53.75) | 53.42 y (47.5–61.25) | *** (<0.0001) |
Patients Treated with Immunoglobulin Replacement (n (%)) | 37 (97.37) | 7 (18.42) | *** (<0.0001) |
IgG (Mean (IQR)) | 2.74 g/L (0.71–4.6) | 5.63 g/L (4.99–6.22) | *** (<0.0001) |
IgA (Mean (IQR)) | 0.45 g/L (0.04–0.48) | 1.45 g/L (0.77–1.97) | *** (<0.0001) |
IgM (Mean (IQR)) | 0.69 g/L (0.18–0.96) | 0.83 g/L (0.52–1.05) | *** (0.0003) |
Absolute Lymphocyte Count (Mean (IQR)) | 1653 (1019–2080) | 1469 (1011–1838) | ns |
Lymphocyte Percentage (Mean (IQR)) | 22.82 (16.75–28.25) | 20.92 (13–27) | ns |
Pat. Nr. | Rheumatic Disease | Current Therapy | Therapy at Diagnosis of Hypogammaglobulinemia | Previous Therapies |
---|---|---|---|---|
1 | perSpA | MTX | MTX | |
2 | RA | MTX | MTX | |
3 | axSpA | adalimumab | MTX | MTX, SSZ |
4 | AOSD | prednisolone | prednisolone | |
5 | SSc | MTX | MTX | |
6 | perSpA | MTX + etanercept | MTX + SSZ | MTX, SSZ, LFN |
7 | SLE | MMF | CYC | CYC, HCQ |
8 | SLE | MTX | MTX | HCQ |
9 | SLE | MMF | MMF | |
10 | RA | MTX | MTX | HCQ, SSZ |
11 | SLE | CYC | CYC | AZA, MMF, HCQ |
12 | SLE | CYC | CYC | AZA, MMF, HCQ |
13 | RA | TCZ | MTX + RTX | MTX, LFN, SSZ, gold, adalimumab, infliximab |
14 | RA | MTX | MTX | |
15 | GCA | MTX | MTX | |
16 | RA | MTX + etanercept | MTX | MTX, HCQ |
17 | SLE | LFN + HCQ | MTX + HCQ | AZA, MTX, HCQ |
18 | axSpA | MTX + infliximab | MTX + infliximab | adalimumab |
19 | SS | prednisolone | prednisolone | |
20 | RA | MTX | MTX | |
21 | SS | MMF | MMF | CYC, AZA |
22 | PG | prednisolone | prednisolone | |
23 | AOSD | prednisolone | prednisolone | |
24 | SS | MTX | MTX | |
25 | SLE | MMF + HCQ | MMF | MMF |
26 | GCA | MTX | MTX | |
27 | SS | MTX | MTX | |
28 | SLE | AZA + HCQ | AZA + HCQ | MTX |
29 | RA | MTX | MTX | |
30 | RA | MTX | MTX | |
31 | RA | TCZ | SSZ + MTX | MTX, SSZ, LFN, adalimumab, abatacept |
32 | perSpA | adalimumab | SSZ + MTX | SSZ, MTX, HCQ |
33 | SLE | AZA | AZA | HCQ |
34 | SS | AZA + HCQ | AZA + HCQ | |
35 | SS | AZA | AZA | |
36 | SLE | MMF | MMF | HCQ |
37 | RA | MTX + RTX | MTX + RTX | LFN, MTX, HCQ, SSZ |
38 | RA | MTX + adalimumab | MTX + RTX | TCZ, etanercept, abatacept, SSZ, LFN, HCQ, MTX |
Proposed Diagnostic Criterion | I. Naive B Cells >80 (%B Cells) | II. cl. sw. Memory B Cells <2.2 (%B Cells) | III. CD21low CD38low B Cells >10 (%B Cells) | IV. Memory CD4+ T Cells >70 (%CD4+ T Cells) | V. CD4+ T Follicular Cells >20 (%CD4+ T Cells) | VI. At Least One of Criteria II. or V |
---|---|---|---|---|---|---|
Sensitivity (%) | 52.63 | 63.16 | 31.58 | 39.47 | 47.37 | 76.32 |
95% c.i. | 35.82–69.02 | 45.99–78.19 | 17.5–48.65 | 24.04–56.61 | 30.98–64.18 | 59.76–88.56 |
Specificity (%) | 86.49 | 94.59 | 94.59 | 92.11 | 100 | 94.74 |
95% c.i. | 71.23–95.46 | 81.81–99.34 | 81.81–99.34 | 78.62–98.34 | 90.75–100.0 | 88.25–99.36 |
PPV | 80 | 92.31 | 85.71 | 83.33 | 100 | 93.55 |
95% c.i. | 59.3–93.17 | 74.87–99.05 | 57.19–98.22 | 58.58–96.42 | 81.47–100.0 | 78.58–99.21 |
NPV | 64 | 71.43 | 57.38 | 60.34 | 65.52 | 80 |
95% c.i. | 49.19–77.08 | 56.74–83.42 | 44.06–69.96 | 46.64–72.95 | 51.88–77.51 | 65.4–90.42 |
p - value | 0.0005 | <0.0001 | 0.0062 | 0.0024 | <0.0001 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jablonka, A.; Etemadi, H.; Adriawan, I.R.; Ernst, D.; Jacobs, R.; Buyny, S.; Witte, T.; Schmidt, R.E.; Atschekzei, F.; Sogkas, G. Peripheral Blood Lymphocyte Phenotype Differentiates Secondary Antibody Deficiency in Rheumatic Disease from Primary Antibody Deficiency. J. Clin. Med. 2020, 9, 1049. https://doi.org/10.3390/jcm9041049
Jablonka A, Etemadi H, Adriawan IR, Ernst D, Jacobs R, Buyny S, Witte T, Schmidt RE, Atschekzei F, Sogkas G. Peripheral Blood Lymphocyte Phenotype Differentiates Secondary Antibody Deficiency in Rheumatic Disease from Primary Antibody Deficiency. Journal of Clinical Medicine. 2020; 9(4):1049. https://doi.org/10.3390/jcm9041049
Chicago/Turabian StyleJablonka, Alexandra, Haress Etemadi, Ignatius Ryan Adriawan, Diana Ernst, Roland Jacobs, Sabine Buyny, Torsten Witte, Reinhold Ernst Schmidt, Faranaz Atschekzei, and Georgios Sogkas. 2020. "Peripheral Blood Lymphocyte Phenotype Differentiates Secondary Antibody Deficiency in Rheumatic Disease from Primary Antibody Deficiency" Journal of Clinical Medicine 9, no. 4: 1049. https://doi.org/10.3390/jcm9041049
APA StyleJablonka, A., Etemadi, H., Adriawan, I. R., Ernst, D., Jacobs, R., Buyny, S., Witte, T., Schmidt, R. E., Atschekzei, F., & Sogkas, G. (2020). Peripheral Blood Lymphocyte Phenotype Differentiates Secondary Antibody Deficiency in Rheumatic Disease from Primary Antibody Deficiency. Journal of Clinical Medicine, 9(4), 1049. https://doi.org/10.3390/jcm9041049